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Abstract

In this paper we prove generalized Bochner-Hecke theorems for the Dunkl transform
onRd, and we give an application of these theorems to homogeneous distributions .
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1 Introduction

We consider the differential-difference operatorsTj , j = 1, ...,d, onRd introduced by C. F.
Dunkl in [6] and called Dunkl operators in the literature. These opertors are very important
in pure Mathematics and in Physics. They provide a useful tool in the study of special func-
tions with root systems (see [3][11]), and they are closely related to certain representations
of degenerate affine Hecke algebras [2][18], moreover the commutative algebra generated
by these operators has been used in the study of certain exactly solvable models of quan-
tum mechanics, namely the Calogero-Sutherland-Moser models, which deal with systems
of identical particles in a one dimensional spaces (see [12][15][16]).

C.F. Dunkl has studied in [5] the spherical harmonics associated with the Dunkl opera-
tors, and with the aid of the Dunkl kernel which is an eigenfunction of these operators, he
has introduced in [7] an integral transform onRd called the Dunkl transform.

In this paper we give first an other proof of the analogue in the Dunkl’s theory, of the
Funk-Hecke formula associated with the classical spherical harmonics onRd. (see [10] p.
29). This formula has been established in a general form by Y. Xu in [22] (see also [8] p.
191).
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Next we prove generalized Bochner-Hecke theorems for the Dunkl transform. In the
case of the classical Fourier transform onRd these theorems are given in [10] p. 30-31 and
[9] p. 66-70.

As application of generalized Bochner-Hecke theorems we determine the Dunkl trans-
form of some homogeneous distributions onRd. The same application has been studied in
[9] p. 88-93, in the case of the calssical Fourier transform onRd.

2 The eigenfunction of the Dunkl operators

In this section we collect some notations and results on Dunkl operators and Dunkl kernel
(see [6][7][13]).

2.1 Reflection groups, root systems and multiplicity functions

We considerRd with the euclidean scalar product〈., .〉 and ‖x‖ =
√
〈x,x〉. On Cd,‖.‖

denotes also the standard Hermitian norm, while〈z,w〉=
d

∑
j=1

zjw̄ j .

For α ∈ Rd\{0}, le σα be the relfection in the hyperplanHα ⊂ Rd orthogonal toα, i.e.

σα(x) = x− 2〈α,x〉
‖α‖2 α. (1.1)

A finite setR⊂ Rd\{0} is called a root system ifR∩Rd.α = {α,−α} andσαR= R
for all α ∈ R. We assume that it is normalized by‖α‖2 = 2 for all α ∈ R. For a given root
systemR the reflectionsσα,α ∈ R, generate a finite groupW ⊂ O(d), the reflection group
associated withR. All reflections inW correspond to suitable pairs of roots. For a given
β ∈ Rd

reg = Rd\Uα∈RHα,we fix the positive subsystemR+ = {α ∈ R,〈α,β〉 > 0}, then for
eachα ∈ Reitherα ∈ R+ or−α ∈ R+ .

A functionk : R→C on a root systemR is called a multiplicity function if it is invariant
under the action of the associated reflection groupW. If one regardsk as a function on
the corresponding reflections, this means thatk is constant on the conjugacy classes of
reflections inW . For abbreviation, we introduce the index

γ = γ(R) = ∑
α∈R+

k(α) (1.2)

Moreover, letwk denotes the weight function

wk(x) = ∏
α∈R+

|〈α,x〉|2k(α), (1.3)

which is W-invariant and homogenous of degree2γ. In this paper we suppose thatk is
nonnegative.

