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Abstract

A Sabidussi graph is defined from a total ordeand a graplG as follows. Choose
a vertex ofG and denote it by 0. Denote BYT)V(G) the family of the functions
f:V(T) — V(G) suchthafqe V(T): f(q) # 0} is finite. The Sabidussi graptG is
defined oY TV (G) by: givenf #gec (V(V(G)), {f,g} cE(TG) if {f(m),g(m)} €
E(G), wheremis the smallest element §fj € V(T) : f(q) # 9(q)} in the total order
T.

Given a grapH, a subseiX of V(I') is an interval ofl" if for a,b € X andx €
V(M\ X, {a,x} € E(I) if and only if {b,x} € E(I"). Moreover, a subset of V(I') is
a strong interval of provided thaiX is an interval of” and for every intervaY of I,
if XNY #£0,thenXCYorY CX.

The intervals and the strong intervals of the Sabidussi gra@hare characterized,
whereQ is the set of rational numbers with the usual total order.
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1 Introduction

Letl = (V(I'),E(I")) be a simple graph. We denote the characteristic functidf(bj in
(V;”) by [x,y]r so that[x,y]r = 1if and only if {x,y} € E(I'). We extend this to subsets
X of V(I') by defining[x, X]r = 1 exactly when[x,y|r = 1 for eachy € X and to pairs of
disjoint subsetX,Y of V(I') by setting[X,Y]r = 1if and only if [x,y]r = 1 for all x € X,
yevy.

Given a graph, associate with each subsebf V (I') thesubgraph (X) of I' induced
by X defined onVv (' (X)) = X by [x,y]r(x) = [X,Y]r for x #y € X. Thecomplemenbf a
graphr is the grapH™ defined otV (") by [X,y]r = 1—[x,y|r forx#ye V().

1.1 The intervals

We use the following notation. Given sesandY, X CY means thaX is a subset o¥
whereas< C Y means thaX is a proper subset of.

Given a graph, a subseKX of V(I') is aninterval ([2, Subsection 9.8] and [8]) or an
autonomousubset [10] or omogeneousubset [3, 11] or &lan[1, Subsection 3.2] of
if for eachx € V(I') \ X, there isa € {0,1} such thafx, X]r = a. The following properties
of the intervals of a graph are well known (see, for example, [1, Subsection 3.3]).

Proposition 1.1. Given a graph’, the assertions below hold:
Al 0,V(I') and{x}, wherex € V(I'), are intervals of";

A2 (i) given a subsal of V(I'), if X is an interval ofl", thenX "W is an interval of
rw);
(i) given an intervalX of I', we have for every C X: Y is an interval ofl” (X) if
and only ifY is an interval of;

A3 (i) for every familyF of intervals ofl", the intersectiom ¥ of all the elements of
F is an interval of";

(ii) givenintervalsX andY of I, if XNY # 0, thenX UY is an interval of";

(i) for every familyF of intervals ofl’, the unionJ ¥ of all the elements gf is an
interval ofl" provided that for any,Y € 7, thereisZ € ¥ suchthaXuY C Z;

(iv) givenintervalsX andY of I, if X\ Y # 0, thenY \ X is an interval ofl;

A4 for any intervalsX andY of I, if XNY = 0, then there isa € {0,1} such that
[X,Y]r =a.

Following Assertion A1, V(I") and{x}, wherex € V(I'), are calledrivial. A graph
all of whose intervals are trivial imdecomposabl§8] or prime[10] or primitive [1]. Oth-
erwise, it isdecomposable

Given a grapli, a partitionP of V(I") is aninterval partitionof I when all the elements
of P are intervals of . Using Assertion A4, for each interval partiti®of G, we can define
the quotientl" /P of I' by P onV(I'/P) = P as follows. For anX #Y € P, [X,Y]r/p =
[X,y]r, wherex € X andy €Y.
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The following strengthening of the notion of interval is due to Gallai [3, 11]. It is used
to decompose finite graphs in an intrinsic and unique way. Given a dgragh intervalX
if I is strongif for every intervalY of I' not disjoint fromX, we haveX CY orY C X.
Properties analogous to those stated in Proposition 1.1 hold for strong intervals.

Proposition 1.2. Given a graph™, the assertions below hold:
B1 0,V(I') and{x}, wherex € V(I'), are strong intervals of ;

B2 (i) given an intervalX of I', we have for every C X: Y is a strong interval of
I (X) if and only ifY is a strong interval of ;

(ii) given a strong intervaK of I', we have for every C X: Y is a strong interval
of I (X) if and only ifY is a strong interval of ;

B3 (i) for every familyF of strong intervals of , the intersectiom# of all the ele-
ments off is a strong interval of;

(ii) for every family of strong intervals of ', the unionu¥ of all the elements of
F is a strong interval of” provided that for any,Y € F, there isZ € F such
thatXuyY C Z;

For a proof of Assertion B2.(i), we refer to [1, Lemma 3.11]. For convenience, we
denote the family of the nonempty strong intervals of a griafily (") and the family of
the maximal elements &f(I") \ {V(I")} under inclusion byP(I"). In the finite caseP(I")
yields the following decomposition theorem.

Theorem 1.3(Gallai [3, 11]) Given a finite grapH™, with [V ()| > 2, the familyP(I")
realizes an interval partition o¥/ (I"). Furthermore, the corresponding quotientP(I")
is either indecomposable, witP(T)| > 3, or there existsx € {0,1} such that for any
X #Y S P(F), [X,Y]r/p(r) =da.

In the infinite case, we have (see, for example, [7, Theorem 4.2]):
Lemma 1.4. Given an infinite graplf, if P(I") # 0, thenP(I") is an interval partition of".

Theorem 1.3 is still true for an infinite graghwhenP(I") # 0. Indeed,P(I") is an
interval partition ofr by Lemma 1.4. Since the elementsRif”) are the maximal elements
of S(I")\ {V(I)} under inclusion, all the strong intervals BfP(I") are trivial. Then, it
suffices to apply [7, Theorem 4.1] [g/P(I"). Given an infinite grapl, a strong intervaK
of I is limit [10] if P(I' (X)) = 0. Givenx € V(I'), note that{x} is a limit interval because
S(F({x})) ={V(Fr({x}))} = {{x}}. We denote by (I") the family of limit strong intervals
of '. Thedecomposition treef I' is the following family ordered by inclusion:

= T XpuPre).
XeS(M\L(T)

Recall that the total order+ Z defined on{ —e} UZ is the extension of the usual total
orderZ on the set of integers by adding one element denoteddyvhich is smaller than
all the integers. Consider the graplilefined oV (') = { —} UZ by: givenx#y e V(I),
{x,y} € E(I') if max(x,y) is even. Itis easy to verify that the subsétso} U{...,n—1,n}
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of {—e} UZ, wheren € Z, are the only non trivial intervals df. Therefore, they are the
only non trivial strong intervals déas well. As previously notedx} € L(I") forxe V(I').
Moreover,V(I') € L(I") because . ({—w}U{....,n—=1,n}) = {—w} UZ. Lastly, for
eachn € Z, we haveP(I'({—o}U{...,n—1,n})) = {{n},{—o} U{...,n—=2,n—1}}.
ConsequentlyD(I') = {{—»}U{...,n—1Ln};ne Z}U{{n};n e Z}. Clearly,{—ow} ¢
D(I"). Sometimes we add the singletons to the decompostion tree depending on its use.

1.2 The Sabidussi graphs

Sabidussi graphs are defined as follows. Consider a total drdefined on a sesand a
graphG = (V,E), with |V| > 2. Choose a vertex d and denote it by). Denote by>V the
family of the functionsf : S— V such that{q € S: f(q) # 0} is finite. In particular, the
function0 :S—V, defined by0(q) = O for everyq € S, belongs to®V. The graph' G
is defined or?V as follows: givenf # g (), [f,g]rg = [f(8(f,0)),9(8(f,0))]s, Where
o(f,g) denotes the smallest element{afc S: f(q) # 9(q) } in the total ordefT. The graph
TG s calledSabidussi graphBy replacingG by G in what precedes, we obtall instead
of TG.

