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Abstract

In this paper we prove generalized Bochner-Hecke theorems for the Dunkl transform
onRY, and we give an application of these theorems to homogeneous distributions .
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1 Introduction

We consider the differential-difference operatéysj = 1,...,d, on RY introduced by C. F.

Dunkl in [6] and called Dunkl operators in the literature. These opertors are very important
in pure Mathematics and in Physics. They provide a useful tool in the study of special func-
tions with root systems (see [3][11]), and they are closely related to certain representations
of degenerate affine Hecke algebras [2][18], moreover the commutative algebra generated
by these operators has been used in the study of certain exactly solvable models of quan-
tum mechanics, namely the Calogero-Sutherland-Moser models, which deal with systems
of identical particles in a one dimensional spaces (see [12][15][16]).

C.F. Dunkl has studied in [5] the spherical harmonics associated with the Dunkl opera-
tors, and with the aid of the Dunkl kernel which is an eigenfunction of these operators, he
has introduced in [7] an integral transform BA called the Dunkl transform.

In this paper we give first an other proof of the analogue in the Dunkl’s theory, of the
Funk-Hecke formula associated with the classical spherical harmoni&§.ofsee [10] p.

29). This formula has been established in a general form by Y. Xu in [22] (see also [8] p.
191).

*E-mail address: khlifa.trimeche@fst.rnu.tn
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Next we prove generalized Bochner-Hecke theorems for the Dunkl transform. In the
case of the classical Fourier transform®hthese theorems are given in [10] p. 30-31 and
[9] p. 66-70.

As application of generalized Bochner-Hecke theorems we determine the Dunkl trans-
form of some homogeneous distributionsi®h The same application has been studied in
[9] p. 88-93, in the case of the calssical Fourier transfornk®n

2 The eigenfunction of the Dunkl operators

In this section we collect some notations and results on Dunkl operators and Dunkl kernel
(see [6][7][13]).

2.1 Reflection groups, root systems and multiplicity functions
We considerR? with the euclidean scalar produ¢t.) and||x| = v/(x,x). OnCY,|.|
denotes also the standard Hermitian norm, wialey) = %lzj'\/\_/j.

Fora € RY\{0}, le oq be the relfection in the hype:;I&Hh c RY orthogonal ta, i.e.

~ 2(a,x)
larf?

O (X) = (1.1)

A finite setR c R\ {0} is called a root system RNR%.a = {a,—a} andogsR= R
for all a € R. We assume that it is normalized bg||? = 2 for all a € R. For a given root
systemR the reflectionsog, o € R, generate a finite groly ¢ O(d), the reflection group
associated withR. All reflections inW correspond to suitable pairs of roots. For a given
Be R?eg = R%\UqcrHq,We fix the positive subsysteR, = {a € R, (a,B) > 0}, then for
eacha € Reithera e R, or —a € R, .

A functionk : R— C on a root systerRis called a multiplicity function if it is invariant
under the action of the associated reflection grddpIf one regardsk as a function on
the corresponding reflections, this means thid constant on the conjugacy classes of
reflections inW . For abbreviation, we introduce the index

y=yYR) = > k) (1.2)

aec

Moreover, letw, denotes the weight function

wi(x) = [ [{o, x>, (13)

aec

which is W-invariant and homogenous of degrae In this paper we suppose thiatis
nonnegative.
Ford = 1 andW = Z, , the multiplicity functionk is a single parameter denoted by
y>0and
VxeR, w(x) = |x%. (1.4)
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We introduce the Mehta-type constant

-1

Z
k= ( y exp(—HxHZ)Wk(x)dx) (1.5)

which is known for all Coxeter groupd'. (See [6]).
For an integrable function oRY with respect to the measuwe(x)dx we have the
relation z z z

f (X)W (X)dx = 0+°°( sdlf(rﬁ)wk(ﬁ)do(s)> r+d-1qr, (1.6)