For d = 1 andW = Z2 , the multiplicity functionk is a single parameter denoted by
γ≥ 0 and

∀ x∈ R, wk(x) = |x|2γ. (1.4)
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We introduce the Mehta-type constant

ck =
(Z

Rd
exp(−‖x‖2)wk(x)dx

)−1

(1.5)

which is known for all Coxeter groupsW. (See [6]).
For an integrable function onRd with respect to the measurewk(x)dx we have the

relation Z

Rd
f (x)wk(x)dx=

Z +∞

0

(Z
Sd−1

f (rβ)wk(β)dσ(β)
)

r2γ+d−1dr, (1.6)

wheredσ is the surface measure on the unit sphereSd−1 of Rd. We have

Ωd−1 = σ(Sd−1) =
2π d

2

Γ(d
2)

. (1.7)

2.2 Dunkl operators and Dunkl kernel

The Dunkl operatorsTj , j = 1, ...d, onRd associated with the finite reflection groupW and
multiplicity functionk are given for a functionf of classC1 onRd by

Tj f (x) =
∂

∂x j
f (x)+ ∑

α∈R+

k(α)α j
f (x)− f (σn(x))

〈α,x〉 . (1.8)

In the casek = 0, theTj , j = 1, ...,d, reduce to the corresponding partial derivatives.
The Dunkl Laplacian∆k is defined by

∆k f =
d

∑
j=1

T2
j f = ∆ f +2 ∑

α∈R+

k(α)δα f , (1.9)

with

δα( f )(x) =
〈∇ f (x),α〉
〈α,x〉 − f (x)− f (σαx)

〈α,x〉
where f is a function of classC2 onRd, and∆,∇ are respectively the Laplacian and the
gradian onRd.

Fory∈ Rd, the system
{

Tju(x,y) = y ju(x,y), j = 1, ...,d,
u(0,y) = 1,

(1.10)

admits a unique analytic solution onRd, which will be denoted byK(x,y) and called the
Dunkl kernel.
This kernel has an unique holomorphic extension toCd×Cd. For all x,z∈ Cd it satisfies
the following relations

• K(x,z) = K(z,x). (1.11)
• K(x,0) = 1. (1.12)
• K(λx,z) = K(x,λz), for all λ ∈ C. (1.13)
• ∀ x,y∈ Rd, |K(−ix,y)| ≤ 1. (1.14)
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Whend = 1 andW = Z2 the Dunkl kernel is given by

K(x,z) = jγ− 1
2
(ixz)+

xz
2γ+1

jγ+ 1
2
(ixz), x,z∈ C, (1.15)

where jα with α≥−1
2

, is the normalized Bessel function of first kind, defined by

jα(x) = 2αΓ(α+1)
Jα(x)

xα = Γ(α+1)
∞

∑
n=0

(−1)n( x
2)2n

n!Γ(α+n+1)
, (1.16)

with Jα the Bessel function of first kind and indexα. (See [7]).

3 The Dunkl transform

The Dunkl kernel gives rise to an integral transform onRd called the Dunkl transform which
was first introduced by C.F. Dunkl in [7] and further studied in [14].
NotationsWe denote by

- P d
n the space of homogeneous polynomials of degreen.

- Hk
n the space of Dunkl harmonic homogeneous polynomials of degreen. It is defined

by
Hk

n = (ker∆k)∩P d
n .

- D(Rd) the space ofC∞-functions onRd with compact support .

D(Rd) = ∪a>0Da(Rd),

whereDa(Rd) is the space ofC∞-functions onRd with support in the closed ballB(0,a) of
center0 and radiusa > 0.
The topology onDa(Rd) is defined by the seminorms

pn(ϕ) = sup
|µ|≤n

x∈B(0,a)

|Dµϕ(x)|, n∈ N,

where

Dµ =
∂|µ|

∂xµ1
1 ...∂xµn

d

, µ= (µ1, ...,µd) ∈ Nd, |µ|= µ1 + ...+µd.

The spaceD(Rd) is equipped with the inductive limit topology.
- S(Rd) the Schwartz space ofC∞-functions onRd, rapidly decreasing together with

their partial derivatives.
The topology onS(Rd) is defined by the seminormsP̀ ,m, (`,m) ∈ N2, given by

P̀ ,m(ϕ) = sup
|µ|≤m
x∈Rd

(1+‖x‖2)`|Dµϕ(x)|.