Sabidussi [13] introduced this construction to obtain graphs idempotent under the lex-
icographic product. Given graplisandl™’, recall that thdexicographic producf [[’] of
" by T is defined oV (I [I']) =V(I') x V(') as follows. Givenx,x),(y,y') e V([[I'']),
{(x,X),(y,Y)} € E(T'[["']) if eitherx# yand{x,y} € E(I') orx=yand{x,y'} € E(T""). An
infinite graphl” is idempotentinder the lexicographic productlifl'] andl™ are isomorphic.
The lexicographic product of directed graphs is defined similarly. For a total @rdad a
graphG, we obtain that™ G)[T G] is isomorphic t#T)G, where 2 denotes the usual total or-
der on{0,1}. Consequently, the Sabidussi grdph is idempotent under the lexicographic
product if2[T] is isomorphic tol'. For instance, consider the usual total order on the set of
rational numbers, which is denoted Qyas well. We have|Q] is isomorphic taQ. In the
sequel, we consider the Sabidussi gr@@for some graplG = (V, E), with |V| > 2. For
conveniencelG is denoted by1. We propose to characterize the intervals and the strong
intervals off1. This leads us to some of their remarkable properties which suitably illustrate
the idempotency offl. In fact, Sabidussi graphs are the only known graphs idempotent un-
der the lexicographic product. We hope that our structural study will provide a more general
construction of such graphs in terms of decomposition tree which will permit a complete
characterization. In 1961, Sabidussi conjectured the following algebraic property of graphs
idempotent under the lexicographic product. Ceandl" be permutation groups acting on
setsX andX’, respectively. Thavreath producialso called theompositioror thecorong
of I aroundl"’ is the groug I’ whose elements are the paigs{x ; x€ X}), wherepe I’
andyy € I'’, and which acts oiX x X" by (@, {Wx : x € X})(x,X) = (@(X),Wx(X)). Given
graphs” andl”’, the family {{x} xV(I'"") ; xe V(I")} clearly constitutes an interval parti-
tion of the lexicographic produ€t[l”’]. It follows from Proposition 1.1 (A4) that the wreath
productAut(I") Aut(l"”’) is a subgroup ofut(I'["']). In particular,Aut(l") Aut(l") is a
subgroup ofAut(I"[I"]) for every grapH™. The relationship between the wreath product of
the automorphism groups of two graphs and the automorphism group of the lexicographic
product of the two graphs was studied by Sabidussi [13, 12] who corrected the first attempt
at characterizing the graphs for which the two resulting groups coincide. The characteriza-
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tion was generalized by the first author to hypergraphs [6] and to directed graphs [4] and to
directed hypergraphs [5]. The latter work also mentions the next conjecture.

Conjecture 1.5 (Sabidussi, 1961 (unpublished)lf I is a graph idempotent under the
lexicographic product, theAut(I") : Aut(I") is a proper subgroup ohut("[I']).

The second author proved this conjecture in 2003 [9] after studying the relationship
between the structures of the decomposition trdgof and ofl". This explains our present
approach.

1.3 Notation

Given X C @V, we denotex \ {0} by X*. Let f € @V. We denote the familfg e Q :
f(q) # 0} by o(f) and|a(f)| by n(f). We use the following notation whein= 0.

e 5(f)=min(o(f))andS(f) = maxo(f)).
e Seto(f) = {qy,. .., 0y}, wheres(f) = g < -+ < ¢, = (f).

We considers as a function(®V)* — Q and hence forx C (2V)*, we can extend it
by settings(X) = {s(f) : f € X}. Given a nonempty subset of @V such thats(x*)
admits a smallest elemeqgt we denote{f(q) ; f € XNs1({q})} by X |. Givenge Q
andx € V \ {0}, 9 is the element ofV defined byo(9) = {q} and(9%)(qg) = x. More
generally, giver® #£ X C V \ {0}, 9X denotes the sdtix ; x € X}.

Remarkl.6. If M is connected, then thereisc (QV)* such thaf0, fJq = 1. Consequently,
[0, f(s(f))]e = 1. Conversely, assume that therexis V \ {0} such thaf0, x| = 1. Firstly,
considerf € (QV)*. Forq < s(f), we have[0,9%]n = [f,9%n = 1. Secondly, consider
f # g€ (V)*. Forg< min(s(f),s(g)), we have[f,9%n = [9,9%|n = 1. Consequently,
M is connected if and only if there isc V \ {0} such that0,X]c = 1. By consideringG
instead ofG, we obtain thafT is connected if and only if there isc V \ {0} such that
[0,y]g = 1 or, equivalently[0,y|g = O.

Assumptior.7. In the sequel, we assume that therexagec V \ {0} such that0,x]g #
[0,y]g. It follows from Remark 1.6 thdfl andl are connected.

To continue, we define a poset on Qv as follows. First, for everyf € (@V)*,
we have0 < f. Second, giverf,g € (AV)*, f < gif f(q) = g(q) for everyq < S(f).
Consequently, iff < g, thens(f) = s(g) anda(f) C o(g). Furthermore, iff < g, then
[fag]l'l = [07g(qg(f)+1>]G-

Given0 # X CQV, denote byx~ the set off € &/ such thatf < g for everyg € X.
We havex™ # 0 becaus® € X~. Assume thatX # {0} and consideg € X*. We have
X~ C{g}~. For1<i<n(g), letg be the element otV defined byo(gi) = {af,....q’}
andgi(q) = g(q) for everyq < qig. Since({g},<)isthetotalordeD < g1 < go < --- <
Ong) = 9, X~ admits a largest element denoted/by. For convenience, givefi, ..., fp €
Qv, we denoter{fy,..., fp} by fi AL A fp. 3

Considerf €2V andq € Q such thatg > §(f) if f # 0. Denote by| f | the family of
g €2V such thatf < g. For example, giver € V \ {0}, 9f, is the element of f | defined
by o(9fx) = a(f)uU{q} and(%f)(q) = x. More generally, gived # X CQV, | X | denotes
the union of| h|, whereh € X. We use the following subsets pf |.
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[f]79={f}u{ge [F)\{f} 10}, > a}: forinstance|0]>% = {0} Us *((g, +)).
[f179={f}ufge [f)\{f} ), > a}: forinstance|0]=9= {0} Us ([, ).

Given0# X CV\ {0}, | f]%is the family ofg € | f]\ {f} such thawp (), =

andg(q) € X. For instance|0]5% = [9X].

Given®# X CV\ {0}, | |9 = | f]>9u|f]Y Forinstance|0]5" = {0} Us((q,
+o0))U [9X].

2 The intervals of N

2.1 Preliminary properties

Lemma 2.1. Let I be an interval of1, with | 7| > 1. Considerf € I* such that there exists
f’ e I satisfyingf’(s(f)) # f(s(f)) and f’(r) = O for everyr < s(f). Then € I, where
q=s(f) andx= f(q).

Proof : For a contradiction, suppose tifat¢Z 1. We have[x, f'|n = [x, f'(g)]c and
hencg, Iln =[x, f'(0)]c. Foreveryge 1N 9], 9% < gbecauséx ¢ I, and thus(g) > 2.
SetW = {g(q3); g€ IN|%]}. As f € IN|%], we havew # 0. For eacly € W, consider
g€ 1N |%] such thag(qd) =y. Asd(%,g) = g3, we have’x, gln = [0, Y] so that0,y]c =
[x, f'(g)]c. Consequently, we hae,W|s = [x, f'(q)]c. For eachy € (V \ {0})\ W, con-
siderr € (q{ = q,qé) and the elemenh of @v defined bya(h) = {q,r}, h(q) = x and
h(r) =y. Sincey ¢ W, we haveh ¢ I. Thereforeh, I|n = [h, f']n = [x, f'(9)]c. In par-
ticular, we obtain thalh, f]q = [, f'(0)]c. Asd(f,h) =r, [h, f]n = [0,y]c. Consequently,
[0,(V\ {0}) \W]|g = [x, f'(0)]c and henc€d0,V \ {0}]c = [x, f’(Q)]s, which contradicts
Assumption 1.7.

Lemma 2.2. Let I be an interval off1, with |I| > 1. Givenf € I*, consider € Q such

thatr > §(f) (resp. there is € {1,...,n(f) — 1} such thatqif <r< qif+1). If there exists
f’ € I such thatf’(s(f)) # f(s(f)) and f’(r') = 0 for everyr’ < s(f), then there exists
g € I* satisfying:

(1) f<g,n(@=n(f)+landSg) =r
(resp. (2)a(g) = {qy.....q',r} andg(g]) = f(q]) for everyj € {1,....i}).

