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Abstract

A Sabidussi graph is defined from a total orderT and a graphG as follows. Choose
a vertex ofG and denote it by 0. Denote byV(T)V(G) the family of the functions
f :V(T)−→V(G) such that{q∈V(T) : f (q) 6= 0} is finite. The Sabidussi graphTG is
defined onV(T)V(G) by: given f 6= g∈ (V(T)V(G)), { f ,g} ∈E(TG) if { f (m),g(m)} ∈
E(G), wherem is the smallest element of{q∈V(T) : f (q) 6= g(q)} in the total order
T.

Given a graphΓ, a subsetX of V(Γ) is an interval ofΓ if for a,b ∈ X andx ∈
V(Γ)\X, {a,x} ∈ E(Γ) if and only if {b,x} ∈ E(Γ). Moreover, a subsetX of V(Γ) is
a strong interval ofΓ provided thatX is an interval ofΓ and for every intervalY of Γ,
if X∩Y 6= /0, thenX ⊆Y or Y ⊆ X.

The intervals and the strong intervals of the Sabidussi graphsQG are characterized,
whereQ is the set of rational numbers with the usual total order.
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1 Introduction

Let Γ = (V(Γ),E(Γ)) be a simple graph. We denote the characteristic function ofE(Γ) in

(V(Γ)
2 ) by [x,y]Γ so that[x,y]Γ = 1 if and only if {x,y} ∈ E(Γ). We extend this to subsets

X of V(Γ) by defining[x,X]Γ = 1 exactly when[x,y]Γ = 1 for eachy∈ X and to pairs of
disjoint subsetsX,Y of V(Γ) by setting[X,Y]Γ = 1 if and only if [x,y]Γ = 1 for all x∈ X,
y∈Y.

Given a graphΓ, associate with each subsetX of V(Γ) thesubgraphΓ(X) of Γ induced
by X defined onV(Γ(X)) = X by [x,y]Γ(X) = [x,y]Γ for x 6= y ∈ X. Thecomplementof a
graphΓ is the graphΓ defined onV(Γ) by [x,y]Γ = 1− [x,y]Γ for x 6= y∈V(Γ).

1.1 The intervals

We use the following notation. Given setsX andY, X ⊆ Y means thatX is a subset ofY
whereasX ⊂Y means thatX is a proper subset ofY.

Given a graphΓ, a subsetX of V(Γ) is an interval ([2, Subsection 9.8] and [8]) or an
autonomoussubset [10] or ahomogeneoussubset [3, 11] or aclan [1, Subsection 3.2] ofΓ
if for eachx∈V(Γ)\X, there isα ∈ {0,1} such that[x,X]Γ = α. The following properties
of the intervals of a graph are well known (see, for example, [1, Subsection 3.3]).

Proposition 1.1. Given a graphΓ, the assertions below hold:

A1 /0, V(Γ) and{x}, wherex∈V(Γ), are intervals ofΓ;

A2 (i) given a subsetW of V(Γ), if X is an interval ofΓ, thenX∩W is an interval of
Γ(W);

(ii) given an intervalX of Γ, we have for everyY ⊆ X: Y is an interval ofΓ(X) if
and only ifY is an interval ofΓ;

A3 (i) for every familyF of intervals ofΓ, the intersection∩F of all the elements of
F is an interval ofΓ;

(ii) given intervalsX andY of Γ, if X∩Y 6= /0, thenX∪Y is an interval ofΓ;

(iii) for every familyF of intervals ofΓ, the union∪F of all the elements ofF is an
interval ofΓ provided that for anyX,Y∈F , there isZ∈F such thatX∪Y⊆Z;

(iv) given intervalsX andY of Γ, if X \Y 6= /0, thenY \X is an interval ofΓ;

A4 for any intervalsX and Y of Γ, if X ∩Y = /0, then there isα ∈ {0,1} such that
[X,Y]Γ = α.

Following Assertion A1,/0, V(Γ) and{x}, wherex∈V(Γ), are calledtrivial . A graph
all of whose intervals are trivial isindecomposable[8] or prime [10] or primitive [1]. Oth-
erwise, it isdecomposable.

Given a graphΓ, a partitionP of V(Γ) is aninterval partitionof Γ when all the elements
of P are intervals ofΓ. Using Assertion A4, for each interval partitionP of G, we can define
the quotientΓ/P of Γ by P on V(Γ/P) = P as follows. For anyX 6= Y ∈ P, [X,Y]Γ/P =
[x,y]Γ, wherex∈ X andy∈Y.
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The following strengthening of the notion of interval is due to Gallai [3, 11]. It is used
to decompose finite graphs in an intrinsic and unique way. Given a graphΓ, an intervalX
if Γ is strong if for every intervalY of Γ not disjoint fromX, we haveX ⊆ Y or Y ⊆ X.
Properties analogous to those stated in Proposition 1.1 hold for strong intervals.

Proposition 1.2. Given a graphΓ, the assertions below hold:

B1 /0, V(Γ) and{x}, wherex∈V(Γ), are strong intervals ofΓ;

B2 (i) given an intervalX of Γ, we have for everyY ⊂ X: Y is a strong interval of
Γ(X) if and only ifY is a strong interval ofΓ;

(ii) given a strong intervalX of Γ, we have for everyY ⊆ X: Y is a strong interval
of Γ(X) if and only ifY is a strong interval ofΓ;

B3 (i) for every familyF of strong intervals ofΓ, the intersection∩F of all the ele-
ments ofF is a strong interval ofΓ;

(ii) for every familyF of strong intervals ofΓ, the union∪F of all the elements of
F is a strong interval ofΓ provided that for anyX,Y ∈ F , there isZ ∈ F such
thatX∪Y ⊆ Z;

For a proof of Assertion B2.(i), we refer to [1, Lemma 3.11]. For convenience, we
denote the family of the nonempty strong intervals of a graphΓ by S(Γ) and the family of
the maximal elements ofS(Γ) \ {V(Γ)} under inclusion byP(Γ). In the finite case,P(Γ)
yields the following decomposition theorem.

Theorem 1.3(Gallai [3, 11]). Given a finite graphΓ, with |V(Γ)| ≥ 2, the familyP(Γ)
realizes an interval partition ofV(Γ). Furthermore, the corresponding quotientΓ/P(Γ)
is either indecomposable, with|P(T)| ≥ 3, or there existsα ∈ {0,1} such that for any
X 6= Y ∈ P(Γ), [X,Y]Γ/P(Γ) = α.

In the infinite case, we have (see, for example, [7, Theorem 4.2]):

Lemma 1.4. Given an infinite graphΓ, if P(Γ) 6= /0, thenP(Γ) is an interval partition ofΓ.

Theorem 1.3 is still true for an infinite graphΓ whenP(Γ) 6= /0. Indeed,P(Γ) is an
interval partition ofΓ by Lemma 1.4. Since the elements ofP(Γ) are the maximal elements
of S(Γ) \ {V(Γ)} under inclusion, all the strong intervals ofΓ/P(Γ) are trivial. Then, it
suffices to apply [7, Theorem 4.1] toΓ/P(Γ). Given an infinite graphΓ, a strong intervalX
of Γ is limit [10] if P(Γ(X)) = /0. Givenx∈V(Γ), note that{x} is a limit interval because
S(Γ({x})) = {V(Γ({x}))}= {{x}}. We denote byL(Γ) the family of limit strong intervals
of Γ. Thedecomposition treeof Γ is the following family ordered by inclusion:

D(Γ) =
[

X∈S(Γ)\L(Γ)

{X}∪P(Γ(X)).

Recall that the total order1+Z defined on{−∞}∪Z is the extension of the usual total
orderZ on the set of integers by adding one element denoted by−∞ which is smaller than
all the integers. Consider the graphΓ defined onV(Γ) = {−∞}∪Z by: givenx 6= y∈V(Γ),
{x,y} ∈ E(Γ) if max(x,y) is even. It is easy to verify that the subsets{−∞}∪{. . . ,n−1,n}
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of {−∞}∪Z, wheren∈ Z, are the only non trivial intervals ofΓ. Therefore, they are the
only non trivial strong intervals ofΓ as well. As previously noted,{x} ∈L(Γ) for x∈V(Γ).
Moreover,V(Γ) ∈ L(Γ) because

S
n∈Z({−∞}∪ {. . . ,n− 1,n}) = {−∞}∪Z. Lastly, for

eachn ∈ Z, we haveP(Γ({−∞} ∪ {. . . ,n− 1,n})) = {{n},{−∞} ∪ {. . . ,n− 2,n− 1}}.
Consequently,D(Γ) = {{−∞}∪ {. . . ,n−1,n};n ∈ Z}∪ {{n};n ∈ Z}. Clearly,{−∞} 6∈
D(Γ). Sometimes we add the singletons to the decompostion tree depending on its use.

1.2 The Sabidussi graphs

Sabidussi graphs are defined as follows. Consider a total orderT defined on a setSand a
graphG = (V,E), with |V| ≥ 2. Choose a vertex ofG and denote it by0. Denote bySV the
family of the functionsf : S−→V such that{q∈ S: f (q) 6= 0} is finite. In particular, the
function 0̄ : S−→ V, defined by0̄(q) = 0 for everyq∈ S, belongs toSV. The graphTG
is defined onSV as follows: givenf 6= g∈ (SV), [ f ,g]TG = [ f (δ( f ,g)),g(δ( f ,g))]G, where
δ( f ,g) denotes the smallest element of{q∈S: f (q) 6= g(q)} in the total orderT. The graph
TG is calledSabidussi graph. By replacingG by G in what precedes, we obtainTG instead
of TG.