- Lp
k(Rd), p∈ [0,+∞], the space of measurable functionsf onRd such that

‖ f‖k,p =
(Z

Rd
| f (x)|p wk(x)dx

)1/p

< +∞, if 1≤ p < +∞



58 Khalifa Trimèche

‖ f‖k,∞ = esssup
x∈Rd

| f (x)|< +∞.

- D ′(Rd) the space of distributions onRd. It is the topological dual ofD(Rd).
- S ′(Rd) the space of tempered distributions onRd. It is the topological dual ofS(Rd).

The Dunkl transform of a functionf in D(Rd) is given by

∀ y∈ Rd, FD( f )(y) =
Z

Rd
f (x)K(−ix,y)wk(x)dx. (2.1)

This transform has the following properties

i) (Riemann-Lebesgue Lemma). Forf in L1
k(Rd) the functionFD( f ) is continuous on

Rd and vanish at infinity.

ii) For f in L1
k(Rd) we have

‖FD( f )‖k,∞ ≤ ‖ f‖k,1 (2.2)

iii) Let f be in D(Rd). If for x ∈ Rd andg ∈W we havef−(x) = f (−x) and fg(x) =
f (gx), then for ally∈ Rd we have

F ′
D( f−)(y) = FD( f )(y) and FD( fg)(y) = FD( f )(gy). (2.3)

iv) For f in S(Rd), we have for ally∈ Rd and j = 1, ...,d

FD(Tj f )(y) = iy jFD( f )(y). (2.4)

Tj(FD( f ))(y) =−FD(ix j f )(y). (2.5)

The following theorems are proved in [7][14].
Theorem 2.1The Dunkl transformFD is a topological isomorphism fromS(Rd) onto itself.
The inverse transformF −1

D is given by

∀ x∈ Rd, F −1
D ( f )(x) = 2−2γ−dc2

kFD( f )(−x). (2.6)

Theorem 2.2For f in L1
k(Rd) such thatFD( f ) belongs toL1

k(Rd), we have the following
inversion formula for the transformFD :

f (x) =
c2

k

22γ+d

Z

Rd
FD( f )(y)K(ix,y)wk(y)dy. (2.7)

Theorem 2.3

i) Plancherel formula forFD.
For all f in S(Rd) we have

Z

Rd
| f (x)|2wk(x)dx=

c2
k

22γ+d

Z

Rd
|FD( f )(y)|2wk(y)dy (2.8)
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ii) Plancherel theorem forFD.
The renormalized Dunkl transformf → 2−γ− d

2 ckFD( f ) can be uniquely extended to
an isometric isomorphism onL2

k(Rd).

Next we show that the Dunkl transform of radial functions inL1
k(Rd) are again radial,

and that the Dunkl transform can be computed via the Fourier-Bessel transform (see [20]).
More precisely we have the following results (see [19] p. 585-586).
Theorem 2.4.Let f be a radial function inL1

k(Rd). Then the functionf0 defined on[0,+∞[
by

∀ x∈ Rd, f (x) = f0(‖x‖) = f0(r), with r = ‖x‖,
is integrable on[0,+∞[ with respect to the measurer2γ+d−1dr, and we have

∀ y∈ Rd, FD( f )(y) = 2γ+ d
2 c−1

k F γ+ d
2−1

B ( f0)(‖y‖), (2.9)

whereF γ+ d
2−1

B is the Fourier-Bessel transform of orderγ+
d
2
−1, given by

F γ+ d
2−1

B (h)(λ) =
Z ∞

0
h(r) jγ+ d

2−1(λr)
r2γ+d−1

2γ+ d
2−1Γ(γ+ d

2)
dr, λ≥ 0. (2.10)

The following theorem gives the Dunkl transform of the functionsP(x)e−
‖x‖2

2 and

P(x)e−
λ‖x‖2

2 with P in Hk
n andλ > 0.