Proof : By Assumption 1.7, there exists= V \ {0} such thaf0,x|g # [f, f'|n. Denote
by g the element ofV satisfying (1) (resp. (2)) and such tlgit) = x. As§(f,g) =r, we
have[f,gln = [0,X|c. Furthermore, sincé(f,f’) = &(g, f') = s(f) and sincef(s(f)) =
g(s(f)), we obtain thatf, f'|n = [g, f']n. It follows that[g, f]n # [g, f'|n and henceg € 1.

Proposition 2.3. Let I be an interval of1, with | I| > 1. Givenf € I*, if there existd’ € I
such thatf’(s(f)) # f(s(f)) and f’(r) = 0 for everyr < s(f), then|f]| C I.

Proof : For a contradiction, suppose that there exgsts(| f| \ {f})\ Z. Consider the
sety of he (| f]\{f})N1suchthan(h) =n(f)+1andS(h) =}, < Gncr) 11 By the
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preceding lemmay # 0. SetW = {h(S(h)) ; he 7}. Givenx € W, consideth € J such
thath(S(h)) =x. As§(f,g) = qﬁm+1 andd(g,h) = S(h), we have f,gln = [0, g(qﬁ(ml)]g
and[g,hjn = [0,X]c. For convenience, denot@,g(qﬁ(f)ﬂ)]@. by a. SinceT is an interval
of M, we obtain thatf,gjn = [g,h|n, that is, [0,X|c = a. Consequently[0,W|c = a.
Now, letx be an element ofV \ {0}) \W. SinceJ # 0 by Lemma 2.2, considdr € 7.
Givenr € (S(h),qﬂ(h)), we have fy ¢ I becausex¢ W. Therefore[h, (" fy)]n = [f, (" fx)|n.
Sinced(h, (" fx)) = S(h), we havelh, (" fx)|n = [0,h(S(h))]c. We obtain[h, (" fy)]n = a
becausé(S(h)) € W and[0,W]g = a. Asd(f, (" fx)) =r, we have[f, (" fx)|n = [0,X]c and
hence[0,x|g = a. It follows that[0, (V \ {0}) \ W|g = a so that[0,V \ {O}]g = a, which
contradicts Assumption 1.7.

2.2 The intervalsT of I such that|s(1*)| > 1

Lemma 2.4. If I is an interval off1 such that|s(7*)| > 1, thens(I*) is an interval ofQ
andOe 1.

Proof : Considerf,g € I such thats(f) < s(g) and considenq € (s(f),s(g)). By
Assumption 1.7, there existse V \ {0} such thaf0,X|g # [0, f(S(f))]c. Asd(x, f) =s(f)
and d(%,g) = q, we have[x, f]n = [0, f(s(f))]c and [x,g]n = [0,X|c. Consequently,
(9, f]n # [9,9]n and hencélx € 1. Firstly, we conclude thag(x) = q € s(1*) and thus
s(I*) is an interval ofQ. Secondly, a$(0, f) = s(f) andd(0,9%x) = g, we have[0, f|n =
[0, f(s(f))]c and[0,9X]n = [0,X|c. Therefore]0, f]n # [0,9%]n and henc® € 1.

The three corollaries below are immediate consequences of Lemmas 2.1, 2.2 and 2.4,
and of Proposition 2.3.

Corollary 2.5. Let I be an interval ofl1 such that|s(1*)| > 1. For everyf € I*, 9 € I,
whereq = s(f) andx = f(q).

Proof : By Lemma 2.4, we havé € I. It is then sufficient to apply Lemma 2.1 by
consideringd for f'.

Corollary 2.6. Let I be an interval ofl1 such that|s(1*)| > 1. Givenf € I*, consider
r € Q such thatr > S(f) (resp. thereis € {1,...,n(f)—1} such tha’qif <r< qifH). There
existsg € I* satisfyingn(g) =n(f)+1, f <gandS(g) =r (resp.o(g) = {q{, ... ,qif,r}
andg(gif) = f(qif) foreveryj € {1,...,i}).

Proof : By Lemma 2.4, we have € I. It is then sufficient to apply Lemma 2.2 by
considering) for f'.

Corollary 2.7. Let I be an interval of1 such thats(7*)| > 1. For everyf € I*, || C I.

Proof : By Lemma 2.4, we havé € I. It is then sufficient to apply Proposition 2.3 by
considering) for f’.
The next result follows from Lemma 2.4 as well.

Proposition 2.8. Let I be an interval off1 such that|s(7*)| > 1. For any f,g e I*, if
s(f) <s(g), thens*((s(g), +e0)) < I.



22 Gena Hahn, Pierre llle and Robert Woodrow

Proof: Sety ={he 1*:5(f) <s(h) <s(g)} andW = {h(s(h)) ; he 7}. By Lemma 2.4,
J # 0 and hencd #W C V \ {0}. For a contradiction, suppose thatc V \ {0}. Let
yeW andx e (V\ {0}) \W. There ish € J such thath(s(h)) =y and we considefx,
wherer € (s(h),s(g)). Asx ¢ W, we havex ¢ I. Therefore/h, ("X)]n = [g, ("X)]n. Since
o(h, ("x)) = s(h) andd(g, ("x)) =r, we havelh, ("X)]n = [0,y]c and[g, ("X)]n = [0,X|g. It
would follow that[0,W]g = [0, (V \ {0}) \ W]|g, which contradicts Assumption 1.7. Con-
sequentlyWw =V \ {0}. By Assumption 1.7, there a®Z € W such tha{0,Z¢ # [0,Z]c.
It follows that there arén,h’ € 7 such thath(s(h)) = zandH(s(i)) = Z. Now, consider
any g € (QV)* such thats(g/) > s(g). As d(h,g) = s(h) andd(h',g’) = s(I), we have
[h,dn = [0,Zc and[h',d|n = [0,Z]c. Therefore|h,g'|n # [IV,d']n and hencey € 1. It
results thas1((s(g), +=)) C I.

The following characterization completes the subsection.

Theorem 2.9. GivenI C (?V) such thats(1*)| > 1, I is an interval off1 in precisely one
of the three cases below.

1. I=0],thatis,I =QV.

2. I =10/"9, whereq € Q.

3. 1 =[0/yY% whereq e Q andX is a nonempty subset ¥f\ {0} such that{0} UX is
an interval ofG.

Proof : To commence, assume thais an interval off1. By Lemma 2.45(1*) is an
interval of Q and0 € I. It follows from Proposition 2.8 that eithex(*) = Q or there
is g € Q such thats(I*) = (g,+) or [g,+). Considerf € I and assume further that
s(f) > gin the case wherg(I*) = [q,+). There isg € I such thas(g) < s(f). It follows
from Proposition 2.8 that~1((s(f),+)) C I. Consequently, i§(1*) = Q, then] =2V,
Similarly, if s(1*) = (g, +), thenI = {0} Us™}((g,+)), that is, I = [0]>9. Assume
thats(7*) = [g,+). Letx e I'|. Considerf € I* such thais(f) = g and f(q) = x. By
Corollary 2.5, we havéx € I and, by Corollary 2.7/%9%] C I. Therefore, = {0} U
s7Y((q,+w))U[9(1])], thatis, I = [0]7%. Lastly, we have to verify thaf0} U (1 |) is an
interval of G. For everyy e V\ ({0} U (I])), we havely ¢ I. Consequently, there 8= 0
or 1 such thaf%, {0} U |47 ])|]n = a. It results thafy, {0} U (I |)]c = a. _

Conversely, consideg € Q. For anyf € {0} Us ((g,+)) andg € (?V)\ ({0} U
s 1((g,+)), we haved(f,g) = s(g) and hencéf,gln = [0,9(s(9))]s. Therefore[g, {0} U
s (g, +))]n = [0,9(s(9))]c. It follows that{0} U s~1( (g, +o)) is an interval off.
Finally, consider also a nonempty subXebf V \ {0} such that{0} U X is an interval of
G. Letge (Qv)\ ({0} Us((g,+))U|9X]). As previously, ifs(g) < g, then[g, {0} U
s 1((d,+)) U [9X|]n = [0,9(s(9))]e. Thus, assume thatg) = g. Similarly, we have
[0,{0} Us 1((g,+))]n = [0,9(q)]c. For everyf € |9X], we haved(f,g) = q and hence
[f,oln =[f(0),9(q)]c. Sincef(q) € X andg(q) ¢ X, and sincg0} UX is an interval ofG,
we obtain thaff(q),9(q)]c = [0,9(0)]c. Consequentlyg, |9X]]n = [0,9(q)]c. It follows
that{0} Us ((q,+o)) U |9X | is an interval of 1.