Rd
wheredg is the surface measure on the unit sptfe' of R%. We have

d

21
Qg i=o( =" (1.7)
)
2.2 Dunkl operators and Dunkl kernel
The Dunkl operatorsj, j =1,...d, on RY associated with the finite reflection growpand
multiplicity function k are given for a functiorf of classC! onRRY by
0 f(x) — f(on(x))
Tif(x) = —"f(X)+ k()aj ———————==. 18
J() an () W ()J <(X,X> ( )
Inthe cas&k =0, theTj, j = 1,...,d, reduce to the corresponding partial derivatives.
The Dunkl Laplaciardy, is defined by
d
Nf=Y T =0F+2 5 k()3 f, (1.9)
=1 ac
i (OF0.0) 13- (0
B x),0)  f(x) — f(oaX
%D =0 (@)

wheref is a function of clas€? on RY, andA, O are respectively the Laplacian and the
gradian orRY.
Fory € RY, the system

Tuxy) =yjuxy), j=1,...d,

admits a unique analytic solution @&f', which will be denoted bX(x,y) and called the
Dunkl kernel.

This kernel has an unique holomorphic extensiofCfox CY. For allx,z e CY it satisfies
the following relations

o K(x,2) =K(zx). (1.11)
o K(x0)=1. (1.12)
o K(Ax,2) =K(x,Az), forallA € C. (1.13)
o VxyeRY K(—ix,y)| <1 (1.14)



Generalized Bochner-Hecke Theorems and Application 57

Whend = 1 andW = Z, the Dunkl kernel is given by

K(x,2) = j,_1(ix2)

Xz . .
1 +mjy+%(|xz), x,z€ C, (1.15)

wherejq with a > —%, is the normalized Bessel function of first kind, defined by
: Ja (%) e (=)™

__ o0 a _ 2

ja(X) =29T (a +1) v F(O(+1)n2)

Lnlfoa+n+1)’ (1.16)

with Jq the Bessel function of first kind and index (See [7]).

3 The Dunkl transform

The Dunkl kernel gives rise to an integral transforni&Shcalled the Dunkl transform which
was first introduced by C.F. Dunkl in [7] and further studied in [14].
Notations We denote by
- fP,? the space of homogeneous polynomials of degree
- Hr'f the space of Dunkl harmonic homogeneous polynomials of degrikés defined
by
HX = (keray) NP9,

- D(RY) the space o€®-functions onRY with compact support .
D(RY) = Uao0Da(RY),

whereD,(RY) is the space oE”-functions onRY with support in the closed bali(0,a) of
center0 and radius > 0.
The topology onDa(Rd) is defined by the seminorms

pn(¢) = sup [D"$(x)|, neN,

lW/<n
xeB(0,a)
where
D ol N
= o M= (M1, Ha) € N, |/ = o+ ... + Pa-

The spaceD(RY) is equipped with the inductive limit topology.

-S (Rd) the Schwartz space @>-functions onRY, rapidly decreasing together with
their partial derivatives.

The topology ons(RY) is defined by the seminorni ,, (£,m) € N2, given by

Prm(§) = sup (1+[X||%)"[D*o(x)].
[W<m
xeRY
- LP(RY), p € [0, +0], the space of measurable functiohen R? such that
Z

Iflko=(

1/p
PP W) < b i 1< <o



58 Khalifa Triméche

|| fllkeo = €SSSUP| T (X)| < -00.
xeRd

- D'(RY) the space of distributions d&”. It is the topological dual of>(RY).
- §'(RY) the space of tempered distributionsBfh It is the topological dual of (RY).

The Dunkl transform of a functiof in D(RY) is given by
z
VyeR?, fp(f)(y) = o T OOK (=X, y)wi(x)dx (21)
This transform has the following properties

i) (Riemann-Lebesgue Lemma). Fbin L}(RRY) the function%p(f) is continuous on
RY and vanish at infinity.

ii) For f in LE(RY) we have
170 (F)llies < ([ Fllka (22)

iii) Let f be in D(RY). If for x € RY andg € W we havef~(x) = f(—x) and fg(x) =
f(gx), then for ally € RY we have

Fo(f7)(y)=o(f)(y) and  Fo(fg)(y) = Fo(f)(gy). (2.3)

iv) For f in S(RY), we have foralye RY andj =1,....d
Fo(TiH)(y) =iy Fo()(y). (2.4)
Ti(Fo(F))(y) = = Fo(ix; F)(y). (2.5)

The following theorems are proved in [7][14].
Theorem 2.1The Dunkl transfornip is a topological isomorphism from(]Rd) onto itself.
The inverse transforrﬂﬁ;1 is given by