Theorem 2.5We have the following relations
Z

R+
P(x)K(−ix,y)e−

‖x‖2
2 wk(x)dx=

i−n

ck
e−

‖y‖2
2 P(y). (2.11)

Z

Rd
P(x)K(−ix,y)e−

λ‖x‖2
2 wk(x)dx=

i−n

ck
λ−(n+γ+ d

2 )e−
‖y‖2
2λ P(y). (2.12)

Proof. Using the fact thatP is Dunkl harmonic, we deduce from Proposition 2.1 of [7] p.
127 (see also [8] p. 216) the relation (2.11). We obtain (2.12) by change of variables.

The Dunkl transform of a distributionS in S ′(Rd) is defined by

〈FD(S),ϕ〉= 〈S,FD(ϕ)〉, ϕ ∈ S(Rd). (2.13)

Theorem 2.6.The Dunkl transform is a topological isomorphism fromS ′(Rd) onto itself.
The inverse transform is given by

〈F −1
D (S), ϕ〉= 〈S,F −1

D (ϕ)〉, ϕ ∈ S(Rd). (2.14)

4 The generalized Funk-Hecke formula and generalized Bochner-
Hecke theorems

4.1 The generalized Funk-Hecke formula

Y. Xu has established in [22] a Funk-Hecke formula of general form in the Dunkl’s theory.
In this subsection we give an other proof of a particular case of this formula. Our formula
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is very useful for the proof of the results of the following subsection.
Theorem 3.1.Let P be inHk

n. Then

∀ y∈ Rd,
Z

Sd−1
P(u)K(−iu,y)wk(u)dσ(u) = aγ,n jn+γ+ d

2−1(‖y‖)P(y), (3.1)

with

aγ,n =
i−n2−n−γ− d

2+1

ckΓ(n+ γ+ d
2)

, (3.2)

and jn+γ+ d
2−1 the normalized Bessel function of first kind.

Proof. By using in (2.11) the spherical coordinatesx =
√

2suwith s∈]0,+∞[,u∈ Sd−1

and by putingy =
√

2τv with τ ∈]0,+∞[,v∈ Sd−1, then Fubini’s theorem implies
Z ∞

0
e−λs

[Z
Sd−1

P(u)K(−iu,2
√

sτv)wk(u)dσ(u)
]

s
n
2+γ+ d

2−1ds=

i−n2−
n
2−γ− d

2+1

ck
λ−(n+γ+ d

2 )e−
τ
λ P(

√
2τv). (3.3)

But from formula (4) of [21] p.394 we have

λ−(n+γ+ d
2 )e−

τ
λ =

1

Γ(n+ γ+ d
2)

Z ∞

0
e−λs jn+γ+ d

2−1(2
√

sτ)sn+γ+ d
2−1ds.

By using this relation in (3.3) we obtain
Z ∞

0
e−λs

[
s−

n
2

Z

Sd−1
P(u)K(−iu,2

√
sτv)wk(u)dσ(u)

]
sn+γ+ d

2−1ds=

i−n2−
n
2−γ− d

2+1

ckΓ(n+ γ+ d
2)

P(
√

2τv)
Z ∞

0
e−λs jn+γ+ d

2−1(2
√

sτ)sn+γ+ d
2−1ds.

The injectivity of the Laplace transform implies∀ s> 0,

Z

Sd−1
P(u)K(−iu,2

√
sτv)wk(u)dσ(u) =

i−n2−
n
2−γ− d

2+1s
n
2

ckΓ(n+ γ+ d
2)

jn+γ+ d
2−1(2

√
sτ)P(

√
2τv).

We obtain (3.1) by takings=
1
2

.

Remark. In [17] the authors give the analogue of Theorem 3.1 for the Dunkl-Bessel
Laplace operator.