Sabidussi [13] introduced this construction to obtain graphs idempotent under the lex-
icographic product. Given graphsΓ andΓ′, recall that thelexicographic productΓ[Γ′] of
Γ′ by Γ is defined onV(Γ[Γ′]) = V(Γ)×V(Γ′) as follows. Given(x,x′),(y,y′) ∈V(Γ[Γ′]),
{(x,x′),(y,y′)} ∈E(Γ[Γ′]) if eitherx 6= y and{x,y} ∈E(Γ) or x= y and{x′,y′} ∈E(Γ′). An
infinite graphΓ is idempotentunder the lexicographic product ifΓ[Γ] andΓ are isomorphic.
The lexicographic product of directed graphs is defined similarly. For a total orderT and a
graphG, we obtain that(TG)[TG] is isomorphic to2[T]G, where 2 denotes the usual total or-
der on{0,1}. Consequently, the Sabidussi graphTG is idempotent under the lexicographic
product if2[T] is isomorphic toT. For instance, consider the usual total order on the set of
rational numbers, which is denoted byQ as well. We have2[Q] is isomorphic toQ. In the
sequel, we consider the Sabidussi graphQG for some graphG = (V,E), with |V| ≥ 2. For
convenience,QG is denoted byΠ. We propose to characterize the intervals and the strong
intervals ofΠ. This leads us to some of their remarkable properties which suitably illustrate
the idempotency ofΠ. In fact, Sabidussi graphs are the only known graphs idempotent un-
der the lexicographic product. We hope that our structural study will provide a more general
construction of such graphs in terms of decomposition tree which will permit a complete
characterization. In 1961, Sabidussi conjectured the following algebraic property of graphs
idempotent under the lexicographic product. LetΓ andΓ′ be permutation groups acting on
setsX andX′, respectively. Thewreath product(also called thecompositionor thecorona)
of Γ aroundΓ′ is the groupΓ oΓ′ whose elements are the pairs(φ,{ψx ; x∈X}), whereφ∈Γ
andψx ∈ Γ′, and which acts onX×X′ by (φ,{ψx : x∈ X})(x,x′) = (φ(x),ψx(x′)). Given
graphsΓ andΓ′, the family{{x}×V(Γ′) ; x∈V(Γ)} clearly constitutes an interval parti-
tion of the lexicographic productΓ[Γ′]. It follows from Proposition 1.1 (A4) that the wreath
productAut(Γ) oAut(Γ′) is a subgroup ofAut(Γ[Γ′]). In particular,Aut(Γ) oAut(Γ) is a
subgroup ofAut(Γ[Γ]) for every graphΓ. The relationship between the wreath product of
the automorphism groups of two graphs and the automorphism group of the lexicographic
product of the two graphs was studied by Sabidussi [13, 12] who corrected the first attempt
at characterizing the graphs for which the two resulting groups coincide. The characteriza-
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tion was generalized by the first author to hypergraphs [6] and to directed graphs [4] and to
directed hypergraphs [5]. The latter work also mentions the next conjecture.

Conjecture 1.5 (Sabidussi, 1961 (unpublished)). If Γ is a graph idempotent under the
lexicographic product, thenAut(Γ) oAut(Γ) is a proper subgroup ofAut(Γ[Γ]).

The second author proved this conjecture in 2003 [9] after studying the relationship
between the structures of the decomposition tree ofΓ[Γ] and ofΓ. This explains our present
approach.

1.3 Notation

Given X ⊆QV, we denoteX \ {0̄} by X ?. Let f ∈QV. We denote the family{q ∈ Q :
f (q) 6= 0} by σ( f ) and|σ( f )| by n( f ). We use the following notation whenf 6= 0̄.

• s( f ) = min(σ( f )) andS( f ) = max(σ( f )).

• Setσ( f ) = {qf
1, . . . ,q

f
n( f )}, wheres( f ) = qf

1 < · · ·< qf
n( f ) = S( f ).

We considers as a function(QV)? −→ Q and hence forX ⊆ (QV)?, we can extend it
by settings(X ) = {s( f ) : f ∈ X }. Given a nonempty subsetX of QV such thats(X ?)
admits a smallest elementq, we denote{ f (q) ; f ∈ X ∩ s−1({q})} by X ↓. Givenq∈ Q
andx ∈ V \ {0}, qx is the element ofQV defined byσ(qx) = {q} and(qx)(q) = x. More
generally, given/0 6= X ⊆V \{0}, qX denotes the set{qx ; x∈ X}.
Remark1.6. If Π is connected, then there isf ∈ (QV)? such that[0̄, f ]Π = 1. Consequently,
[0, f (s( f ))]G = 1. Conversely, assume that there isx∈V \{0} such that[0,x]G = 1. Firstly,
consider f ∈ (QV)?. For q < s( f ), we have[0̄,qx]Π = [ f ,qx]Π = 1. Secondly, consider
f 6= g ∈ (QV)?. For q < min(s( f ),s(g)), we have[ f ,qx]Π = [g,qx]Π = 1. Consequently,
Π is connected if and only if there isx∈ V \ {0} such that[0,x]G = 1. By consideringG
instead ofG, we obtain thatΠ is connected if and only if there isy ∈ V \ {0} such that
[0,y]G = 1 or, equivalently,[0,y]G = 0.

Assumption1.7. In the sequel, we assume that there arex,y∈ V \ {0} such that[0,x]G 6=
[0,y]G. It follows from Remark 1.6 thatΠ andΠ are connected.

To continue, we define a poset< on QV as follows. First, for everyf ∈ (QV)?,
we have0̄ < f . Second, givenf ,g ∈ (QV)?, f ≤ g if f (q) = g(q) for every q ≤ S( f ).
Consequently, iff ≤ g, thens( f ) = s(g) andσ( f ) ⊆ σ(g). Furthermore, iff < g, then
[ f ,g]Π = [0,g(qg

n( f )+1)]G.

Given /0 6= X ⊆QV, denote byX− the set off ∈QV such thatf ≤ g for everyg∈ X .
We haveX− 6= /0 becausē0∈ X−. Assume thatX 6= {0̄} and considerg∈ X ?. We have
X− ⊆ {g}−. For1≤ i ≤ n(g), let gi be the element ofQV defined byσ(gi) = {qg

1, . . . ,q
g
i }

andgi(q) = g(q) for everyq≤ qg
i . Since({g}−,<) is the total order̄0 < g1 < g2 < · · · <

gn(g) = g, X− admits a largest element denoted by∧X . For convenience, givenf1, . . . , fp ∈
QV, we denote∧{ f1, . . . , fp} by f1∧ . . .∧ fp.

Considerf ∈QV andq∈ Q such thatq > S( f ) if f 6= 0̄. Denote byb f c the family of
g∈QV such thatf ≤ g. For example, givenx∈V \{0}, q fx is the element ofb f c defined
by σ(q fx) = σ( f )∪{q} and(q fx)(q) = x. More generally, given/0 6= X ⊆QV, bX c denotes
the union ofbhc, whereh∈ X . We use the following subsets ofb f c.
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• b f c>q = { f}∪{g∈b f c\{ f} : qg
n( f )+1 > q}; for instance,b0̄c>q = {0̄}∪s−1((q,+∞)).

• b f c≥q = { f}∪{g∈b f c\{ f} : qg
n( f )+1≥q}; for instance,b0̄c≥q = {0̄}∪s−1([q,+∞)).

• Given /0 6= X ⊆ V \ {0}, b f c=q
X is the family ofg∈ b f c \ { f} such thatqg

n( f )+1 = q

andg(q) ∈ X. For instance,b0̄c=q
X = bqXc.

• Given /0 6= X ⊆V \{0}, b f c≥q
X = b f c>q∪b f c=q

X . For instance,b0̄c≥q
X = {0̄}∪s−1((q,

+∞))∪bqXc.

2 The intervals of Π

2.1 Preliminary properties

Lemma 2.1. LetI be an interval ofΠ, with |I |> 1. Considerf ∈ I ? such that there exists
f ′ ∈ I satisfyingf ′(s( f )) 6= f (s( f )) and f ′(r) = 0 for everyr < s( f ). Then,qx∈ I , where
q = s( f ) andx = f (q).

Proof : For a contradiction, suppose thatqx 6∈ I . We have[qx, f ′]Π = [x, f ′(q)]G and
hence[qx,I ]Π = [x, f ′(q)]G. For everyg∈ I ∩bqxc, qx< gbecauseqx 6∈ I , and thusn(g)≥ 2.
SetW = {g(qg

2) ; g∈ I ∩bqxc}. As f ∈ I ∩bqxc, we haveW 6= /0. For eachy∈W, consider
g∈ I ∩bqxc such thatg(qg

2) = y. Asδ(qx,g) = qg
2, we have[qx,g]Π = [0,y]G so that[0,y]G =

[x, f ′(q)]G. Consequently, we have[0,W]G = [x, f ′(q)]G. For eachy∈ (V \{0})\W, con-
sider r ∈ (qf

1 = q,qf
2) and the elementh of QV defined byσ(h) = {q, r}, h(q) = x and

h(r) = y. Sincey 6∈W, we haveh 6∈ I . Therefore,[h,I ]Π = [h, f ′]Π = [x, f ′(q)]G. In par-
ticular, we obtain that[h, f ]Π = [x, f ′(q)]G. As δ( f ,h) = r, [h, f ]Π = [0,y]G. Consequently,
[0,(V \ {0}) \W]G = [x, f ′(q)]G and hence[0,V \ {0}]G = [x, f ′(q)]G, which contradicts
Assumption 1.7.

Lemma 2.2. Let I be an interval ofΠ, with |I | > 1. Given f ∈ I ?, considerr ∈ Q such
that r > S( f ) (resp. there isi ∈ {1, . . . ,n( f )−1} such thatqf

i < r < qf
i+1). If there exists

f ′ ∈ I such thatf ′(s( f )) 6= f (s( f )) and f ′(r ′) = 0 for everyr ′ < s( f ), then there exists
g∈ I ? satisfying:

(1) f < g, n(g) = n( f )+1 andS(g) = r

(resp. (2)σ(g) = {qf
1, . . . ,q

f
i , r} andg(gf

j ) = f (qf
j ) for every j ∈ {1, . . . , i}).

Proof : By Assumption 1.7, there existsx∈V \{0} such that[0,x]G 6= [ f , f ′]Π. Denote
by g the element ofQV satisfying (1) (resp. (2)) and such thatg(r) = x. As δ( f ,g) = r, we
have[ f ,g]Π = [0,x]G. Furthermore, sinceδ( f , f ′) = δ(g, f ′) = s( f ) and sincef (s( f )) =
g(s( f )), we obtain that[ f , f ′]Π = [g, f ′]Π. It follows that[g, f ]Π 6= [g, f ′]Π and henceg∈ I .

Proposition 2.3. LetI be an interval ofΠ, with |I |> 1. Given f ∈ I ?, if there existsf ′ ∈ I
such thatf ′(s( f )) 6= f (s( f )) and f ′(r) = 0 for everyr < s( f ), thenb f c ⊆ I .