VxeRY, F51(F)(x) = 27292 p (f)(—x). (2.6)

Theorem 2.2For f in LE(RY) such that#p(f) belongs td_}(RY), we have the following
inversion formula for the transforiip :

Z
f(x) = chyéd oo TO(D KX, y)wi(y)dy. (2.7)

Theorem 2.3

i) Plancherel formula fofp.
For all f in S(RY) we have

z 2 Z
r [FO0Pwi(x)dx = o 2l | Fo () (y) | Pwi(y)dy (2.8)
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ii) Plancherel theorem fgfp.
d
The renormalized Dunkl transfor— 27Y"2¢ 7 (f) can be uniquely extended to
an isometric isomorphism drf(RY).

Next we show that the Dunkl transform of radial functiond ffR%) are again radial,
and that the Dunkl transform can be computed via the Fourier-Bessel transform (see [20]).
More precisely we have the following results (see [19] p. 585-586).
Theorem 2.4.Let f be a radial function i} (RY). Then the functiorfo defined or{0, +oo|
by
vxeRY, f(x) = fo(|[x]|) = fo(r), withr=|x|,

is integrable o0, +[ with respect to the measur®*9-1dr, and we have

VyeRY, Fo(f)(y) =22 a2 (fo) (Ilyl)), (2.9)

d_ d
wherefg+2 ! is the Fourier-Bessel transform of ordefr 5 1, given by

Z 00 r2y+d—1

fg+%—1(h)()\): . h(r)jy. g1 (Ar)

———dr, A>0. (2.10)
d ) -
2H1r(y+ 9)
X2
The following theorem gives the Dunkl transform of the functicﬁ(sz)e*% and
Al

P(x)e" "2z with Pin HX andA > 0.
Theorem 2.5We have the following relations

Z «2 i—n 2
N POOK (—ix, y)e~ 2 Wi(X)dx = 'kae*% P(y). (2.11)
z Alx|2 i" dy Iy
y P(X)K(—ix,y)e™ 2 wy(x)dx = C—k)\*(””*?)e*T P(y). (2.12)

Proof. Using the fact thaP is Dunkl harmonic, we deduce from Proposition 2.1 of [7] p.
127 (see also [8] p. 216) the relation (2.11). We obtain (2.12) by change of variables.

The Dunkl transform of a distributio8in §'(RY) is defined by
(Fo(S),0) = (S Fo(9)), ¢ € S(RY), (213)

Theorem 2.6. The Dunkl transform is a topological isomorphism fr(ﬂ‘rQRd) onto itself.
The inverse transform is given by

(751(9), 0) = (S F5 (9)), ¢ € S(RY). (214)

4 The generalized Funk-Hecke formula and generalized Bochner-
Hecke theorems
4.1 The generalized Funk-Hecke formula

Y. Xu has established in [22] a Funk-Hecke formula of general form in the Dunkl’s theory.
In this subsection we give an other proof of a particular case of this formula. Our formula
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is very useful for the proof of the results of the following subsection.
Theorem 3.1.Let P be inHX. Then

Z
VYER!,  PUK(-iuy(Wdo(W) = aynn.yeg o (MDPY) (31
with
j—No—n— —d+1
ayn=—"7-—7/[-, 3.2

andj,,,.4_, the normalized Bessel function of first kind.

Proof. By using in (2.11) the spherical coordinates v/2suwith s €]0, +-o[,u € $~*
and by putingy = v/2tv with T €]0, +o[,v € 71, then Fubini’s theorem implies
Z Z

e . PO (—1u, 2V/stV)wi(u)do(u) AR AR
. i

00

i,nz,g,y,ngl

Ck
But from formula (4) of [21] p.394 we have
Z
_ dy 1 1 ® s d_
Ve = iy @ ey g (VST s
2

A~ (YD e i P(yV/21v). (3.3)

By using this relation in (3.3) we obtain
z z
eM|s 2 PU)K(—iu,2vSv)wi(u)do(u) | Y2 tds=

n d Z

——P(V21v °°e_xs- 2\/st V5 -1gg
o nryr §PVE | g a2V

The injectivity of the Laplace transform impli&ss > O,

‘ P(U)K(=iu,2y/stv)wi(u)do(u) reivivg, (2vst)P(v2)
u —IU, STV)W(UW)do(U) = d_ ST V).
g1 “ ol (nry+9) M

We obtain (3.1) by taking = %

Remark. In [17] the authors give the analogue of Theorem 3.1 for the Dunkl-Bessel
Laplace operator.