4.2 Generalized Bochner-Hecke theorems

We give in this subsection the analogue in Dunkl’s theory of the classical Bochner-Hecke
theorems (see [10] p. 30-31 and [9] p. 66-70).
Theorem 3.2.Let P be inHk

n and f a measurable function on[0,+∞[ such that
Z ∞

0
| f (x)|xn+2γ+d−1dx< +∞. (3.4)
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Then the functionF(x) = f (‖x‖)P(x) belongs toL1
k(Rd) and its Dunkl transform is given

by

∀ y∈ Rd, FD(F)(y) = bγ,nF
n
2+γ+ d

2−1
B ( f )(‖y‖)P(y), (3.5)

where

bγ,n = 2
n
2+γ+ d

2−1Γ(
n
2

+ γ+
d
2
)aγ,n. (3.6)

Proof. The spherical coordinates and Fubini-Tonelli’s theorem imply that the functionF
belongs toL1

k(Rd).
We have

∀ y∈ Rd, FD(F)(y) =
Z

Rd
f (‖x‖)P(x)K(−ix,y)wk(x)dx.

By using spherical coordinates, Fubini’s theorem and Theorem 3.1, we obtain

∀ y∈ Rd, FD(F)(y) = an,γ

(Z ∞

0
f (r) j n

2+γ+ d
2−1(r‖y‖)rn+2γ+d−1dr

)
P(y).

The definition (2.10) of the Fourier-Bessel transformF
n
2+γ+ d

2−1
B implies that this relation

can also be written in the form (3.5).

Remark. S. Ben Said has used the theory of representations to obtain in [1] the ana-
logue of Theorem 3.2 for functions ofS(Rd).

To state and prove the second generalized Bochner Hecke theorem we need the follow-
ing Notations and Lemmas.
Notations. Let n∈ N andP in Hk

n. We denote by
- Lp

(n,γ)([0,+∞[), p = 1,2, the space of measurable functionsf on [0,+∞[ such that

‖ f‖(n,γ)),p =
(Z ∞

0
| f (r)|pr2n+2γ+d−1dr

)1/p

< +∞.

- L2
k,P(Rd) = { f (‖x‖)P(x) in L2

k(Rd), with f defined(a,e.) in [0,+∞[}.
Lemma 3.1.The applicationTP from L2

(n,γ)([0,+∞[) into L2
k,P(Rd) defined by

TP( f )(x) = f (‖x‖)P(x), (3.7)

satisfies
‖TP( f )‖k,2 = C‖ f‖(n,γ),2 , (3.8)

with

C =
(Z

Sd−1
|P(u)|2wk(u)dσ(u)

)1/2

.

Proof. We obtain the relation (3.8) by using spherical coordinates.
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Lemma 3.2.The set of linear combination of the functionsr → e−λr2/2,λ > 0, is dense
in L2

(n,γ)([0,+∞[).

Proof. We must prove that if the functionϕ in L2
(n,γ)([0,+∞[) is such that for allµ> 0 :

Z ∞

0
ϕ(r)e−µr2

r2n+2γ+d−1dr = 0 (3.9)

then
ϕ = 0.

We consider the function

ψ(x) =

{
0 if x≤ 0,

ϕ(
√

x)xn+γ+ d
2−1e−x/2 if x > 0.

By using the change of variablesx = r2 and Schwartz inequality we obtain
Z ∞

0
|ψ(x)|dx = 2

Z ∞

0
|ϕ(r)|e−r2/2r2n+2γ+d−1dr

≤ 2
(Z ∞

0
|ϕ(r)|2r2n+2γ+d−1dr

)(Z ∞

0
e−r2

r2n+2γ+d−1dr
)

< +∞,

as suppψ ⊂ [0,+∞[, then the functionψ is integrable onR with respect to the Lebesgue
measure.
On the other hand for alls> 0, the change of variablesx = r2 implies

Z ∞

0
ψ(x)e−sxdx= 2

Z ∞

0
ϕ(r)e−(s+ 1

2)r2
r2n+2γ+d−1dr.

From this relation and (3.9) we deduce that
Z ∞

0
ψ(x)e−sxdx= 0.