Proof : For a contradiction, suppose that there existsg∈ (b f c \ { f})\ I . Consider the
setJ of h∈ (b f c\{ f})∩ I such thatn(h) = n( f )+1 andS(h) = qh

n( f )+1 < qg
n( f )+1. By the
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preceding lemma,J 6= /0. SetW = {h(S(h)) ; h∈ J }. Givenx∈W, considerh∈ J such
thath(S(h)) = x. As δ( f ,g) = qg

n( f )+1 andδ(g,h) = S(h), we have[ f ,g]Π = [0,g(qg
n( f )+1)]G

and[g,h]Π = [0,x]G. For convenience, denote[0,g(qg
n( f )+1)]G by α. SinceI is an interval

of Π, we obtain that[ f ,g]Π = [g,h]Π, that is, [0,x]G = α. Consequently,[0,W]G = α.
Now, let x be an element of(V \ {0}) \W. SinceJ 6= /0 by Lemma 2.2, considerh ∈ J .
Givenr ∈ (S(h),qg

n(h)), we haver fx 6∈ I becausex 6∈W. Therefore,[h,(r fx)]Π = [ f ,(r fx)]Π.
Sinceδ(h,(r fx)) = S(h), we have[h,(r fx)]Π = [0,h(S(h))]G. We obtain[h,(r fx)]Π = α
becauseh(S(h)) ∈W and[0,W]G = α. As δ( f ,(r fx)) = r, we have[ f ,(r fx)]Π = [0,x]G and
hence[0,x]G = α. It follows that [0,(V \ {0}) \W]G = α so that[0,V \ {0}]G = α, which
contradicts Assumption 1.7.

2.2 The intervalsI of Π such that |s(I ?)|> 1

Lemma 2.4. If I is an interval ofΠ such that|s(I ?)| > 1, thens(I ?) is an interval ofQ
and0̄∈ I .

Proof : Consider f ,g ∈ I such thats( f ) < s(g) and considerq ∈ (s( f ),s(g)). By
Assumption 1.7, there existsx∈V \{0} such that[0,x]G 6= [0, f (s( f ))]G. Asδ(qx, f ) = s( f )
and δ(qx,g) = q, we have[qx, f ]Π = [0, f (s( f ))]G and [qx,g]Π = [0,x]G. Consequently,
[qx, f ]Π 6= [qx,g]Π and henceqx∈ I . Firstly, we conclude thats(qx) = q∈ s(I ?) and thus
s(I ?) is an interval ofQ. Secondly, asδ(0̄, f ) = s( f ) andδ(0̄,qx) = q, we have[0̄, f ]Π =
[0, f (s( f ))]G and[0̄,qx]Π = [0,x]G. Therefore,[0̄, f ]Π 6= [0̄,qx]Π and hencē0∈ I .

The three corollaries below are immediate consequences of Lemmas 2.1, 2.2 and 2.4,
and of Proposition 2.3.

Corollary 2.5. Let I be an interval ofΠ such that|s(I ?)| > 1. For every f ∈ I ?, qx∈ I ,
whereq = s( f ) andx = f (q).

Proof : By Lemma 2.4, we havē0 ∈ I . It is then sufficient to apply Lemma 2.1 by
considerinḡ0 for f ′.

Corollary 2.6. Let I be an interval ofΠ such that|s(I ?)| > 1. Given f ∈ I ?, consider
r ∈Q such thatr > S( f ) (resp. there isi ∈ {1, . . . ,n( f )−1} such thatqf

i < r < qf
i+1). There

existsg∈ I ? satisfyingn(g) = n( f )+ 1, f < g andS(g) = r (resp. σ(g) = {qf
1, . . . ,q

f
i , r}

andg(gf
i ) = f (qf

i ) for every j ∈ {1, . . . , i}).

Proof : By Lemma 2.4, we havē0 ∈ I . It is then sufficient to apply Lemma 2.2 by
considerinḡ0 for f ′.

Corollary 2.7. Let I be an interval ofΠ such that|s(I ?)|> 1. For everyf ∈ I ?, b f c ⊆ I .

Proof : By Lemma 2.4, we havē0∈ I . It is then sufficient to apply Proposition 2.3 by
considerinḡ0 for f ′.

The next result follows from Lemma 2.4 as well.

Proposition 2.8. Let I be an interval ofΠ such that|s(I ?)| > 1. For any f ,g ∈ I ?, if
s( f ) < s(g), thens−1((s(g),+∞))⊆ I .
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Proof : SetJ = {h∈ I ? : s( f )< s(h)< s(g)} andW = {h(s(h)) ; h∈ J }. By Lemma 2.4,
J 6= /0 and hence/0 6= W ⊆ V \ {0}. For a contradiction, suppose thatW ⊂ V \ {0}. Let
y ∈W andx ∈ (V \ {0}) \W. There ish ∈ J such thath(s(h)) = y and we considerrx,
wherer ∈ (s(h),s(g)). As x 6∈W, we haverx 6∈ I . Therefore,[h,(rx)]Π = [g,(rx)]Π. Since
δ(h,(rx)) = s(h) andδ(g,(rx)) = r, we have[h,(rx)]Π = [0,y]G and[g,(rx)]Π = [0,x]G. It
would follow that[0,W]G = [0,(V \ {0}) \W]G, which contradicts Assumption 1.7. Con-
sequently,W = V \{0}. By Assumption 1.7, there arez,z′ ∈W such that[0,z]G 6= [0,z′]G.
It follows that there areh,h′ ∈ J such thath(s(h)) = z andh′(s(h′)) = z′. Now, consider
any g′ ∈ (QV)? such thats(g′) > s(g). As δ(h,g′) = s(h) andδ(h′,g′) = s(h′), we have
[h,g′]Π = [0,z]G and[h′,g′]Π = [0,z′]G. Therefore,[h,g′]Π 6= [h′,g′]Π and henceg′ ∈ I . It
results thats−1((s(g),+∞))⊆ I .

The following characterization completes the subsection.

Theorem 2.9. GivenI ⊆ (QV) such that|s(I ?)|> 1, I is an interval ofΠ in precisely one
of the three cases below.

1. I = b0̄c, that is,I =QV.

2. I = b0̄c>q, whereq∈Q.

3. I = b0̄c≥q
X , whereq∈ Q andX is a nonempty subset ofV \{0} such that{0}∪X is

an interval ofG.

Proof : To commence, assume thatI is an interval ofΠ. By Lemma 2.4,s(I ?) is an
interval ofQ and 0̄ ∈ I . It follows from Proposition 2.8 that eithers(I ?) = Q or there
is q ∈ Q such thats(I ?) = (q,+∞) or [q,+∞). Considerf ∈ I and assume further that
s( f ) > q in the case wheres(I ?) = [q,+∞). There isg∈ I such thats(g) < s( f ). It follows
from Proposition 2.8 thats−1((s( f ),+∞)) ⊆ I . Consequently, ifs(I ?) = Q, thenI =QV.
Similarly, if s(I ?) = (q,+∞), thenI = {0̄}∪ s−1((q,+∞)), that is,I = b0̄c>q. Assume
that s(I ?) = [q,+∞). Let x ∈ I ↓. Considerf ∈ I ? such thats( f ) = q and f (q) = x. By
Corollary 2.5, we haveqx ∈ I and, by Corollary 2.7,bqxc ⊆ I . Therefore,I = {0̄} ∪
s−1((q,+∞))∪bq(I ↓)c, that is,I = b0̄c≥q

I↓ . Lastly, we have to verify that{0}∪ (I ↓) is an
interval ofG. For everyy∈V \ ({0}∪ (I ↓)), we haveqy 6∈ I . Consequently, there isα = 0
or 1 such that[qy,{0̄}∪bq(I ↓)c]Π = α. It results that[y,{0}∪ (I ↓)]G = α.

Conversely, considerq ∈ Q. For any f ∈ {0̄}∪ s−1((q,+∞)) andg ∈ (QV) \ ({0̄}∪
s−1((q,+∞)), we haveδ( f ,g) = s(g) and hence[ f ,g]Π = [0,g(s(g))]G. Therefore,[g,{0̄}∪
s−1((q,+∞))]Π = [0,g(s(g))]G. It follows that {0̄} ∪ s−1( (q,+∞)) is an interval ofΠ.
Finally, consider also a nonempty subsetX of V \ {0} such that{0}∪X is an interval of
G. Let g∈ (QV) \ ({0̄}∪ s−1((q,+∞))∪bqXc). As previously, ifs(g) < q, then[g,{0̄}∪
s−1((q,+∞))∪ bqXc]Π = [0,g(s(g))]G. Thus, assume thats(g) = q. Similarly, we have
[g,{0̄}∪s−1((q,+∞))]Π = [0,g(q)]G. For everyf ∈ bqXc, we haveδ( f ,g) = q and hence
[ f ,g]Π = [ f (q),g(q)]G. Sincef (q) ∈ X andg(q) 6∈ X, and since{0}∪X is an interval ofG,
we obtain that[ f (q),g(q)]G = [0,g(q)]G. Consequently,[g,bqXc]Π = [0,g(q)]G. It follows
that{0̄}∪s−1((q,+∞))∪bqXc is an interval ofΠ.

WhenG is indecomposable, we obtain the following:

Corollary 2.10. Assume thatG is indecomposable. GivenI ⊆QV such that|s(I ?)|> 1, I
is an interval ofΠ if and only ifI = b0̄c, b0̄c>q or b0̄c≥q, whereq∈Q.
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Proof : Given a nonempty subsetX of V \ {0}, if {0} ∪X is an interval ofG, then
{0}∪X = V andX = V \ {0}. But, for q∈ Q, we haveb0̄c≥q

V\{0} = b0̄c≥q becausebq(V \
{0})c= s−1({q}).

2.3 The intervalsI of Π such that |s(I ?)|= 1 and |I ↓ |> 1

Lemma 2.11. If I is an interval ofΠ such that|s(I ?)| = 1 and |I ↓ | > 1, then0̄ 6∈ I and
I ↓ is an interval ofG.

Proof : Denote the unique element ofs(I ?) by q. Givenx∈ I ↓, considerf ∈ I ? such
that f (q) = x. By Assumption 1.7, there isy ∈ V \ {0} such that[0,y]G 6= [0,x]G. Given
r > q, we havery 6∈ I . Sinceδ(ry, 0̄) = r andδ(ry, f ) = q, we obtain that[ry, 0̄]Π = [0,y]G
and[ry, f ]Π = [0,x]G. Consequently,[ry, 0̄]Π 6= [ry, f ]Π. Necessarily,̄0 6∈ I becausery 6∈ I
and f ∈ I .