4.2 Generalized Bochner-Hecke theorems

We give in this subsection the analogue in Dunkl's theory of the classical Bochner-Hecke
theorems (see [10] p. 30-31 and [9] p. 66-70).
Theorem 3.2.Let P be inHX and f a measurable function df, +oo[ such that

z

00

| () XM 1gx < 40, (3.4)
0
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Then the functiorF (x) = f(||x||)P(x) belongs td_}(RY) and its Dunkl transform is given
by

n d_q
VyeR%, Fo(F)(y) =byds 2 (D(IYDPY), (35)
where
ﬂ+ +Q,1 n d
by,n =22T¥t2 F(E +VY+ E)av’n. (36)
Proof. The spherical coordinates and Fubini-Tonelli’'s theorem imply that the fun&tion
belongs td_{(RY).
We have

z
vyeRY, Fo(F)(y) = wa TUXIDPOOK(=ix,y)wi(x)dx

By using spherical coordinates, Fubini’'s theorem and Theorem 3.1, we obtain

Z
¥y € R o)) = any | HOiguyeg ATV e ) Pl

n

d_
The definition (2.10) of the Fourier-Bessel transfoﬁg%+y+2 ! implies that this relation
can also be written in the form (3.5).

Remark. S. Ben Said has used the theory of representations to obtain in [1] the ana-
logue of Theorem 3.2 for functions ¢{RY).

To state and prove the second generalized Bochner Hecke theorem we need the follow-
ing Notations and Lemmas.
Notations. Letn € N andP in HX. We denote by

- L(pn y)([0, +oo[), p= 1,2, the space of measurable functionen [0, +[ such that

z

f =
o=

- LEp(RY) = {(|IX))P(x) in LEZ(R?), with f defined(a,e.) in [0,+oo[}.
Lemma 3.1. The applicatiorTp from L(2n7y)([0, +oo]) into Lﬁp(Rd) defined by

00

1/p
|f(r)|pr2”+zy+d‘ldr> < oo,

Te(F)(x) = f([IX])P(x), (3.7)
satisfies
ITe(F)llk2 =Cl[ fllny).2 (3.8)
with . "
C= < » \P(u)|2Wk(u)d0(u)> :

Proof. We obtain the relation (3.8) by using spherical coordinates.
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Lemma 3.2. The set of linear combination of the functions- e »™/2 \ > 0, is dense
in L(zn,y)([o7 +°°D'

Proof. We must prove that if the functiafnin Lfn’y)([o, +oo[) is such that for alpt > 0
z

0 O(r)e Wi r2nt2ytd-lg, _ o (3.9)
then

¢ =0.

We consider the function

|0 it x<0,
W) = O(VXXTYT21e X2 if x> 0.

By using the change of variables= r? and Schwartz inequality we obtain
Z z

00 00

WX)ldx = 2 |o(r)|e " /2r2ravid-1gy
0

o Z
2( ]¢(r)]2r2”+zy+d_1dr)( e r2r2n+2v+d—1dr) < oo,
0 0

IA

as suppy C [0, 4|, then the functiony is integrable orR with respect to the Lebesgue
measure.
On the other hand for afi> 0, the change of variables= r? implies

z Z o

P(x)e~>dx=2 ¢(r)e*(5+%)r2r2n+2y+d71dr.
0 0

(o0

From this relation and (3.9) we deduce that
Z

P(x)e dx=0.
0
The injectivity of the Laplace transform implies thpt= 0, and thenp = 0.
Theorem 3.3.Let f be inL% . ([0,+[). Then

i) the functionF (x) = f(||x||)P(x) belongs td.Z(RY), and its Dunkl transform is of the
form

Fo(F)(y) =g(llyl)P(y), yeRY, (3.10)
with gin L, . (0, o).

ii) If moreoverf belongs td_, ([0, +]) then we have
n d_
Vr>0,g(r) =bydg (), (311)

with by, the constant given by (3.6).