The injectivity of the Laplace transform implies thatψ = 0, and thenϕ = 0.
Theorem 3.3.Let f be inL2

(n,γ)([0,+∞[). Then

i) the functionF(x) = f (‖x‖)P(x) belongs toL2
k(Rd), and its Dunkl transform is of the

form
FD(F)(y) = g(‖y‖)P(y), y∈ Rd, (3.10)

with g in L2
(n,γ)([0,+∞[).

ii) If moreover f belongs toL1
(n,γ)([0,+∞[) then we have

∀ r ≥ 0, g(r) = bγ,nF
n
2+γ+ d

2−1
B ( f )(r), (3.11)

with bγ,n the constant given by (3.6).

Proof.
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i) It is clear that from Lemma 3.1 the functionF(x) = f (‖x‖) P(x) belongs to
L2

(n,γ)([0,+∞[). Also from this Lemma, up to a constant of normalization, the ap-

plicationFD oTP is an isometric fromL2
(n,γ)([0,+∞[) into L2

k(Rd). From the relation

(2.11) this isometric apply all function of the typee−
λ‖x‖2

2 ,λ > 0, in the spaceL2
P(Rd).

Then by using Lemma 3.2, we deduce that the spaceL2
P(Rd) is invariant under the

Dunkl transform. Thus

FD(F)(y) = g(‖y‖)P(y), y∈ Rd,

with g in L2
(n,γ)([0,+∞[).

ii) If moreover the functionf belongs toL1
(n,γ)([0,+∞[), then we have

Z ∞

0
| f (r)|rn+2γ+d−1dr =

Z 1

0
(| f (r)|rn)r2γ+d−1dr +

Z ∞

1
| f (r)|rn+2γ+d−1dr.

By applying Schwartz inequality to the first integral and by replacingrn by r2n in the second
integral, we obtain

Z ∞

0
| f (r)|rn+2γ+d−1dr ≤ 1

2γ+d
‖ f‖2

(n,γ),2 +‖ f‖(n,γ),1 < +∞.

Thus the functionf satisfies the condition (3.4) of Theorem 3.2. We obtain (3.11) from
(3.10) and (3.5).

5 Application to homogeneous distributions

In this section we shall use the generalized Bochner-Hucke theorems to obtain the Dunkl
transform of some homogenous distributions onRd.

Let β ∈ R. A function f defined onRd is homogeneous of degreeβ if for all λ > 0 we
have

f (λx) = λβ f (x), (4.1)

Let f be a locally integrable function onRd with respect to the Lebesgue measure, and
which is homogeneous of degreeβ. We consider the distributionTf wk of D ′(Rd) given by
the functionf wk. For allϕ in D(Rd) andλ > 0 we have

〈Tf wk,ϕλ〉= λ−d−2γ−β〈Tf wk,ϕ〉, (4.2)

where
∀ x∈ Rd, ϕλ(x) = ϕ(λx).
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The relation (4.2) implies that in the Dunkl theory’s, we say that a distributionS in
D ′(Rd) is homogeneous of degreeβ if for all ϕ in D(Rd) andλ > 0, we have

〈S,ϕλ〉= λ−d−2γ−β〈S,ϕ〉. (4.3)

Remark. All distribution in D ′(Rd) homogeneous, belongs toS′(Rd) (See [4] p. 154).
Proposition 4.1. Let Sbe inD ′(Rd) homogeneous of degreeβ. Then its Dunkl transform
is homogeneous of degree−d−2γ−β.

Proof. We have

∀ y∈ Rd , FD(ϕλ)(y) =
Z

Rd
ϕ(λx)K(−ix,y)wk(x)dx.

By the change of variablest = λx, we obtain

∀ y∈ Rd, FD(ϕλ)(y) = λ−d−2γ
Z

Rd
ϕ(t)K(−it ,

y
λ
)wk(t)dt.

Thus
∀ y∈ Rd, FD(ϕλ)(y) = λ−d−2γ FD(ϕ)(

y
λ
). (4.4)

From this relation and (4.3) we obtain

〈FD(S),ϕλ〉 = 〈S,FD(ϕλ)〉
= λ−d−2γ〈Sy,FD(ϕ)(

y
λ
)〉

= λ−d−2γ−(−d−2γ−β).