WhenG is indecomposable, we obtain the following:

Corollary 2.10. Assume thaG is indecomposable. GivehC @V such thas(7*)| > 1, I
is an interval off1 if and only if 7 = [ 0], |0]>9 or | 0|9, whereq € Q.
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Proof : Given a nonempty subsét of V \ {0}, if {0} UX is an interval ofG, then

{0}uX =V andX =V \ {0}. But, forqge Q, we haveLOJ\%S{O} = |0]=29 becausgd(V \
{op) =s"*({a}).

2.3 TheintervalsI of M such that|s(I*)|=1and |[] | >1

Lemma 2.11. If I is an interval off1 such thatjs(I*)] = 1and |1 | | > 1, thenO ¢ I and
I] is an interval ofG.

Proof : Denote the unique element §(f7*) by q. Givenx € I |, considerf € I* such
that f(q) = x. By Assumption 1.7, there ig< V \ {0} such that0,y]c # [0,X/c. Given
r >q, we havely ¢ I. Sinced("y,0) =r andd("y, f) = g, we obtain thaf'y,0ln = [0,y]c
and['y, fln = [0,X]c. Consequently"y,0ln # [y, f]n. Necessarilyp ¢ I becauséy ¢ I
andf € I.

To show thatl | is an interval ofG, consideix,x' € I | andy & I |. There aref, f' € I
such thatf(q) = x and f/(q) = X. Firstly, assume thag # 0. Clearly, %y ¢ I because
y¢ I|. Therefore[y, flq = [y, f']n. Asd(%y, f) =8(%y, f') = q, we havey, f]n = [y, X|c
and[%y, f'ln = [y,X]ec. Consequentlyly,Xc = [y,X]c. Lastly, wheny =0, we proceed as
previously by considering instead ofly.

In the preceding statement, we obtain thatis a non trivial interval ofc. An immedi-
ate consequence follows.

Corollary 2.12. If there is an intervall of 1 such thatfs(7*)|=1and|I| | > 1, thenGis
decomposable.

WhenG is decomposable, we obtain the next characterization.

Theorem 2.13.Given a subset of OV such thats(7*)| = 1and|I | | > 1, I is an interval
of M if and only if I = [9X], whereq € Q and X is an interval ofG such thatX| > 1 and
X CV\{0}.

Proof : Denote the unique elements(f7*) by g. To begin, assume thdtis an interval
of M. By the previous lemma) ¢ [ and I | is an interval ofG. As 0 ¢ I, we have
IC|%I])|. Givenxe I, letf e I such thatf(q) =x. Since|l| | > 1, there exists
f’ € I such thatf’(q) # x. By applying Lemma 2.1 td and f’, we havé’x € 1. Then, by
applying Proposition 2.3 tix and f/, we obtain that9x| C 1. Consequently] = [9(7])].

Conversely, considay € Q andX an interval ofG such that0 ¢ X and |X| > 1. For
everyy € V \ X, we havely,X|g = ay, whereay =0 or 1. Letg e (UV)\ [9X]. Firstly, if
g# 0ands(g) < q, then[g, |9X|]n = [0,9(s(9))]c. Secondly, i =0org# 0ands(g) > q,
theng(q) = 0 ¢ X. For everyf € |9X], we haved(f,g) = g and hencgg, f]n = [0, f(q)]c.
Sincef(q) € X, [0, f(q)]c = ao. Therefore]g, |9X|]n = ap. Lastly, ifg# 0 ands(g) = q,
theng(q) ¢ X becausg ¢ |9X|. For everyf € |9X |, we haved( f,g) = qand thudg, f]n =
[9(a), f(@)]e- As (@) € X, [9(0), f (@) = g Consequentlyig, |9X |]n = dg(q)-

2.4 TheintervalsI of N such that|s(I*)|=1and|[] | =1

Given f € (?V)*, we transform naturally an isomorphism frafhonto Q((S(f), +))
into an isomorphism froml (| f |) ontol. We use the following notation.
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e 07 denotes an isomorphism fro@ontoQ((S(f), +)).
o Of:|f] —QVis defined byBs(g) = (g/(g(f)+)) 005 forge | .

e Given afunctiorg: (S(f),+«) — V such thatf{q > S(f) : g(q) # 0} is finite, f +g
is the element 0BV defined by(f + ) /e 51)) = f/(—wsr)] ANA(F +0) /(5(f),+e0) =
g. Clearly, f+ge [f] ando(f+g) =0o(f)U{q> S(f):9(q) #0}. Now, Qs :
Qv — | f] is defined byQ¢(g) = f + (go (85)~1) for g €Qv.

We will use the following properties @+ and ofQ;.
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Lemma 2.14.

1. ©¢(f) =0.

2. Foreveryge [f|\{f},n(®¢(g)) =n(g) —n(f)andforie {1,...,n(g)—n(f)}, we
haveq ¥ = (85) (2 ; ;) and@1(g)(q" ) = g(ef ...

3. Foranyg#he [ f], 8(04(g), Ot (h) = (8r)~(8(g, )

4. Q¢(0) = f.

5. For everyge<@v>* n(Q¢(g)) = n(f)+n(g). Ifi € {L,...,n(f)}, theng®"¥ =
o and Q¢ (g)(cf""? )= f(q.f> If i € {n(f)+1,....n(f) +n(g)}, theng"¥ =
01 (o r) andQr(@)(a %) = (e ).

Proof : The first and fourth points are clear by the definitior@fand ofQ¢. For the
second, considege | f|\ {f} andq € Q. The following assertions are equivalent:

e 9¢(9)(q) #0;

® 9/(5(f),+0)(81(q)) #O;

e 8¢(q) € o(g) N (S(f), +0);

e thereisj € {n(f)+1,...,n(g)} such tha®(q) = qf;

e thereisi € {1,...,n(g) —n(f)} such thag = (ef)_l(qg(f)ﬂ)'

For the third point, consideg # h € | f|. For eachg € Q, the following assertions are
equivalent:

* O1(9)(a) # Or(h)(a);

® 0/(5(),+%0)(81(A)) # hy(s(1).+0) (B (Q));
e 8¢(q) € {r>S(f) : g(r) #h(r)};

o qe (8r)H({r>S(f) : g(r) #h(r)}).

It follows thatmin({g € Q : ©¢(g)(q) # O+ (h)(q)}) =min((8¢)~1({r > S(f) : g(r) #
h(r)})). Since 8: is an isomorphism fron) onto Q((S(f),+)), we obtain that
min((8¢)~*({r > S(f) : g(r) # h(r)})) = (8¢)*(min({r > () : g(r) # h(r)})). As
g#he [f], wehave{r > S(f); g(r) #h(r)} ={r e Q; g(r) # h(r)}. Consequently,
8(91(g),01 () = (81)~*(3(g,h)).

For the last point, considere Q. The following assertions are equivalent:

 Q(9)(q) #0;
o (f+(go(Br)™))(a) #0;
e eitherq < S(f) andq € o(f) orq > §(f) andg((6+)~%(q)) # O;
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o eitherqe o(f) org> §(f) and(8¢)~*(q) € o(9);

e qco(f)ubs(o(g)).

Thereforeo(Q¢(Q)) = (f)Uef( (9)) and thusn(Q+¢(g)) = n(f) +n(g). More pre-
cisely, for each e {1 .,n(f)+n(g)}, we obtain that either< n(f) andquf(g) = qif or
i >n(f) andqI 01 (q " n(f) ). Finally, it follows from the definition of2¢(g) that for

1(9)

g
1<i<n(f), Qi (g)(g""?) = f(q) and forn(f)+1 < i < n(f)+n(g), Q¢ (g)(q""?) =

g(qig_n(f))-
The next result is an easy consequence.

Proposition 2.15. For each f € (QV)*, the function®s realizes an isomorphism from
M(|f]) onton and (©¢)~! = Q¢. Moreover, for anyg,h € | f|, we have:g < h if and
only if ©¢(g) < O¢(h).

Proof : Giveng € | f |, we have:

(Qr001)(9) = Q1 () (s(f), 4 °0t) = F +9/(s5(f) 1) = G-

Conversely, givery € OV, we have:

(©10Qr)(9) = O (f+(go (81)™)) = (f+(go (81) ™)) /(s(1),+0) © O

and
(f4+(90(81) ™)) /(s()0) 0B = (g0 (85) 1) 0Bf =0

Consequently®s is bijective and ©¢)~! = Qy.