To show thatI ↓ is an interval ofG, considerx,x′ ∈ I ↓ andy 6∈ I ↓. There aref , f ′ ∈ I
such thatf (q) = x and f ′(q) = x′. Firstly, assume thaty 6= 0. Clearly, qy 6∈ I because
y 6∈ I ↓. Therefore,[qy, f ]Π = [qy, f ′]Π. As δ(qy, f ) = δ(qy, f ′) = q, we have[qy, f ]Π = [y,x]G
and[qy, f ′]Π = [y,x′]G. Consequently,[y,x]G = [y,x′]G. Lastly, wheny = 0, we proceed as
previously by considerinḡ0 instead ofqy.

In the preceding statement, we obtain thatI ↓ is a non trivial interval ofG. An immedi-
ate consequence follows.

Corollary 2.12. If there is an intervalI of Π such that|s(I ?)|= 1 and|I ↓ |> 1, thenG is
decomposable.

WhenG is decomposable, we obtain the next characterization.

Theorem 2.13.Given a subsetI of QV such that|s(I ?)|= 1 and|I ↓ |> 1, I is an interval
of Π if and only ifI = bqXc, whereq∈ Q andX is an interval ofG such that|X| > 1 and
X ⊆V \{0}.

Proof : Denote the unique element ofs(I ?) by q. To begin, assume thatI is an interval
of Π. By the previous lemma,̄0 6∈ I and I ↓ is an interval ofG. As 0̄ 6∈ I , we have
I ⊆ bq(I ↓)c. Givenx ∈ I ↓, let f ∈ I such thatf (q) = x. Since|I ↓ | > 1, there exists
f ′ ∈ I such thatf ′(q) 6= x. By applying Lemma 2.1 tof and f ′, we haveqx∈ I . Then, by
applying Proposition 2.3 toqx and f ′, we obtain thatbqxc ⊆ I . Consequently,I = bq(I ↓)c.

Conversely, considerq ∈ Q andX an interval ofG such that0 6∈ X and |X| > 1. For
everyy∈V \X, we have[y,X]G = αy, whereαy = 0 or 1. Let g∈ (QV)\ bqXc. Firstly, if
g 6= 0̄ ands(g) < q, then[g,bqXc]Π = [0,g(s(g))]G. Secondly, ifg= 0̄ or g 6= 0̄ ands(g) > q,
theng(q) = 0 6∈ X. For everyf ∈ bqXc, we haveδ( f ,g) = q and hence[g, f ]Π = [0, f (q)]G.
Since f (q) ∈ X, [0, f (q)]G = α0. Therefore,[g,bqXc]Π = α0. Lastly, if g 6= 0̄ ands(g) = q,
theng(q) 6∈X becauseg 6∈ bqXc. For everyf ∈ bqXc, we haveδ( f ,g) = q and thus[g, f ]Π =
[g(q), f (q)]G. As f (q) ∈ X, [g(q), f (q)]G = αg(q). Consequently,[g,bqXc]Π = αg(q).

2.4 The intervalsI of Π such that |s(I ?)|= 1 and |I ↓ |= 1

Given f ∈ (QV)?, we transform naturally an isomorphism fromQ ontoQ((S( f ),+∞))
into an isomorphism fromΠ(b f c) ontoΠ. We use the following notation.
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• θ f denotes an isomorphism fromQ ontoQ((S( f ),+∞)).

• Θ f : b f c −→Q V is defined byθ f (g) = (g/(S( f ),+∞))◦θ f for g∈ b f c.
• Given a functiong : (S( f ),+∞)−→V such that{q> S( f ) : g(q) 6= 0} is finite, f +g

is the element ofQV defined by( f +g)/(−∞,S( f )] = f/(−∞,S( f )] and( f +g)/(S( f ),+∞) =
g. Clearly, f + g ∈ b f c andσ( f + g) = σ( f )∪{q > S( f ) : g(q) 6= 0}. Now, Ω f :
QV −→ b f c is defined byΩ f (g) = f +(g◦ (θ f )−1) for g∈QV.

We will use the following properties ofΘ f and ofΩ f .
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Lemma 2.14.

1. Θ f ( f ) = 0̄.

2. For everyg∈ b f c\{ f}, n(Θ f (g)) = n(g)−n( f ) and fori ∈ {1, . . . ,n(g)−n( f )}, we

haveq
Θ f (g)
i = (θ f )−1(qg

n( f )+i) andΘ f (g)(qΘ f (g)
i ) = g(qg

n( f )+i).

3. For anyg 6= h∈ b f c, δ(Θ f (g),Θ f (h)) = (θ f )−1(δ(g,h)).

4. Ω f (0̄) = f .

5. For everyg ∈ (QV)?, n(Ω f (g)) = n( f ) + n(g). If i ∈ {1, . . . ,n( f )}, thenq
Ω f (g)
i =

qf
i and Ω f (g)(qΩ f (g)

i ) = f (qf
i ). If i ∈ {n( f ) + 1, . . . ,n( f ) + n(g)}, then q

Ω f (g)
i =

θ f (q
g
i−n( f )) andΩ f (g)(qΩ f (g)

i ) = g(qg
i−n( f )).

Proof : The first and fourth points are clear by the definition ofΘ f and ofΩ f . For the
second, considerg∈ b f c\{ f} andq∈Q. The following assertions are equivalent:

• Θ f (g)(q) 6= 0;

• g/(S( f ),+∞)(θ f (q)) 6= 0;

• θ f (q) ∈ σ(g)∩ (S( f ),+∞);

• there isj ∈ {n( f )+1, . . . ,n(g)} such thatθ f (q) = qg
j ;

• there isi ∈ {1, . . . ,n(g)−n( f )} such thatq = (θ f )−1(qg
n( f )+i).

For the third point, considerg 6= h∈ b f c. For eachq∈Q, the following assertions are
equivalent:

• Θ f (g)(q) 6= Θ f (h)(q);

• g/(S( f ),+∞)(θ f (q)) 6= h/(S( f ),+∞)(θ f (q));

• θ f (q) ∈ {r > S( f ) : g(r) 6= h(r)};
• q∈ (θ f )−1({r > S( f ) : g(r) 6= h(r)}).
It follows thatmin({q∈Q : Θ f (g)(q) 6= Θ f (h)(q)}) = min((θ f )−1({r > S( f ) : g(r) 6=

h(r)})). Since θ f is an isomorphism fromQ onto Q((S( f ),+∞)), we obtain that
min((θ f )−1({r > S( f ) : g(r) 6= h(r)})) = (θ f )−1(min({r > S( f ) : g(r) 6= h(r)})). As
g 6= h ∈ b f c, we have{r > S( f ) ; g(r) 6= h(r)} = {r ∈ Q ; g(r) 6= h(r)}. Consequently,
δ(Θ f (g),Θ f (h)) = (θ f )−1(δ(g,h)).

For the last point, considerq∈Q. The following assertions are equivalent:

• Ω f (g)(q) 6= 0;

• ( f +(g◦ (θ f )−1))(q) 6= 0;

• eitherq≤ S( f ) andq∈ σ( f ) or q > S( f ) andg((θ f )−1(q)) 6= 0;
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• eitherq∈ σ( f ) or q > S( f ) and(θ f )−1(q) ∈ σ(g);

• q∈ σ( f )∪θ f (σ(g)).

Therefore,σ(Ω f (g)) = σ( f )∪θ f (σ(g)) and thusn(Ω f (g)) = n( f )+ n(g). More pre-

cisely, for eachi ∈ {1, . . . ,n( f )+n(g)}, we obtain that eitheri ≤ n( f ) andq
Ω f (g)
i = qf

i or

i > n( f ) andq
Ω f (g)
i = θ f (q

g
i−n( f )). Finally, it follows from the definition ofΩ f (g) that for

1≤ i ≤ n( f ), Ω f (g)(qΩ f (g)
i ) = f (qf

i ) and forn( f )+1≤ i ≤ n( f )+n(g), Ω f (g)(qΩ f (g)
i ) =

g(qg
i−n( f )).
The next result is an easy consequence.

Proposition 2.15. For each f ∈ (QV)?, the functionΘ f realizes an isomorphism from
Π(b f c) onto Π and (Θ f )−1 = Ω f . Moreover, for anyg,h ∈ b f c, we have:g < h if and
only if Θ f (g) < Θ f (h).

Proof : Giveng∈ b f c, we have:

(Ω f ◦Θ f )(g) = Ω f (g/(S( f ),+∞) ◦θ f ) = f +g/(S( f ),+∞) = g.

Conversely, giveng∈QV, we have:

(Θ f ◦Ω f )(g) = Θ f ( f +(g◦ (θ f )−1)) = ( f +(g◦ (θ f )−1))/(S( f ),+∞) ◦θ f

and
( f +(g◦ (θ f )−1))/(S( f ),+∞) ◦θ f = (g◦ (θ f )−1)◦θ f = g.

Consequently,Θ f is bijective and(Θ f )−1 = Ω f .
Now, considerg 6= h ∈ b f c. We have[g,h]Π = [g(δ(g,h)),h(δ(g,h))]G and [Θ f (g),

Θ f (h)]Π = [Θ f (g)(δ(Θ f (g),Θ f (h))),Θ f (h)(δ(Θ f (g),Θ f (h)))]G. It follows from the third
assertion of Lemma 2.14 thatδ(Θ f (g),Θ f (h)) = (θ f )−1(δ(g,h)). Furthermore,Θ f (g)(
(θ f )−1(δ(g,h)))= g(δ(g,h)) andΘ f (h)((θ f )−1(δ(g,h))) = h(δ(g,h)). Therefore,[g,h]Π =
[Θ f (g),Θ f (h)]Π.