Proposition 4.2.LetP be inHk
n ands∈C. Then the functionGs(x) =

P(x)
‖x‖s is homogeneous

of degreen−s.
Theorem 4.1.The Dunkl transform of the functionGs, with n < Res< n+2γ+d, is given
by

FD(Gs)(y) = Mγ,n,s
P(y)

‖y‖2n+2γ+d−s , y∈ Rd , (4.5)

where

Mγ,n,s =
2n+γ+ d

2 i−n

ck

Γ(n+2γ+d−s
2 )

Γ( s
2)

(4.6)

Proof. We suppose first that :n+ γ+
d
2

< Res< n+2γ+d.

We writeGs in the form

Gs(x) = Gs(x)1B(0,1)(x)+Gs(x)1cB(0,1)(x) ,

whereB(0,1) is the closed unit ball ofRd and cB(0,1) its complementary, and1B(0,1),
1cB(0,1) their characteristic functions . It is clear thatGs(x)1B(0,1)(x) is in L1

k(Rd) and
Gs(x)1cB(0,1) is in L2

k(Rd). By applying to these functions respectively Theorems 3.2 and
3.3, we deduce that

FD(Gs)(y) = g(‖y‖)P(y), y∈ Rd, (4.7)
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with g a function defined (a.e.) on[0,+∞[.
As from Propositions 4.1, 4.2, the functionFD(Gs) is homogeneous of degree−d−2γ−
n+s, then the functiong is homogeneous of degree−d−2γ−2n+s. Thus it is necessary
of the form

g(‖y‖) =
Mn,γ,s

‖y‖2n+2γ+d−s (4.8)

whereMn,γ,s is a constant.
On the other hand from (4.7), (4.8), for allϕ in S(Rd) we have

Z

Rd

P(x)
‖x‖s FD(ϕ)(x)wk(x)dx= Mn,γ,s

Z

R+

P(y)ϕ(y)wk(y)
‖y‖2n+2γ+d−s dy. (4.9)

To obtain the value ofMn,γ,s we consider the functionϕ(x) = e−
‖x‖2

2 P(x). Then from (2.11)
the relation (4.9) takes the form

i−n

ck

Z

Rd

P2(x)
‖x‖s e−

‖x‖2
2 wk(x)dx= Mn,γ,s

Z

Rd

P2(y)e
−‖y‖2

2

‖y‖2n+2γ+d−s wk(y)dy.

By using spherical coordinates and Fubini’s theorem, we deduce that

i−n

ck

Z ∞

0
e−

r2
2 r2n+2γ+d−s−1dr = Mn,γ,s

Z ∞

0
e−

r2
2 rs−1dr.

The definition of the function gamma implies the relation (4.6).

We have proved the relation (4.9) in the casen+ γ +
d
2

< Res< n+ 2γ + d. But the

two members of this relation are analytic functions of the complex variables in the band
n < Res< n+2γ+d. The identity (4.9) is then true in this band.
This completes the proof of the theorem.

We consider now the function

G(x) =
P(x)

‖x‖n+2γ+d , (4.10)

whereP is in Hk
n, with n≥ 1.

Lemma 4.1.The distribution denoted also byG, defined by the relation

〈G,ϕ〉 = vp
Z

Rd
G(x)ϕ(x)wk(x)dx

= lim
ε→0

Z

‖x‖≥ε>0
G(x)ϕ(x)wk(x)dx, ϕ ∈ S(Rd),

(4.11)

belongs toS ′(Rd).