Now, considerg # h € |f|. We have[g,hjn = [9((g,
Ot (h)]n = [0+(9)(8(O+(9), 01 (h))), 0+ (h)(8(O¢(9),O¢ (h)))]c. It follows from the third
assertion of Lemma 2.14 that©;(g),9(h)) = (8¢)~1(8(g,h)). Furthermore O (g)(
(81)(3(g,h))) =9(3(g,h)) andor (h)((81) *(8(g,h))) = h(8(g,h)). Therefore[g, hin =
[©1(9), 01 ()]n.

Lastly, consideg,h e | f] such thag < h. We haven(g) < n(h) and fori € {1,...,n(9)},
o’ = g andg(q’) = h(g"). Obviously, ifg = f, thenO(g) = 0 # O¢(h) becaused;
is injective. Therefore@¢(g) = 0 < ©¢(h). Assume thatf < g. It follows from the
second assertion of Lemma 2.14 thé®+(g)) = n(g) — n(f) < n(h) —n(f) = n(©¢(h))

. (€] _ _ O¢(h
and fori € {1,....n(g) —n(F)}, ¢ = (1) 1(cy,1) = (61) X(cpy,) =0 and

01 (9)(a" ) = 96 1,..) = Ny .1) = Os (h)(a " ™). Consequentyds (g) < O (h).
Conversely, consideg,h € Qv such thatg < h. Firstly, assume thag = 0 so that

Q¢(g) = f. As g < h, we haveh # 0 and henceQ(h) # f becauseQs is injective.

Therefore, Q¢ (h) € | f|\{f}, thatis,f = Q:(g) < Q¢ (h). Secondly, assume thgt# O.

Since Q¢ (g), Q¢ (h) € |f], we haveq” @ = qf = ™" and Q¢(g)(¢™'"?) = f(q') =

Qf(h)(quf(h)) forie {1,...,n(f)}. Furthermore, ag < h, we haven(g) < n(h) and for
ic{1,...,n(g)}, we havey’ = g andg(q’) = h(g"). Then, it follows from the last assertion
of Lemma 2.14 than(Q+(g)) = n(f)+n(g) < n(f)+n(h) =n(Q¢(h)) and fori € {n(f)+

(9,h)),h(3(g,h))]c and [O+(g),
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1,....n(f) +n(g)}, q."“ = or(a o) = 0 (A ) =" and Qr(g) (™) = gf

o)) = NA ) = (07 ™). Consequentyy(g) < Qs (h).
To concludet esubsectlon we obtain the following characterization.

Theorem 2.16.GivenI C?V such thai 7| > 1, |[s(I*)| = Land|I | | =1, I is an interval
of I in precisely one of the four cases below.

1. I=|f], wheref € (AV)*.
]

2. I =[f]>9 wheref € (?V)* andq > S(f).

3. 1=[f]g% wheref € (?V)*, g> S(f) and X is a nonempty subset Wf\ {0} such
that {0} UX is an interval ofG.

4. 1= ]9 wheref € (?V)*, > S(f) andX is an interval ofG such thaD ¢ X and
IX| > 1.

Proof : To commence, we verify thdtf | is an interval off1 for every f € V. We
proceed by induction on(f). If n(f) =0, thenf = 0 and|0] =2V is an interval off1.
If n(f) =1, thenf =9x, whereq = s(f) andx = f(s(f)). For eachg € (QV)*\ |9, we
distinguish the following cases:

e if g=0, then|0, |9|]n = [0,Xc;
o if g5 0ands(g) < g, then(g, |%]]n = [9(s(0)), Uc;
e if g=£0andq < s(g), then[g, |%]]n = [0,Xc;

o if g+ 0ands(g) = g, theng(q) # x and[g, |%]]n = [9(a), Xe.

Consequently|9x| is an interval off1. Now, considerf € (QV)* such than(f) > 2. We
proved that| 9| is an interval ofl1, whereq = s(f) andx = f(s(f)). It follows from
Lemma 2.14 that that(@ay (f)) = n(f) — 1. By the induction hypothesi$© ay) ( )] isan
interval of M. It follows from Proposition 2.15 applied t&x that [©ay (f)] = Oy ([ f])
and hence thatf | is an interval off1(|9]). As |9x] is an interval oﬂ'l | f]is as WeII by
Proposition 1.1.

To continue, consider CQV, with |I| > 1, satisfying: there ig € Q such thas(1*) =
{q} and there i € V \ {0} such thatl |= {x}. DenoteA by f. We haveélx < f and’ C
| f]. As | f] is aninterval off1, we have:I is an interval off1 if and only if I is an interval
of M(| f]). Moreover, it follows from Proposition 2.15 thdtis an interval ofl1(| f]) if
and only if®¢(I) is an interval off1. For a contradiction, suppose that ther@is Q such
thats((©¢(I))*) = {p} and there isy € V \ {0} such that©¢(I)) |= {y}. It follows that
0 < (Py) < A(©¢(I)). By Proposition 2.15, we have(©¢(I)) = ©¢(AI). By applying
Q:, we would obtain thaf < Q¢ (Py) < AI. Consequently, eithes((©¢(1))*)| > 1 or
Is((©¢(1))*)| =1and|(©¢(I)) | | > 1. To conclude, we distinguish the two cases below
for application of Theorem 2.9 or Theorem 2.133¢(1).

1. Assume thats((©¢(1))*)| > 1. By Theorem 2.99¢ () is an interval of"1 in one of
the three cases below.
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(@) O¢(1) =V, thatis, I = | f].

(b) There isp € Q such that®¢(I) = {0} Us ((p,+)) or, equivalently,] =
| £]>0(P),

(c) There isp € Q such that®¢(I) = {0} Us ((p,+)) U |PX|, whereX is a
nonempty subset &f \ {0} such tha{0} U X is an interval ofG. We obtain that
I — LfJ)Z(ef(p)

2. Assume that there ip € Q such thats((©¢(7))*) = {p}. Denote(©+(I)) | by X.
Clearly,X CV\ {0} and, as previously observed, we haX¢> 1. By Theorem 2.13,
O (I) is an interval of1 if and only if X is an interval ofG and®¢(7) = |PX], that

is, 1= | 3.
WhenG is indecomposable, the preceding theorem is stated as follows.

Corollary 2.17. Assume thaG is indecomposable. Giveh C @V such that| | > 1,
Is(I*)]=1and|I]|=1, Iis an interval off1 if and only if there exist§ € (2v)* and
there isq > S(f) such thatr = | f|,| f|>%or | f|=9.

We summarize Theorems 2.9, 2.13, 2.16 and Corollaries 4, 5, 6 as below in Theo-
rem 2.18 and Corollary 2.19. To simplify their statement, we extend the total Qrder
{0} UQ by considering—c smaller than all the rational numbers. We also extend the
function Sto @V by S(0) = —c. In particular, we obtain theft0, =9 x for g € Q and
xeV\{0}.

Theorem 2.18. Given I C?V such that| 7| > 1, I is an interval off1 in precisely one of
the four cases below.

1. I=|f], wheref €Qv.
2. I=[f]>9 wheref €¢?V andq> S(f).

3. 1=[f]5" wheref €QV, > S(f) andX is a nonempty subset &f\ {0} such that
{0} UXis an interval ofG.

4. 1=|f]5% wheref €QVv, g> §(f) andX is an interval ofG such that0 ¢ X and
IX| > 1.

Corollary 2.19. Assume tha® is indecomposable. GivehC @V such thaf 7| > 1, I is an
interval of M if and only if there exist$ € 2V and there i) > §(f) such thatr = | f|,| f|>9
or | f|=9.

3 The strong intervals ofll

We examine specific strong intervalslafin the four lemmas below.