Lastly, considerg,h∈b f c such thatg< h. We haven(g)< n(h) and fori ∈{1, . . . ,n(g)},
qg

i = qh
i and g(qg

i ) = h(qh
i ). Obviously, if g = f , thenΘ f (g) = 0̄ 6= Θ f (h) becauseΘ f

is injective. Therefore,Θ f (g) = 0̄ < Θ f (h). Assume thatf < g. It follows from the
second assertion of Lemma 2.14 thatn(Θ f (g)) = n(g)−n( f ) < n(h)−n( f ) = n(Θ f (h))
and for i ∈ {1, . . . ,n(g)−n( f )}, q

Θ f (g)
i = (θ f )−1(qg

n( f )+i) = (θ f )−1(qh
n( f )+i) = q

Θ f (h)
i and

Θ f (g)(qΘ f (g)
i ) = g(qg

n( f )+i) = h(qh
n( f )+i) = Θ f (h)(qΘ f (h)

i ). Consequently,Θ f (g) < Θ f (h).
Conversely, considerg,h ∈ QV such thatg < h. Firstly, assume thatg = 0̄ so that

Ω f (g) = f . As g < h, we haveh 6= 0̄ and henceΩ f (h) 6= f becauseΩ f is injective.
Therefore,Ω f (h) ∈ b f c \ { f}, that is, f = Ω f (g) < Ω f (h). Secondly, assume thatg 6= 0̄.

SinceΩ f (g),Ω f (h) ∈ b f c, we haveq
Ω f (g)
i = qf

i = q
Ω f (h)
i and Ω f (g)(qΩ f (g)

i ) = f (qf
i ) =

Ω f (h)(qΩ f (h)
i ) for i ∈ {1, . . . ,n( f )}. Furthermore, asg < h, we haven(g) < n(h) and for

i ∈{1, . . . ,n(g)}, we haveqg
i = qh

i andg(qg
i ) = h(qh

i ). Then, it follows from the last assertion
of Lemma 2.14 thatn(Ω f (g)) = n( f )+n(g) < n( f )+n(h) = n(Ω f (h)) and fori ∈ {n( f )+
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1, . . . ,n( f ) + n(g)}, q
Ω f (g)
i = θ f (q

g
i−n( f )) = θ f (qh

i−n( f )) = q
Ω f (h)
i and Ω f (g)(qΩ f (g)

i ) = g(

qg
i−n( f )) = h(qh

i−n( f )) = Ω f (h)(qΩ f (h)
i ). Consequently,Ω f (g) < Ω f (h).

To conclude the subsection, we obtain the following characterization.

Theorem 2.16.GivenI ⊆QV such that|I |> 1, |s(I ?)|= 1 and|I ↓ |= 1, I is an interval
of Π in precisely one of the four cases below.

1. I = b f c, wheref ∈ (QV)?.

2. I = b f c>q, wheref ∈ (QV)? andq > S( f ).

3. I = b f c≥q
X , where f ∈ (QV)?, q > S( f ) andX is a nonempty subset ofV \ {0} such

that{0}∪X is an interval ofG.

4. I = b f c=q
X , wheref ∈ (QV)?, q > S( f ) andX is an interval ofG such that0 6∈ X and

|X|> 1.

Proof : To commence, we verify thatb f c is an interval ofΠ for every f ∈QV. We
proceed by induction onn( f ). If n( f ) = 0, then f = 0̄ andb0̄c =QV is an interval ofΠ.
If n( f ) = 1, then f =q x, whereq = s( f ) andx = f (s( f )). For eachg∈ (QV)? \ bqxc, we
distinguish the following cases:

• if g = 0̄, then[0̄,bqxc]Π = [0,x]G;

• if g 6= 0̄ ands(g) < q, then[g,bqxc]Π = [g(s(g)),0]G;

• if g 6= 0̄ andq < s(g), then[g,bqxc]Π = [0,x]G;

• if g 6= 0̄ ands(g) = q, theng(q) 6= x and[g,bqxc]Π = [g(q),x]G.

Consequently,bqxc is an interval ofΠ. Now, considerf ∈ (QV)? such thatn( f ) ≥ 2. We
proved thatbqxc is an interval ofΠ, whereq = s( f ) and x = f (s( f )). It follows from
Lemma 2.14 that thatn(Θ(qx)( f )) = n( f )−1. By the induction hypothesis,bΘ(qx)( f )c is an
interval ofΠ. It follows from Proposition 2.15 applied toqx thatbΘ(qx)( f )c = Θ(qx)(b f c)
and hence thatb f c is an interval ofΠ(bqxc). As bqxc is an interval ofΠ, b f c is as well by
Proposition 1.1.

To continue, considerI ⊆QV, with |I |> 1, satisfying: there isq∈Q such thats(I ?) =
{q} and there isx∈V \{0} such thatI ↓= {x}. Denote∧I by f . We haveqx≤ f andI ⊆
b f c. As b f c is an interval ofΠ, we have:I is an interval ofΠ if and only if I is an interval
of Π(b f c). Moreover, it follows from Proposition 2.15 thatI is an interval ofΠ(b f c) if
and only ifΘ f (I ) is an interval ofΠ. For a contradiction, suppose that there isp∈Q such
thats((Θ f (I ))?) = {p} and there isy∈V \ {0} such that(Θ f (I ))↓= {y}. It follows that
0̄ < (py) ≤ ∧(Θ f (I )). By Proposition 2.15, we have∧(Θ f (I )) = Θ f (∧I ). By applying
Ω f , we would obtain thatf < Ω f (py) ≤ ∧I . Consequently, either|s((Θ f (I ))?)| > 1 or
|s((Θ f (I ))?)| = 1 and|(Θ f (I ))↓ | > 1. To conclude, we distinguish the two cases below
for application of Theorem 2.9 or Theorem 2.13 toΘ f (I ).

1. Assume that|s((Θ f (I ))?)|> 1. By Theorem 2.9,Θ f (I ) is an interval ofΠ in one of
the three cases below.
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(a) Θ f (I ) =QV, that is,I = b f c.
(b) There isp ∈ Q such thatΘ f (I ) = {0̄} ∪ s−1((p,+∞)) or, equivalently,I =

b f c>θ f (p).

(c) There isp ∈ Q such thatΘ f (I ) = {0̄} ∪ s−1((p,+∞))∪ bpXc, whereX is a
nonempty subset ofV \{0} such that{0}∪X is an interval ofG. We obtain that

I = b f c≥θ f (p)
X .

2. Assume that there isp ∈ Q such thats((Θ f (I ))?) = {p}. Denote(Θ f (I ))↓ by X.
Clearly,X⊆V \{0} and, as previously observed, we have|X|> 1. By Theorem 2.13,
Θ f (I ) is an interval ofΠ if and only if X is an interval ofG andΘ f (I ) = bpXc, that

is, I = b f c=θ f (p)
X .

WhenG is indecomposable, the preceding theorem is stated as follows.

Corollary 2.17. Assume thatG is indecomposable. GivenI ⊆ QV such that|I | > 1,
|s(I ?)| = 1 and |I ↓ | = 1, I is an interval ofΠ if and only if there existsf ∈ (QV)? and
there isq > S( f ) such thatI = b f c,b f c>q or b f c≥q.

We summarize Theorems 2.9, 2.13, 2.16 and Corollaries 4, 5, 6 as below in Theo-
rem 2.18 and Corollary 2.19. To simplify their statement, we extend the total orderQ to
{−∞}∪Q by considering−∞ smaller than all the rational numbers. We also extend the
function S to QV by S(0̄) = −∞. In particular, we obtain thatq0̄x =q x for q ∈ Q and
x∈V \{0}.

Theorem 2.18. GivenI ⊆QV such that|I | > 1, I is an interval ofΠ in precisely one of
the four cases below.

1. I = b f c, wheref ∈QV.

2. I = b f c>q, wheref ∈QV andq > S( f ).

3. I = b f c≥q
X , wheref ∈QV, q > S( f ) andX is a nonempty subset ofV \{0} such that

{0}∪X is an interval ofG.

4. I = b f c=q
X , where f ∈QV, q > S( f ) andX is an interval ofG such that0 6∈ X and

|X|> 1.

Corollary 2.19. Assume thatG is indecomposable. GivenI ⊆QV such that|I |> 1, I is an
interval ofΠ if and only if there existsf ∈QV and there isq> S( f ) such thatI = b f c,b f c>q

or b f c≥q.

3 The strong intervals ofΠ

We examine specific strong intervals ofΠ in the four lemmas below.

Lemma 3.1. For every f ∈QV, b f c is a strong interval ofΠ.
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Proof : We proceed by induction onn( f ) as for the beginning of the proof of Theo-
rem 2.16. Ifn( f ) = 0, then f = 0̄ andb f c=QV is a strong interval ofΠ. If n( f ) = 1, then
f =q x, whereq = s( f ) andx = f (s( f )). Consider an intervalI of Π such that|I |> 1 and
I ∩bqxc 6= /0. Let g∈ I ∩bqxc. We distinguish the three cases below.

• Assume that|s(I ?)| > 1. By Corollary 2.5 applied tog, qx ∈ I and bqxc ⊆ I by
Corollary 2.7.

• Assume that|s(I ?)|= 1 and|I ↓ |> 1. By Theorem 2.13, we haveI = brXc, where
X ⊆V \{0}. As g∈ I ∩bqxc, we obtain thatr = q andx∈ X so thatbqxc ⊆ bqXc.

• Assume that|s(I ?)| = 1 and |I ↓ | = 1. It follows from the proof of Theorem 2.16
that 0̄ < ∧I andI ⊆ b∧I c. Consequently,qx≤ g and∧I ≤ g. It results that either
qx≤ ∧I or∧I <q x. As∧I 6= 0̄, we obtain thatqx≤ ∧I and thusI ⊆ b∧I c ⊆ bqxc.

Now, considerf ∈QV such thatn( f ) = 2. We showed thatbqxc is a strong interval of
Π, whereq = s( f ) andx = f (s( f )). By Lemma 2.14, we haven(Θ(qx)( f )) = n( f )− 1.
By the induction hypothesis, we obtain thatbΘ(qx)( f )c is a strong interval ofΠ. It follows
from Proposition 2.15 applied toqx that bΘ(qx)( f )c = Θ(qx)(b f c) and hence thatb f c is a
strong interval ofΠ(bqxc). As bqxc is a strong interval ofΠ, b f c is also by Proposition 1.2
(B2.(ii)).

Lemma 3.2. For everyq∈Q, b0̄c>q is a strong interval ofΠ.