Proof. We have
Z

Rd
G(x)ϕ(x)wk(x)dx=

Z

B(0,1)
G(x)ϕ(x)wk(x)dx+

Z
cB(0,1)

G(x)ϕ(x)wk(x)dx, (4.12)
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whereB(0,1) is the unit closed ball ofRd andcB(0,1) its complementary. As the function
G(x)1cB(0,1)(x), with 1cB(0,1) the characteristic function ofcB(0,1), belongs toL2

k(Rd), then
from Schwartz inequality we deduce that there exists a positive constantC1 such that

∣∣∣∣
Z

cB(0,1)
G(x)ϕ(x)wk(x)dx

∣∣∣∣≤C1 sup
x∈Rd

|ϕ(x)|. (4.13)

On the other hand as the degree ofP is greater than one, then by using spherical coordinates,
Fubini’s theorem and the orthogonality of the polynomialsP (see Theorem 5.1.6 of [8] p.
177) we obtain

Z

ε≤‖x‖≤1
G(x)wk(x)dx=

Z 1

ε

1
r

(Z
Sd−1

P(u)wk(u)dσ(u)
)

dr = 0.

Thus Z

ε≤‖x‖≤1
G(x)ϕ(x)wk(x)dx=

Z

ε≤‖x‖≤1
G(x)[ϕ(x)−ϕ(0)]wk(x)dx.

From Taylor formula we deduce that

|ϕ(x)−ϕ(0)| ≤ ‖x‖ sup
x∈Rd

| ∂
∂x1

ϕ(x)+ ...+
∂

∂xd
ϕ(x)|.

As the function‖x‖G(x)1B(0,1)(x), with 1B(0,1) the characteristic function ofB(0,1), belongs
to L1

k(Rd) , then

Z

ε≤‖x‖≤1
|G(x)||ϕ(x)−ϕ(0)|wk(x)dx≤C2 sup

x∈Rd

| ∂
∂x1

ϕ(x)+ ...+
∂

∂xd
ϕ(x)|, (4.14)

with
C2 =

Z

B(0,1)
‖x‖G(x)wk(x)dx.

Using (4.11) and (4.12) (4.13), (4.14), we deduce that there exists a positive constantC such
that

|〈G,ϕ〉| ≤CP0,1(ϕ).

Thus the distributionG belongs toS ′(Rd).

Theorem 4.2. The Dunkl transform of the distributionG given by (4.11) is the distri-
butionTFwk of S ′(Rd) given by the functionFwk with

F(y) = M0
n,γ

P(y)
‖y‖n , y∈ Rd , (4.15)

where

M0
n,γ =

i−n2−γ− d
2

ck

Γ(n
2)

Γ(n+2γ+d
2 )

(4.16)

Proof. We shall see that to obtain (4.15) it suffices to makes= n+2γ+d in Theorem
4.1.
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In the proof of Theorem 4.1 we have shown that forn < Res< n+2γ+d, we have

Mn,γ,s

Z

Rd

P(y)ϕ(y)wk(y)
‖y‖2n+2γ+d−s dy=

Z

Rd

P(x)
‖x‖s FD(ϕ)(x)wk(x)dx, ϕ ∈ S(R) (4.17)

It is clear that in the left member, whenstends ton+2γ+d, we obtainM0
n,γ

Z

Rd

P(y)
‖y‖nwk(y)dy,

with M0
n,γ given by (4.16).

On the other hand using the fact that
Z

Sd−1
P(u)wk(u)dσ(u) = 0,

and by considering the functionψ = FD(ϕ) in the right member of (4.17), we obtain

lim
s→n+2γ+d

Z

Rd

P(x)
‖x‖sFD(ϕ)(x)wk(x)dx

= lim
s→n+2γ+d

{Z
B(0,1)

P(x)
‖x‖s [ψ(x)−ψ(0)]wk(x)dx+

Z
cB(0,1)

P(x)
‖x‖sψ(x)wk(x)dx

=
Z

B(0,1)
G(x)[ψ(x)−ψ(0)]wk(x)dx+

Z

cB(0,1)

G(x)ψ(x)wk(x)dx

= vp
Z

Rd
G(x)ψ(x)wk(x)dx

= 〈G,ψ〉.

Thus we obtain (4.15).
This completes the proof of the theorem.
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