Lemma 3.1. For everyf €V, | f] is a strong interval ofT.
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Proof : We proceed by induction on(f) as for the beginning of the proof of Theo-
rem 2.16. Ifn(f) =0, thenf = 0and| f| =2V is a strong interval of1. If n(f) = 1, then
=9x, whereq = s(f) andx= f(s(f)). Consider an interval of [ such that| > 1 and
IN|%] #0. Letg e 1N |9%]. We distinguish the three cases below.

e Assume thats(7*)| > 1. By Corollary 2.5 applied t@, 9% € I and |9]| C I by
Corollary 2.7.

e Assume thats(I*)|=1and|I | | > 1. By Theorem 2.13, we have= |"X], where
X CV\{0}. Asge In|9%], we obtain that = g andx € X so that|9] C |9X].

e Assume thats(/*)| =1and|I | | = 1. It follows from the proof of Theorem 2.16
that0 < AT and C [AI]. Consequentlylx < gandArl < g. It results that either
X < ATor AT <9x. AsAI #0, we obtain thaix < AT and thusl C [AT] C |%].

Now, considef € @V such thain(f) = 2. We showed that%] is a strong interval of
M, whereq = s(f) andx = f(s(f)). By Lemma 2.14, we have(Quy)(f)) = n(f) - 1.
By the induction hypothesis, we obtain tH&a)(f)| is a strong interval of1. It follows
from Proposition 2.15 applied t¥x that [y (f)| = O (| f]) and hence thatf | is a
strong interval of1(|%|). As |9x| is a strong interval ofl1, | f | is also by Proposition 1.2

(B2.(ii)).
Lemma 3.2. For everyq € Q, |0|>%is a strong interval of1.

Proof : Consider an interval of [ such that/ \ [0|>% £ 0and 1N |0]>9 # 0. We have
to show that|0]|>9 C I. So, assume that £QV. Let f ¢ I\ |0]>d andge In [0]>d
We obtain thatf # 0 ands(f) < g. Moreover, eithelg =0 or g # 0 ands(g) > q. In
the first instance € I and, since | > 1, it follows from Theorems 2.13 and 2.16 that
|s(1*)| > 1. Therefore|s(I*)| > 1in both instances. By Theorem 2.9, one of the following
cases occurs.

e There isr € Q such that/ = [0]>". We obtain that < s(f) < q and thus|0]>9 C
LOJ >|'.

e There exist € Q and0 # X C V \ {0} such thatl = 10J%", whereX C V \ {0}. We
obtain thatr < s(f) < q. For everyh e L 0]>9\ {0}, we haves(h) > g >r and hence
he [0]5". Consequently,0]>% c |0]5" becaus® < 05"

Lemma 3.3. Considerg € Q and a nonempty subsktofV \ {0} such that{0} UX is an
interval of G. We haveLOJ <1 is a strong interval of1 if and only if {0} UX is a strong
interval of G.

Proof : By Theorem 2.9)0]5% is an interval off1. To begin, suppose thd0} U X
is not a strong interval o&. Since{0} UX is an interval ofG, there exists an interva
of G such thaty N ({0} UX), Y\ ({0} UX) and ({0} UX) \Y are all nonempty. Firstly,
assume thad ¢ Y. By Theorem 2.13/0]{% is an interval off1. LetycYn ({0} UX)
andzeY \ ({0} UX). Asy,ze Y, we havey,ze V \ {0}. Clearly,% € [0],%n [0]5" and
aze [0]59\ [0)x%. Furthermorep € |0]5"\ [0y % whence| 0|5’ is not strong. Secondly,
assume thad € Y and seZ =Y \ {0}. Since|Y| > 1, we haveZ # 0 and it follows from
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Theorem 2.9 that0|5% is an interval off1. Clearly,0 € |0]5%N|0]5% Letx e ({0} UX)\
({0}uZ) andy e ({0}UZ)\ ({0} UX). We havex,y € V \ {0} and thusix € |0]?\ [0]5°
and% € [0)5%\ |0]5". Consequently,0]5% is not a strong interval dfl in both cases.

Conversely, assume thfd} U X is a strong interval o6 and consider an intervdl of
M such that/ \ |0]%® and 1 N [0 are nonempty. We have to prove th@qxq C I. So,
assume that # V. As 1 C |AI], we have|A1]\ [0]3% and|[A1] N |0]® are nonempty.
It follows from Lemma 3.1 that0|® C [AI]. In particular,0 € [AI] and hence\! = 0.
For a contradiction, suppose that there is Q such thats(1*) = {r}. SinceAl =0, it
follows from Theorem 2.18 Lhat there exists an inteivalf G such that/ = LOJ , Where
0¢Yand|Y|>1 Letfe |05\ [0]x%andge 05" N[0]x". AsO¢ |0J;", we have
f £ 0andg # 0. We obtain thas(f) =r < gands(g) = r > g so thatq = r. Furthermore,
f(q) e Y\ ({0}uX) andg(g) e YNX =Y N ({0} UX). Since{0} UX is assumed to be a
strong interval of5, we should obtain thgt0} UX C Y, which is impossible becaufe? Y.
Consequently|s(1*)| # 1 and thuss(I*)| > 1 becauseI| > 1. By Theorem 2.9, one of
the two cases below occurs.

e There isr € Q such thatl = [0]>". By Lemma 3.2,/ is a strong interval ofl and
hence|0]3% C 1.

e There isr € Q and there is a nonempty subsewof V \ {0} such thatl = LC_)J
and {0} UY is an interval ofG. Considerf e LOJ "\ LOj;q. We obtain thar <
s(f) < g. Assume that < g. Giveng € LOJ , we have eitheg = 0 or g # 0 and
r < q<s(g). Inboth caseg € [0)5". Therefore 10/3%C |0]5". Lastly, assume that
r = g. We obtain thas(f) =qand f(q) € Y\ X so that({0} UY) \ ({0} UX) # 0.
Since0 € ({0} UY)N ({0} UX) and since{0} U X is a strong interval o6, we have
{0}UX C {0} UY and hencé& C Y. Consequently,0]® C I = |0]7".

Lemma 3.4. Letq € Q. Consider an intervaK of G such that|X| > 1andX C V \ {0}.
We have 0] % is a strong interval of1 if and only ifX is a strong interval of.

Proof : By Theorem 2.13|0]5% is an interval off1. To commence, assume thétis
not a strong interval o&. SinceX is an interval ofG, there exists an interva of G such
thatX NY, X\ Y andY \ X are all nonempty. Firstly, assume tita¢ Y. By Theorem 2. 13
LOJ Jdis aninterval of1. Letx € XﬂY ye X\Y andzeY\X. Clearly,% e LOquﬂ | J
%y € [0]x7\ [0y T andize [0) %\ [0]x". Secondly, assume thaiE Y and se = Y\{O}
By Theorem 2.9/0]5% is an interval off 1. Clearly,0 € [0]5%\ |0]5". Letxe XNY and
ye X\Y. Asx yeX we havex,y € V'\ {0} and henc&€ XNZ. Then,% € [0 0/x%n10Jz°
and% e [0/3%\ |0]5%. Consequently,0];% is not a strong interval dfl in both cases.

Conversely, assume thdtis a strong interval oG. Consider an interval of I such
that7\ [0]5x%and1n |0/ ® are nonempty. We have to establish tlj[_ajtxq C I. So, assume
that I ;é@v AsIC |Al], we obtainthatAl]\ [0]x%and|[AT]N 0], are nonempty as
well. By Lemma 3.1/ A is a strong interval ofl and thus 0]5% C |AT]. Letx andy be
distinct elements oK. Since > AT and% > A1, we haveAl = 0 becauséx A9y = 0.
Firstly, assume thas(7*)| > 1. As I £V, it follows from Theorem 2.9 that theredss Q
such that eithed = [0]>% or I = |0]59, whered #Y C V\ {0} and{0} UY is an interval
of G. By Lemmas 3.2 and 3.3, is a strong interval ofl and hence{OJXq C I. Secondly,
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assume thas(1*)| < 1. As|I| > 1, there isr € Q such thas(I*) = {r}. Sincenl =0, it
follows from Theorem 2.13 that there is an interdadf G, with |Z| > 1 andZ C V \ {0},
such that/ = |0]3". As [0]7" N 0] # 0, we haveq =r andZN X # 0. Furthermore,
| J >\ [0 J #0 Enplles thatZ \ X # 0. SinceX is a strong interval oG, we obtain that
X C Zand hencd0|3 9 C [0)59 = 1.

The next characterization of the strong intervaldofollows from the four lemmas
above by using Theorem 2.18 and Proposition 2.15.

Theorem 3.5. Given a subsef of @V such that| 7| > 1, I is a strong interval of1 if and
only if there isf € QV, there isD # X C V \ {0} and there isy € Q, withq > S(f), such that
one of the following is satisfied.

Lf].