Proof : Consider an intervalI of Π such thatI \b0̄c>q 6= /0 andI ∩b0̄c>q 6= /0. We have
to show thatb0̄c>q ⊆ I . So, assume thatI 6=QV. Let f ∈ I \ b0̄c>q andg ∈ I ∩ b0̄c>q.
We obtain thatf 6= 0̄ ands( f ) ≤ q. Moreover, eitherg = 0̄ or g 6= 0̄ ands(g) > q. In
the first instance,̄0 ∈ I and, since|I | > 1, it follows from Theorems 2.13 and 2.16 that
|s(I ?)|> 1. Therefore,|s(I ?)|> 1 in both instances. By Theorem 2.9, one of the following
cases occurs.

• There isr ∈ Q such thatI = b0̄c>r . We obtain thatr < s( f ) ≤ q and thusb0̄c>q ⊂
b0̄c>r .

• There existr ∈Q and /0 6= X ⊆V \{0} such thatI = b0̄c≥r
X , whereX ⊆V \{0}. We

obtain thatr ≤ s( f )≤ q. For everyh∈ b0̄c>q\{0̄}, we haves(h) > q≥ r and hence
h∈ b0̄c≥r

X . Consequently,b0̄c>q ⊂ b0̄c≥r
X becausē0∈ b0̄c≥r

X .

Lemma 3.3. Considerq∈ Q and a nonempty subsetX of V \{0} such that{0}∪X is an
interval of G. We haveb0̄c≥q

X is a strong interval ofΠ if and only if {0}∪X is a strong
interval ofG.

Proof : By Theorem 2.9,b0̄c≥q
X is an interval ofΠ. To begin, suppose that{0}∪X

is not a strong interval ofG. Since{0}∪X is an interval ofG, there exists an intervalY
of G such thatY∩ ({0}∪X), Y \ ({0}∪X) and({0}∪X) \Y are all nonempty. Firstly,
assume that0 6∈ Y. By Theorem 2.13,b0̄c=q

Y is an interval ofΠ. Let y ∈ Y∩ ({0}∪X)
andz∈Y \ ({0}∪X). As y,z∈Y, we havey,z∈V \{0}. Clearly,qy∈ b0̄c=q

Y ∩b0̄c≥q
X and

qz∈ b0̄c=q
Y \b0̄c≥q

X . Furthermore,̄0∈ b0̄c≥q
X \b0̄c=q

Y whenceb0̄c≥q
X is not strong. Secondly,

assume that0∈Y and setZ = Y \ {0}. Since|Y| > 1, we haveZ 6= /0 and it follows from
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Theorem 2.9 thatb0̄c≥q
Z is an interval ofΠ. Clearly,0̄∈ b0̄c≥q

X ∩b0̄c≥q
Z . Let x∈ ({0}∪X)\

({0}∪Z) andy∈ ({0}∪Z)\ ({0}∪X). We havex,y∈V \{0} and thusqx∈ b0̄c≥q
X \b0̄c≥q

Z

andqy∈ b0̄c≥q
Z \b0̄c≥q

X . Consequently,b0̄c≥q
X is not a strong interval ofΠ in both cases.

Conversely, assume that{0}∪X is a strong interval ofG and consider an intervalI of
Π such thatI \ b0̄c≥q

X andI ∩b0̄c≥q
X are nonempty. We have to prove thatb0̄c≥q

X ⊆ I . So,
assume thatI 6=QV. As I ⊆ b∧I c, we haveb∧I c\ b0̄c≥q

X andb∧I c∩b0̄c≥q
X are nonempty.

It follows from Lemma 3.1 thatb0̄c≥q
X ⊆ b∧I c. In particular,0̄∈ b∧I c and hence∧I = 0̄.

For a contradiction, suppose that there isr ∈ Q such thats(I ?) = {r}. Since∧I = 0̄, it
follows from Theorem 2.18 that there exists an intervalY of G such thatI = b0̄c=r

Y , where
0 6∈ Y and|Y| > 1. Let f ∈ b0̄c=r

Y \ b0̄c≥q
X andg∈ b0̄c=r

Y ∩b0̄c≥q
X . As 0̄ 6∈ b0̄c=r

Y , we have
f 6= 0̄ andg 6= 0̄. We obtain thats( f ) = r ≤ q ands(g) = r ≥ q so thatq = r. Furthermore,
f (q) ∈Y \ ({0}∪X) andg(q) ∈Y∩X = Y∩ ({0}∪X). Since{0}∪X is assumed to be a
strong interval ofG, we should obtain that{0}∪X ⊆Y, which is impossible because0 6∈Y.
Consequently,|s(I ?)| 6= 1 and thus|s(I ?)| > 1 because|I | > 1. By Theorem 2.9, one of
the two cases below occurs.

• There isr ∈ Q such thatI = b0̄c>r . By Lemma 3.2,I is a strong interval ofΠ and
henceb0̄c≥q

X ⊆ I .

• There isr ∈ Q and there is a nonempty subsetY of V \ {0} such thatI = b0̄c≥r
Y

and{0} ∪Y is an interval ofG. Consider f ∈ b0̄c≥r
Y \ b0̄c≥q

X . We obtain thatr ≤
s( f ) ≤ q. Assume thatr < q. Giveng∈ b0̄c≥q

X , we have eitherg = 0̄ or g 6= 0̄ and
r < q≤ s(g). In both cases,g∈ b0̄c≥r

Y . Therefore,b0̄c≥q
X ⊆ b0̄c≥r

Y . Lastly, assume that
r = q. We obtain thats( f ) = q and f (q) ∈Y \X so that({0}∪Y) \ ({0}∪X) 6= /0.
Since0∈ ({0}∪Y)∩ ({0}∪X) and since{0}∪X is a strong interval ofG, we have
{0}∪X ⊆ {0}∪Y and henceX ⊆Y. Consequently,b0̄c≥q

X ⊆ I = b0̄c≥r
Y .

Lemma 3.4. Let q∈ Q. Consider an intervalX of G such that|X| > 1 andX ⊆V \ {0}.
We haveb0̄c=q

X is a strong interval ofΠ if and only ifX is a strong interval ofG.

Proof : By Theorem 2.13,b0̄c=q
X is an interval ofΠ. To commence, assume thatX is

not a strong interval ofG. SinceX is an interval ofG, there exists an intervalY of G such
thatX∩Y, X \Y andY \X are all nonempty. Firstly, assume that0 6∈Y. By Theorem 2.13,
b0̄c=q

Y is an interval ofΠ. Letx∈X∩Y, y∈X\Y andz∈Y\X. Clearly,qx∈ b0̄c=q
X ∩b0̄c=q

Y ,
qy∈ b0̄c=q

X \b0̄c=q
Y andqz∈ b0̄c=q

Y \b0̄c=q
X . Secondly, assume that0∈Y and setZ =Y\{0}.

By Theorem 2.9,b0̄c≥q
Z is an interval ofΠ. Clearly,0̄∈ b0̄c≥q

Z \ b0̄c=q
X . Let x∈ X∩Y and

y∈X\Y. Asx,y∈X, we havex,y∈V \{0} and hencex∈X∩Z. Then,qx∈ b0̄c=q
X ∩b0̄c≥q

Z

andqy∈ b0̄c=q
X \b0̄c≥q

Z . Consequently,b0̄c=q
X is not a strong interval ofΠ in both cases.

Conversely, assume thatX is a strong interval ofG. Consider an intervalI of Π such
thatI \b0̄c=q

X andI ∩b0̄c=q
X are nonempty. We have to establish thatb0̄c=q

X ⊆ I . So, assume
thatI 6=QV. As I ⊆ b∧I c, we obtain thatb∧I c\b0̄c=q

X andb∧I c∩b0̄c=q
X are nonempty as

well. By Lemma 3.1,b∧I c is a strong interval ofΠ and thusb0̄c=q
X ⊆ b∧I c. Let x andy be

distinct elements ofX. Sinceqx≥ ∧I andqy≥ ∧I , we have∧I = 0̄ becauseqx∧q y = 0̄.
Firstly, assume that|s(I ?)|> 1. As I 6=QV, it follows from Theorem 2.9 that there isq∈Q
such that eitherI = b0̄c>q or I = b0̄c≥q

Y , where/0 6= Y ⊆V \{0} and{0}∪Y is an interval
of G. By Lemmas 3.2 and 3.3,I is a strong interval ofΠ and henceb0̄c=q

X ⊆ I . Secondly,
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assume that|s(I ?)| ≤ 1. As |I |> 1, there isr ∈Q such thats(I ?) = {r}. Since∧I = 0̄, it
follows from Theorem 2.13 that there is an intervalZ of G, with |Z| > 1 andZ ⊆V \{0},
such thatI = b0̄c=r

Z . As b0̄c=r
Z ∩b0̄c=q

X 6= /0, we haveq = r andZ∩X 6= /0. Furthermore,
b0̄c=q

Z \ b0̄c=q
X 6= /0 implies thatZ\X 6= /0. SinceX is a strong interval ofG, we obtain that

X ⊆ Z and henceb0̄c=q
X ⊆ b0̄c=q

Z = I .
The next characterization of the strong intervals ofΠ follows from the four lemmas

above by using Theorem 2.18 and Proposition 2.15.

Theorem 3.5. Given a subsetI of QV such that|I | > 1, I is a strong interval ofΠ if and
only if there isf ∈QV, there is/0 6= X ⊆V \{0} and there isq∈Q, with q> S( f ), such that
one of the following is satisfied.

1. I = b f c.
2. I = b f c>q.

3. I = b f c≥q
X and{0}∪X is a strong interval ofG.

4. I = b f c=q
X , |X|> 1andX is a strong interval ofG.

Proof : By Theorem 2.18, we have only to consider the following subsets ofQV, where
f ∈QV andq∈Q, with q > S( f ):

(i) I = b f c;
(ii) I = b f c>q;

(iii) I = b f c≥q
X , where/0 6= X ⊆V \{0} and{0}∪X is an interval ofG;

(iv) I = b f c=q
X , whereX is a non trivial interval ofG contained inV \{0}.