= [f]79

=|f]x < and{0} UX is a strong interval of5.
Lf

4. 1= [f|39 |X| > 1andX is a strong interval of5.

Proof : By Theorem 2.18, we have only to consider the following subse®&/ofvhere
f €2V andq € Q, with g > (f):

(M) 1=1f];
(i) 1=1f]>9
(i) 1=[f]5°

(iv) I=|f]x% whereX is anon trivial interval oG contained iV \ {0}.

, whered # X CV \ {0} and{0} UX is an interval ofG;

In the first case, Lemma 3.1 applies. Consider one of the other thrde= 10, then
it suffices to apply Lemma 3.2, Lemma 3.3 or Lemma 3.4. Whea 0, we conclude
in the same way after using Proposition 2.15. Indeed,fass a strong interval of1 by
Lemma3.1 andasC | f |, we have by Proposition 1.2 (B2.(ii)):is a strong interval of
if and only if I is a strong interval of1(| f |). By Proposition 2.15, we obtairt: is a strong
interval of M(| f |) if and only if ©¢(I) is a strong interval of1. Lastly, it is sufficient to
apply Lemma 3.2, Lemma 3.3 or Lemma 3.43¢( 1) becaus@f(Lqu) = [0]>®) (@,

RTINS \
@f(LfJ;q):LOJ;( ) andos (| f|%) = |0 JX( G
Corollary 3.6. Assume tha® is indecomposable. Given a subgetf @V such thaf 7] > 1,

I is a strong interval of 1 if and only if there isf € @V and there isg € Q, with g > S(f),
suchthatr = [ f], [ f|>%or | f]=9.

4 The decomposition tree of’

In the section, we utilize the partitid(I") and the the decomposition tré¥T") associated
with any graph™. Recall that they are introduced before Theorem 1.3 and after Lemma 1.4
respectively. We use the following notation, where Q:
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e 0B is an isomorphism fror® ontoQ((q, +));

e the function®y : [0]>9 — QV is defined bydq( ) = (f/(q+w)) 0 Bq for f € [0]>9.

e for every functiong: (g, +e) — V such that{r > q: g(r) # 0} is finite, £4(g) is
the element oV defined byeq(g)(r) = 0if r < gandeq(g)(r) = g(r) if r > q. The
functionQq : Qv — |0]>9 s defined byQq(g) = &q(go (8g)71).

Lemma 4.1. For everyq € Q, Oq realizes an isomorphism froii(|0]>9) onto M and
(©g)~* = Qq.

Proof : Given f € |0]~9, we have

(QqoOq)(f) = Qq((f/(q.+w)) ©6q) = £q(((f/(gr)) ©Bg) © (8g) ) = £q(f(gre0))

andeq(f)(q+)) = f becausd € |0]~9. Conversely, giveg € I, we have

(©q°Qq)(9) = Oq(eq(9° (8g) ™)) = (€a(g° (8q) *))(g-+) © 8-

But, (€9(g° (8g) ™)) (q.+e) = 9© (8¢) " and hence

(gq(go (eq)fl)>(q,+oo) 06 = (go (eq)fl) 06g=g.

Consequentlyd is bijective and©q) 1 = Qq.

Let f and f’ be distinct elements of0|~9. Clearly, o(f, f’) > g. For everyr <
(8g)~L(3(f, ), we havedq(r) < 8(f, ') and henceq(f)(r) = f(B4(r)) = f'(64(r)) =
Oq(f’)(r). Furthermore, we have

Oq(F)((8g)H(3(F, ))) = F(8(F, 1)) # T'(8(f, 1)) = Oq()((8q) (8(f, 1))
It follows thatd(@q( f),0q(f")) = (8q) ~1(3(f, f')). Clearly,
Oq(f)(3(@q(f),Bq(F'))) = f(64(3(Oq( ), Oq(1'))))
= 1(8q((8g) " (3(f, f)))) = f(3(f, "))
andOq(f')(8(0q(f),0q(f))) = f'(8(f, f')) as well. Therefore,
[©q(f),Oq()In = [Oq(1)(3(Oq(f),Oq(f"))),Oq()(8(Oq(f),Oq4(f)))]c

=[f(8(f, 1), '(&(f, t')]e = [f, F']n.

ConsequentlyQq realizes an isomorphism frof( 10/>%) onto[T.
The next result is an immediate consequence of the preceding lemma and of Proposi-
tion 2.15.

Corollary 4.2. For everyf € (?V)* and for everyg > S(f), O(a;)-1(q) © ((O1)1)>a) is an
isomorphism fronfil (| f |~9) ontol.

Proof : We have®s (| f]>9) = |0]>®) (@, Consequently(©r),|t|-a is an isomor-
phism fromr(| f|>9) ontor(|0]>(®) (@),
We obtain the following characterization of the strong intervald @fhich are not limit.
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Theorem 4.3. Given a subsef of @V such that|7| > 1, T € $(M)\ £(N) if and only if
there isf €V, there isd # X C V \ {0} and there ixg € Q, with g > §(f), such that one
of the following is satisfied.

1. I1=|f|g%and {0} UX € S(G)\ L(G).
2. I=[f|39 |X| > landX € $(G)\ L(G).

Proof : By Theorem 3.5, we have only to consider the following subset®/gfwhere
f €QV andg € Q, with g > S(f):

(i) 1=Lf];
(i) 1=1[f]>9
(i) 1=|f| ;q, whered # X CV \ {0} and{0} UX is a strong interval o6;
(iv) I=[f|x9 whereX isa non trivial strong interval o contained irv \ {0}.

Let (dn)nen be a decreasing sequence of rational numbers suclidhatn \ —w

whenn 7. By Theorem 3.5/0]~% is a strong interval ofl for eachn € N. Therefore,
(10]7%)nen is a sequence of strong intervals [dfincreasing under inclusion such that

(10]>%)nen AV whenn /. Consequently?V is limit. Givenqe Q, [0/>%is a
strong interval of 1 by Lemma 3.2. By Lemma 4.10]|>9 is limit also. Givenf ¢ (Qv)*,
considerq € Q such thatg > §(f). By Theorem 3.5/ f | and | f |~9 are strong intervals
of M. It follows from Proposition 2.15 and Corollary 4.2 thdt| and | f |9 are limit as
well. To continue, consider a nonempty subXedf V \ {0} such that{0} UX € L(G).
By Theorem 3.5/ f |39 € S(M). As {0} UX is limit, there exists aéequena;‘c%)neN of
strong intervals ofS increasing under inclusion such théh)neny ey Yo = {0} UX
whenn 7*®. There isp € N such that0 € Y, for n > p. SetXy = Yp:m\ {0} for each
me N. Forme N, we haved # X, € X CV \ {0}. It follows from Theorem 3.5 that
Lfﬁj € 5(MN) for everyme N. We obtain a sequencﬁ@fji‘:)meN of strong intervals of1
increasing under inclusion such thatf | mern / ~ men(Lf150) = [ f]5* whenm 7+,
Consequently,[sz(q € L(MN). Finally, considerX € £(G) such that/X| > 2 and X C
V\ {0}. By Theorem 3.5| f |9 € $(IN). SinceX is limit, there is a sequerge(n)neN of
non trivial strong intervals o& increasing under inclusion such thh)neny ey (Xn) =
X whenn /™. For eachn € N, we haveX, C X CV '\ {0} so thathJf(nq € 5(N) by
Theorem 3.5. We obtain a sequeri¢é | ):(nq)neN of strong intervals of1 increasing under
inclusion such that| f |5 nen ./ | f X" whenn . Consequently, f |59 € £(T).
Conversely, we begin verifying far € Q and for0 # X C V' \ {0} the following:

(@) if [X| > 1andX € $(G)\ L(G), then|9X]| € S(M)\ £(M);
(b) if {0}UX € S(G)\ L(G), then|0]x% € S(M)\ £(M).

By using Theorem 3.5, with each nonempty strong inteYvaf G, we associate the strong
interval Iy of N defined as follows:

e if Y ={0}, thenky = [0]~9;
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e if Y ={y} andy eV \ {0}, thenk = |%];

e ifOcYand|Y|>1, thenk = @3{1{0};

e if 0ZY and|Y| > 1, thenk = |9Y .