In the first case, Lemma 3.1 applies. Consider one of the other three. Iff = 0̄, then
it suffices to apply Lemma 3.2, Lemma 3.3 or Lemma 3.4. Whenf 6= 0̄, we conclude
in the same way after using Proposition 2.15. Indeed, asb f c is a strong interval ofΠ by
Lemma 3.1 and asI ⊆b f c, we have by Proposition 1.2 (B2.(ii)):I is a strong interval ofΠ
if and only if I is a strong interval ofΠ(b f c). By Proposition 2.15, we obtain:I is a strong
interval ofΠ(b f c) if and only if Θ f (I ) is a strong interval ofΠ. Lastly, it is sufficient to
apply Lemma 3.2, Lemma 3.3 or Lemma 3.4 toΘ f (I ) becauseΘ f (b f c>q) = b0̄c>(θ f )−1(q),

Θ f (b f c≥q
X ) = b0̄c≥(θ f )−1(q)

X andΘ f (b f c=q
X ) = b0̄c=(θ f )−1(q)

X .

Corollary 3.6. Assume thatG is indecomposable. Given a subsetI ofQV such that|I |> 1,
I is a strong interval ofΠ if and only if there isf ∈QV and there isq∈Q, with q > S( f ),
such thatI = b f c, b f c>q or b f c≥q.

4 The decomposition tree ofΠ

In the section, we utilize the partitionP(Γ) and the the decomposition treeD(Γ) associated
with any graphΓ. Recall that they are introduced before Theorem 1.3 and after Lemma 1.4
respectively. We use the following notation, whereq∈Q:
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• θq is an isomorphism fromQ ontoQ((q,+∞));

• the functionΘq : b0̄c>q −→QV is defined byΘq( f ) = ( f/(q,+∞))◦θq for f ∈ b0̄c>q.

• for every functiong : (q,+∞) −→ V such that{r > q : g(r) 6= 0} is finite, εq(g) is
the element ofQV defined byεq(g)(r) = 0 if r ≤ q andεq(g)(r) = g(r) if r > q. The
functionΩq :QV −→ b0̄c>q is defined byΩq(g) = εq(g◦ (θq)−1).

Lemma 4.1. For everyq ∈ Q, Θq realizes an isomorphism fromΠ(b0̄c>q) onto Π and
(Θq)−1 = Ωq.

Proof : Given f ∈ b0̄c>q, we have

(Ωq◦Θq)( f ) = Ωq(( f/(q,+∞))◦θq) = εq((( f/(q,+∞))◦θq)◦ (θq)−1) = εq( f/(q,+∞))

andεq( f/(q,+∞)) = f becausef ∈ b0̄c>q. Conversely, giveng∈Π, we have

(Θq◦Ωq)(g) = Θq(εq(g◦ (θq)−1)) = (εq(g◦ (θq)−1))(q,+∞) ◦θq.

But, (εq(g◦ (θq)−1))(q,+∞) = g◦ (θq)−1 and hence

(εq(g◦ (θq)−1))(q,+∞) ◦θq = (g◦ (θq)−1)◦θq = g.

Consequently,Θq is bijective and(Θq)−1 = Ωq.
Let f and f ′ be distinct elements ofb0̄c>q. Clearly, δ( f , f ′) > q. For everyr <

(θq)−1(δ( f , f ′)), we haveθq(r) < δ( f , f ′) and henceΘq( f )(r) = f (θq(r)) = f ′(θq(r)) =
Θq( f ′)(r). Furthermore, we have

Θq( f )((θq)−1(δ( f , f ′))) = f (δ( f , f ′)) 6= f ′(δ( f , f ′)) = Θq( f )((θq)−1(δ( f , f ′))).

It follows thatδ(Θq( f ),Θq( f ′)) = (θq)−1(δ( f , f ′)). Clearly,

Θq( f )(δ(Θq( f ),Θq( f ′))) = f (θq(δ(Θq( f ),Θq( f ′))))

= f (θq((θq)−1(δ( f , f ′)))) = f (δ( f , f ′))

andΘq( f ′)(δ(Θq( f ),Θq( f ′))) = f ′(δ( f , f ′)) as well. Therefore,

[Θq( f ),Θq( f ′)]Π = [Θq( f )(δ(Θq( f ),Θq( f ′))),Θq( f ′)(δ(Θq( f ),Θq( f ′)))]G

= [ f (δ( f , f ′)), f ′(δ( f , f ′))]G = [ f , f ′]Π.

Consequently,Θq realizes an isomorphism fromΠ(b0̄c>q) ontoΠ.
The next result is an immediate consequence of the preceding lemma and of Proposi-

tion 2.15.

Corollary 4.2. For every f ∈ (QV)? and for everyq > S( f ), Θ(θ f )−1(q) ◦ ((Θ f )/b f c>q) is an
isomorphism fromΠ(b f c>q) ontoΠ.

Proof : We haveΘ f (b f c>q) = b0̄c>(θ f )−1(q). Consequently,(Θ f )/b f c>q is an isomor-

phism fromΠ(b f c>q) ontoΠ(b0̄c>(θ f )−1(q)).
We obtain the following characterization of the strong intervals ofΠ which are not limit.
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Theorem 4.3. Given a subsetI of QV such that|I | > 1, I ∈ S(Π) \L(Π) if and only if
there is f ∈QV, there is/0 6= X ⊆V \{0} and there isq∈ Q, with q > S( f ), such that one
of the following is satisfied.

1. I = b f c≥q
X and{0}∪X ∈ S(G)\L(G).

2. I = b f c=q
X , |X|> 1andX ∈ S(G)\L(G).

Proof : By Theorem 3.5, we have only to consider the following subsets ofQV, where
f ∈QV andq∈Q, with q > S( f ):

(i) I = b f c;
(ii) I = b f c>q;

(iii) I = b f c≥q
X , where/0 6= X ⊆V \{0} and{0}∪X is a strong interval ofG;

(iv) I = b f c=q
X , whereX is a non trivial strong interval ofG contained inV \{0}.

Let (qn)n∈N be a decreasing sequence of rational numbers such that(qn)n∈N ↘−∞
whenn↗+∞. By Theorem 3.5,b0̄c>qn is a strong interval ofΠ for eachn∈ N. Therefore,
(b0̄c>qn)n∈N is a sequence of strong intervals ofΠ increasing under inclusion such that
(b0̄c>qn)n∈N ↗ QV when n↗+∞. Consequently,QV is limit. Given q ∈ Q, b0̄c>q is a
strong interval ofΠ by Lemma 3.2. By Lemma 4.1,b0̄c>q is limit also. Givenf ∈ (QV)?,
considerq ∈ Q such thatq > S( f ). By Theorem 3.5,b f c andb f c>q are strong intervals
of Π. It follows from Proposition 2.15 and Corollary 4.2 thatb f c andb f c>q are limit as
well. To continue, consider a nonempty subsetX of V \ {0} such that{0}∪X ∈ L(G).
By Theorem 3.5,b f c≥q

X ∈ S(Π). As {0}∪X is limit, there exists a sequence(Yn)n∈N of
strong intervals ofG increasing under inclusion such that(Yn)n∈N ↗

S
n∈NYn = {0}∪X

whenn↗+∞. There isp ∈ N such that0 ∈ Yn for n≥ p. SetXm = Yp+m\ {0} for each
m∈ N. For m∈ N, we have/0 6= Xm ⊆ X ⊆ V \ {0}. It follows from Theorem 3.5 that
b f c≥q

Xm
∈ S(Π) for everym∈ N. We obtain a sequence(b f c≥q

Xm
)m∈N of strong intervals ofΠ

increasing under inclusion such that(b f c≥q
Xm

)m∈N↗
S

m∈N(b f c≥q
Xm

) = b f c≥q
X whenm↗+∞.

Consequently,b f c≥q
X ∈ L(Π). Finally, considerX ∈ L(G) such that|X| ≥ 2 and X ⊆

V \ {0}. By Theorem 3.5,b f c=q
X ∈ S(Π). SinceX is limit, there is a sequence(Xn)n∈N of

non trivial strong intervals ofG increasing under inclusion such that(Xn)n∈N↗
S

n∈N(Xn) =
X whenn↗+∞. For eachn ∈ N, we haveXn ⊆ X ⊆ V \ {0} so thatb f c=q

Xn
∈ S(Π) by

Theorem 3.5. We obtain a sequence(b f c=q
Xn

)n∈N of strong intervals ofΠ increasing under
inclusion such that(b f c=q

Xn
)n∈N↗ b f c=q

X whenn↗+∞. Consequently,b f c=q
X ∈ L(Π).

Conversely, we begin verifying forq∈Q and for /0 6= X ⊆V \{0} the following:

(a) if |X|> 1 andX ∈ S(G)\L(G), thenbqXc ∈ S(Π)\L(Π);

(b) if {0}∪X ∈ S(G)\L(G), thenb0̄c≥q
X ∈ S(Π)\L(Π).

By using Theorem 3.5, with each nonempty strong intervalY of G, we associate the strong
intervalIY of Π defined as follows:

• if Y = {0}, thenIY = b0̄c>q;
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• if Y = {y} andy∈V \{0}, thenIY = bqyc;

• if 0∈Y and|Y|> 1, thenIY = b0̄c≥q
Y\{0};

• if 0 6∈Y and|Y|> 1, thenIY = bqYc.

Firstly, assume that|X| > 1 andX ∈ S(G) \L(G). By Theorem 3.5,b0̄c=q
X ∈ S(Π). Con-

sider an elementY of P(G(X)) and a strong intervalJ of Π such thatIY ⊂ J ⊆ bqXc.
As J 6= /0 andJ ⊆ bqXc, we have0̄ 6∈ J ands(J ) = {q}. SinceIY = bqYc or bqyc, when
Y = {y}, we obtain thatbqyc ⊂ J for y∈Y. Let h∈ J \ bqyc, wherey∈Y. As s(J ) = {q},
we haves(h) = q andh(q) 6= y becauseh 6∈ bqyc. Therefore,y andh(q) are distinct ele-
ments ofJ ↓. It follows from Theorem 3.5 thatJ = bqZc, whereZ is a strong interval ofG
such thatZ ⊆V \ {0} and|Z| ≥ 2. Obviously,Y ⊂ Z ⊆ X becauseIY ⊂ J ⊆ bqXc. Since
Y ∈ P(G(X)), we obtain thatZ = X and henceJ = bqXc. Consequently,IY ∈ P(Π(bqXc))
for every Y ∈ P(G(X)). We obtain thatP(Π(bqXc)) = {IY;Y ∈ P(G(X))} and hence
bqXc ∈ S(Π)\L(Π).

Secondly, assume that{0}∪X ∈ S(G)\L(G). By Theorem 3.5,b0̄c≥q
X ∈ S(Π). Con-

sider an elementY of P(G({0}∪X)) and a strong intervalJ of Π such thatIY ⊂ J ⊆ b0̄c≥q
X .

To begin, assume that0 6∈Y so thatIY = bqYc or bqyc, whenY = {y}. In both cases,
q∈ s(J ?). For a contradiction, suppose thats(J ?) = {q}. As previously shown, we obtain
that|J ↓ |> 1. Then, by Theorem 3.5,J = bqZc, whereZ is a strong interval ofG such that
Z ⊆ V \ {0} and|Z| ≥ 2. SinceIY ⊂ J ⊆ b0̄c≥q

X , we would obtain thatY ⊂ Z ⊂ {0}∪X,
which contradictsY ∈ P(G({0}∪X)). Consequently,|s(J ?)| > 1. By Theorem 3.5,J =
b0̄c>r or b0̄c≥r

Z , wherer ∈ Q andZ is a nonempty subsetZ of V \{0} such that{0}∪Z is
a strong interval ofG. If J = b0̄c>r , thenq > r becauseq∈ s(J ?). But, givenv∈V \{0}
andr ′ ∈ Q such thatr < r ′ < q, we would have(r

′)v∈ J \ b0̄c≥q
X . Thus,J = b0̄c≥r

Z . Since
q ∈ s(J ?), r ≤ q and r ≥ q becauserz∈ b0̄c≥r

Z ⊆ b0̄c≥q
X for z∈ Z. Therefore, we have

IY ⊂ J = b0̄c≥q
Z ⊆ b0̄c≥q

X and henceY ⊂ {0}∪Z⊆ {0}∪X. AsY ∈ P(G({0}∪X)), {0}∪
Z = {0}∪X andJ = b0̄c≥q

X . It follows thatIY ∈ P(Π(b0̄c≥q
X )) for everyY ∈ P(G({0}∪X))

such that0 6∈Y.
To continue, assume that0 ∈ Y so thatIY = b0̄c≥q

Y\{0} or b0̄c>q, whenY = {0}. In

both cases, we obtain thatb0̄c>q ⊂ J ⊆ b0̄c≥q
X . Givenh∈ J \ b0̄c>q, we haves(h) = q and

h(q) ∈ X becauseh∈ b0̄c≥q
X . Thus,s(J ?) = [q,+∞) becauseb0̄c>q ⊂ J . By Theorem 3.5,

J = b0̄c≥q
Z , whereZ is a nonempty subset ofV \{0} such that{0}∪Z is a strong interval of

G. We haveY⊂ {0}∪Z⊆ {0}∪X becauseIY ⊂ J ⊆ b0̄c≥q
X . SinceY ∈ P(G({0}∪X)), we

obtain that{0}∪Z = {0}∪X and thusJ = b0̄c≥q
X . Therefore,IY ∈ P(Π(b0̄c≥q

X )) for every
Y ∈ P(G({0}∪X)) such that0∈Y. As we established the same whenever0 6∈Y, we obtain
thatP(Π(b0̄c≥q

X )) = {IY;Y ∈ P(G({0}∪X))} and thusb0̄c≥q
X ∈ S(Π)\L(Π).

To conclude, considerf ∈ (QV)?, q∈ Q such thatq > S( f ) and /0 6= X ⊆V \ {0}. By
Proposition 2.15,Ω f is an isomorphism fromΠ ontoΠ(b f c). We demonstrated that if|X|>
1 andX ∈ S(G)\L(G), thenb(θ f )−1(q)Xc ∈ S(Π)\L(Π). Thus,Ω f (b(θ f )−1(q)Xc) = b f c=q

X ∈
S(Π(b f c)) \L(Π(b f c)). It follows from Proposition 1.2 (B2.(ii)) thatb f c=q

X ∈ S(Π) \
L(Π). If {0}∪X ∈ S(G)\L(G), then we conclude similarly becauseΩ f (b0̄c≥(θ f )−1(q)

X ) =
b f c≥q

X .
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The next result follows from the preceding theorem and from the last part of its demon-
stration.

Corollary 4.4. Considerf ∈QV, /0 6= X ⊆V \{0} andq∈Q, with q > S( f ).

1. If {0}∪X ∈ S(G)\L(G), thenP(Π(b f c≥q
X )) contains the following elements:

• bq fxc for {y} ∈ P(G({0}∪X)) andy 6= 0,

• b f c=q
Y for Y ∈ P(G({0}∪X)) such that|Y| ≥ 2 andY ⊆V \{0},

• b f c>q when{0} ∈ P(G({0}∪X)),

• b f c≥q
Y when{0}∪Y ∈ P(G({0}∪X)) andY 6= /0.

2. If |X|> 1 andX ∈ S(G)\L(G), thenP(Π(b f c=q
X )) contains the following elements:

• bq fxc for {y} ∈ P(G(X)),

• b f c=q
Y for Y ∈ P(G(X)), with |Y| ≥ 2.

WhenG is indecomposable, we obtain the following:

Corollary 4.5. Assume thatG is indecomposable.

1. Given a strong intervalI of Π such that|I | > 1, I is not limit if and only if there is
f ∈QV and there isq∈Q, with q > S( f ), such thatI = b f c≥q.

2. Considerf ∈QV andq∈Q, with q > S( f ).

(a) P(Π(b f c≥q) = {b f c>q}∪{bq fxc;x∈V \{0}}.
(b) The functionV −→ P(Π(b f c≥q)), defined by0 7→ b f c>q and x 7→ bq fxc for

x ∈ V \ {0}, realizes an isomorphism fromG onto the quotientΠ(b f c≥q)/
P(Π(b f c≥q)).

(c) For everyI ∈ P(Π(b f c≥q)), Π(I ) is isomorphic toΠ.

3. D(Π) containsb f c≥q, b f c>q and bq fxc for f ∈QV, q∈ Q, with q > S( f ), andx ∈
V \{0}.

4. For every f ∈QV, D(Π)({I ∈ D(Π) : f ∈ I}) is isomorphic to the lexicographic
productQ[2].

Proof : The first three assertions follow from Proposition 2.15, Theorem 4.3 and Corol-
laries 9 and 10. Concerning the fourth, the result is clear whenf = 0̄ since{I ∈ D(Π) :
0̄∈ I}) = {b0̄c>q,b0̄c≥q}q∈Q. Now, considerf ∈ (QV)?. For convenience, setn = n( f ),
qi = qf

i and f (qi) = xi for i ∈ {1, . . . ,n}. For i ∈ {1, . . . ,n}, we consider the elementfi of
QV defined byσ( fi) = {q1, . . . ,qi} and fi(q j) = f (q j) for j ∈ {1, . . . , i}. Lastly, setf0 = 0̄.
Obviously, f ∈ b f c>q ⊂ b f c≥q for q > S( f ). We have

b f c>q ↘ (
\

q↗+∞

b f c>q) = { f} whenq↗+∞
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and
b f c≥q ↗ (

[

q↘S( f )

b f c≥q) = b f c whenq↘S( f ) .

But, f =qn ( fn−1)xn andbqn( fn−1)xnc ⊂ b fn−1c≥qn. Assume thatn≥ 2 and consider0≤ i ≤
n−2. We havebqn−i ( fn−i−1)xn−ic ⊂ b fn−i−1c≥qn−i . Consider anyq∈ Q such thatqn−i−1 <
q < qn−i . We have

b fn−i−1c>q ↘ (
\

q↗qn−i

b fn−i−1c>q) = b fn−i−1c≥qn−i whenq↗qn−i

and
b fn−i−1c≥q ↗ (

[

q↘qn−i−1

b fn−i−1c≥q) = b fn−i−1c whenq↘qn−i−1 .

Similarly, fn−i−1 =qn−i−1 ( fn−i−2)xn−i−1 and we have

bqn−i−1( fn−i−2)xn−i−1c ⊂ b fn−i−2c≥qn−i−1.

Finally, wheni = n−2, we obtain thatb fn−i−2c≥qn−i−1 = b0̄c≥q1. Consider anyq∈Q such
thatq < q1. We have

b0̄c>q ↘ (
\

q↗q1

b0̄c>q) = b0̄c≥q1 whenq↗q1

and
b0̄c≥q ↗ (

[

q↘−∞

b0̄c≥q) = b0̄c=QV whenq↘−∞ .

We define a functionϕ :Q×{0,1} −→D(Π)({I ∈D(Π) : f ∈ I}) as follows:

• for 1≤ i ≤ n, (qi ,0) 7→ b fi−1c≥qi and(qi ,1) 7→ b fic;
• for q < q1, (q,0) 7→ b0̄c≥q and(q,1) 7→ b0̄c>q;

• for 1≤ i ≤ n−1 and forqi < q < qi+1, (q,0) 7→ b fic≥q and(q,1) 7→ b fic>q;

• for q > qn, (q,0) 7→ b f c≥q and(q,1) 7→ b f c>q.

Clearly,ϕ realizes an isomorphism fromQ[2] onto the dual(D(Π)({I ∈D(Π) : f ∈ I}))d

of D(Π)({I ∈ D(Π) : f ∈ I}). Thus,ϕ is an isomorphism from the dual(Q[2])d of Q[2]
ontoD(Π)({I ∈D(Π) : f ∈ I}) (see Figure 1). To conclude, recall thatQ and its dualQd

are isomorphic and henceQ[2] and(Q[2])d are also.
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6

+∞

−∞

(Q[2])d

6

{ f}

QV

D(Π)({I ∈D(Π) : f ∈ I})

q •
@@• (q,1) -ϕ •b f c>q

¡¡
• (q,0) - •b f c≥q

qn•
@@• (qn,1) - •b f = fn =qn ( fn−1)xnc
¡¡
• (qn,0) - •b fn−1c≥qn

qi+1•
@@• (qi+1,1) - •b fi+1c
¡¡
• (qi+1,0) - •b fic≥qi+1

q •
@@• (q,1) - •b fic>q

¡¡
• (q,0) - •b fic≥q

qi •
@@• (qi ,1) - •b fic
¡¡
• (qi ,0) - •b fi−1c≥qi

q1•
@@• (q1,1) - •b f1c
¡¡
• (q1,0) - •b f0 = 0̄c≥qi

q •
@@• (q,1) - •b0̄c>q

¡¡
• (q,0) - •b0̄c≥q

Figure 1.ϕ is an isomorphism from(Q[2])d ontoD(Π)({I ∈D(Π) : f ∈ I}).
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