Firstly, assume thgd| > 1 andX € $(G) \ L(G). By Theorem 3.5@;q € S(M). Con-
sider an elemenY of P(G(X)) and a strong intervaf of M such thatk C 7 C |9X].
As 7 £0andj C |9X], we haveO ¢ 7 ands(J) = {q}. Sincek = |9Y] or |9y]|, when
Y = {y}, we obtain that%| c 7 foryeY. Lethe 7\ |9/, whereye Y. Ass(7) = {q},
we haves(h) = q andh(q) # y becauséh ¢ |%|. Thereforey andh(q) are distinct ele-
ments of7 | . It follows from Theorem 3.5 that = |9Z], whereZ is a strong interval 06
such thaZz C V \ {0} and|Z| > 2. Obviously,Y C Z C X becausey C J C [9X]. Since
Y € P(G(X)), we obtain thaZ = X and henceg/ = |9X|. Consequentlyly € P(M(|9X]))
for everyY € P(G(X)). We obtain thatP(M(|9X])) = {K&;Y € P(G(X))} and hence
|9X | e S(M)\ L(). B

Secondly, assume th&d} UX € S(G)\ £(G). By Theorem 3.5/0|5x% € S(M). Con—
sider an element of P(G({0} UX)) and a strong interval of M such thatty C 7 C | J

To begin, assume thétZ Y so thati = |9Y] or [%y]|, whenY = {y}. In both cases,
g € s(J*). For a contradiction, suppose tisy*) = {q}. As previously shown, we obtain
that|7 | | > 1. Then, by Theorem 3.9, = [9Z|, whereZ is a strong interval o6 such that
ZCV\ {0} and|z| > 2. Sincely c J C |[0]x", we would obtain tha¥ c Z ¢ {0} UX,
which contradictsy € P(G({0} U X)). Consequentlyis(7*)| > 1. By Theorem 3.57 =
|0]>" or |0]5", wherer € Q andZ is a nonempty subs@ of V \ {0} such tha{0} UZ is
a strong interval of5. If j |0]~", theng >r becauseq € s(J*%). But, givenv e V \ {0}
andr’ € Q such thar < r’ < g, we would havé™)v e 7\ |0]x% Thus,7 = |0]5". Since
ges(J%), r <qandr > q becauséz e |0]3" C |0]5" for ze Z. Therefore, we have
K C7=1059C |0]x%and henc& c {0} UZ C {0} UX. AsY € P(G({0} UX)), {0} U
Z={0}uX andJ = |0]5". It follows thatIy € P(I(|0]5")) for everyY € P(G({0} UX))
suchthaD &Y.

To continue, assume thate Y so thatk = (0], or [0]>9, whenY = {0}. In

both cases, we obtain thE@J>q cIcC| J>q Givenhe 7\ [0 0/>9, we haves(h) = g and
h(q) € X becausé € |0]5%. Thus,s(9*) = [q,+) because0|>9 c 7. By Theorem 3.5,
J= LOJ =9, whereZ is a nonempty subset bf\ {0} such tha{0} UZ is a strong interval of
G. We haveY c {0}UZ C {0} UX becausdy C 7 C [0]3". SinceY € P(G ({O}UX))
obtain that{0} UZ = {0} UX and thusy = LOJ <. Therefore,ly € P(IT (LOJ ) for every
Y € P(G({0} UX)) such thaD € Y. As we established the same whene¥etY, we obtain
thatP(M(|0]5%) = { &;Y € P(G({0} UX))} and thus 0|3 € S(M) \ £(1N).

To conclude, considef € (QV)*, g € Q such thag > S(f) and0 # X C V \ {0}. By
Proposition 2.15Q¢ is an isomorphism frorfil ontol(| f |). We demonstrated that|iX| >
1andX € §(G)\ L(G), then| @) @X | € §(M)\ £(M). Thus,Q¢ (| @X )= f|3%€
S(N(LF)\ L(M(|f])). It follows from Proposition 1.2 (B2.(ii)) thatf |% € 5( )\
L(M). If {0}uX € S5(G)\ L(G), then we conclude similarly becauSg (| J =0n)° (q)) =

f]5°
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The next result follows from the preceding theorem and from the last part of its demon-
stration.

Corollary 4.4. Considerf €2V, 0+# X CV\ {0} andq € Q, withq > S(f).

1. If {0} UX € $(G) \ L(G), thenP(N(| f |")) contains the following elements:

4fy| for {y} € P(G({0} UX)) andy # 0,

f]5%for Y € P(G({0} UX)) such thatY| > 2 andY C V \ {0},
f|79when{0} € P(G({0} UX)),

f |79 when{0} UY e P(G({0} UX)) andY # 0.

]
]
]
]
2. If [X| > LandX € $(G)\ L(G), thenP(M(| f |x%)) contains the following elements:

o [y for {y} € P(G(X)),
o [f| 9 forY € P(G(X)), with Y| > 2.

WhenG is indecomposable, we obtain the following:
Corollary 4.5. Assume tha® is indecomposable.

1. Given a strong interval of I such that 7| > 1, I is not limit if and only if there is
f €QV and there isg € Q, withq > S(f), such thatr = | f]=9.

2. Considerf ¢ Qv andq € Q, withq > S(f).

(@ PA(LF]=9) = {79 u{[I]ixe V\{0}}.

(b) The functionv — P(N(| f]=9)), defined byl — |f|>% and x — |9fy] for
x € V'\ {0}, realizes an isomorphism froi® onto the quotienfl(|f|=%)/
P(N(Lf]=9)).

(c) Foreveryl € P(N(|f]=9)), N(I) is isomorphic td.

3. D(M) contains| f |29, | f|>9 and |9f] for f €AV, g Q, withq > S(f), andx €
V\ {0}.

4. For everyf ¢ Qv, D(N)({I € D(N): f € I}) is isomorphic to the lexicographic
productQ[2].

Proof : The first three assertions follow from Proposition 2.15, Theorem 4.3 and Corol-
laries 9 and 10. Concerning the fourth, the result is clear when0 since{I € D(N):
0€ I}) ={|0]>9,[0]29}4qecq- Now, considerf € (®V)*. For convenience, set= n(f),
g = qif andf(qg) =x forie {1,...,n}. Fori € {1,...,n}, we consider the elemerfit of
Qv defined byo(fi) = {au,...,q} andfi(q;) = f(q;) for j € {1,...,i}. Lastly, setfo = 0.
Obviously, f € [f|>9 c [ f]=9for q > S(f). We have

AN
LFI79N O [f)7%) ={f} whenq 7%
q/ "
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and r
L]0 7 (7 Lf]7%) = Lf] wheng \.s1) -
a\s(f)
But, f =% (f,_1)x, and|%(fy_1)x,] C | fn_1]=%. Assume thah > 2 and consided < i <
n—2. We have| % (f,_i_1)x,,| C | fa_i_1/=%-i. Consider any € Q such thaig,_j_1 <
g < Qgn—i- We have

AN
o a7 (L)) = [ 1) 2% wheng /-
q/‘Qn—i

and r
Lfasica)=9 7 ( [faoi—1)7%) = [ fa_i—1] wheng Ntni1 -
q\Nqn—i—l

Similarly, fo_i_1 =%--1(fr_i_2)x, ; , and we have

[ (fi-2)xo 0] © [fneicz) =%

Finally, wheni = n— 2, we obtain that f, j _»|=%-i-1 = |0]|=%. Consider any € Q such
thatg < q1. We have

TN (0179 = 0% wheng %
g/

and r

[0]=9,7 (" [0J*9) = 0] =%V wheng .. .
A\

We define a functiop : Q x {0,1} — D(N)({I € D(N): f € I}) as follows:
o for1<i<n,(g;,0)— [fi-1)=% and(q;,1) — [fi];
e forq<q, (g,0) — [0]>%and(q,1) — [0]>%;
e for 1<i<n-1andforg <qg<g1,(g,0)— [fi|=%and(q,1) — | fi]~%;
e forq>qn, (q,0) — [ f|=%and(q,1) — | f]>9.

Clearly,¢ realizes an isomorphism frof@d[2] onto the dua(D(M)({I € D(N): f € 1}))d
of D(M)({I € D(N): f € I}). Thus,¢ is an isomorphism from the duéQ|[2])¢ of Q[2]
ontoD(M)({I € D(M): f € I'}) (see Figure 1). To conclude, recall tifaand its dualQ®
are isomorphic and hendg2] and(Q[2))¢ are also.
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Figure 1.¢ is an isomorphism fromQ[2))¢ onto D(M)({1 € D(N): f € I}).
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