Proof.
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i) It is clear that from Lemma 3.1 the functiorr(x) = f(||x||) P(x) belongs to
L(2n7y)([0, +oo[). Also from this Lemma, up to a constant of normalization, the ap-

plication 75 0Tp is an isometric fronL., , ([0, +c[) into LE(RY). From the relation
Alx|2

(2.11) this isometric apply all function of the type 2z ,A > 0, in the spac&3(RY).
Then by using Lemma 3.2, we deduce that the sp#¢&?) is invariant under the
Dunkl transform. Thus

Fo(F)y) =g(lyDP(y). yeR’,
with g in L7, ([0, +o[).

ii) If moreover the functiorf belongs t¢(1n7y)([0,+w[), then we have

Z Z,
. |f(r) Ay = . (| (r)[rMrard-tdr 4
Lo
|f(r)[r™2¥Hd=1qr,

By applying Schwartz inequality to the first integral and by replaciHoy r?" in the second
integral, we obtain

Z 1
f n+2y+d—ld <
Ol <

| f ||(2n7y),2+ |1l (ny),2 < +o0.

Thus the functionf satisfies the condition (3.4) of Theorem 3.2. We obtain (3.11) from
(3.10) and (3.5).

5 Application to homogeneous distributions

In this section we shall use the generalized Bochner-Hucke theorems to obtain the Dunkl
transform of some homogenous distributionsish

Let B € R. A function f defined oriR? is homogeneous of degr@f for all A > 0 we
have
f(AX) =APf(x), (4.1)

Let f be a locally integrable function dk® with respect to the Lebesgue measure, and
which is homogeneous of degrBe We consider the distributiofy, of Q)’(Rd) given by
the functionfwy. For all¢ in D(RY) andA > 0 we have

(Trw. O2) =AY P(Tr, 0), (4.2)

where
vxeRY, o (x) = d(Ax).
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The relation (4.2) implies that in the Dunkl theory’s, we say that a distribuSidm
7' (RY) is homogeneous of degr@f for all ¢ in D(RY) andA > 0, we have

(Shr) =2 P(s¢). (4.3)

Remark. All distribution in Q)’(]Rd) homogeneous, belongsﬂiRd) (See [4] p. 154).
Proposition 4.1. Let Sbe in Q)’(Rd) homogeneous of degr@e Then its Dunkl transform
is homogeneous of degread — 2y — 3.

Proof. We have
z

VYERT, Fo@)() = MK (= y)wi(x)dx

By the change of variablés= Ax, we obtain

Z
YYERS, @) =AY SOK(-it Dw(ndt
Thus y
YYERY, Fo()) =AY Ro(0)(5). (44)

From this relation and (4.3) we obtain

(Fo(S),00) = (STo(9n)
NS, Fo(0)(D))
— )\ d-Zy—(-d-2y-p)
P(X)

T

Proposition 4.2.Let P be inHX ands e C. Then the functioiBs(x)

of degreen—s.
Theorem 4.1.The Dunkl transform of the functioBs, with n < Res< n+ 2y-+d, is given

by

is homogeneous

P(y
Fo(Gs)(y) = My’n’SHyHZWEZ\)HdS , Y€ RY ) (4.5)

where )
205N T ( ”+2V2+d78)

Ck r(%)

My’n,s - (46)
, d

Proof. We suppose first thatn+y+ > < Res< n+2y+d.

We write Gs in the form

Gs(X) = Gs(X)1g(0,1)(X) + Gs(X) Leg(o,1) (X) ,

whereB(0,1) is the closed unit ball oR? and °B(0,1) its complementary, andp 1),
leg(o1) their characteristic functions . It is clear th@t(x)1g 1) (X) is in LE(RY) and

Gs(X)Leg(o,1) is in Lﬁ(Rd). By applying to these functions respectively Theorems 3.2 and
3.3, we deduce that

Fo(Gs)(y) =a(llyl)P(y), yeR?, (4.7)
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with g a function defined (a.e.) df, +oo].

As from Propositions 4.1, 4.2, the functiofy (Gs) is homogeneous of degreed — 2y —
n+s, then the functiomy is homogeneous of degreed — 2y— 2n+s. Thus it is necessary
of the form

Mn,y.s
allyll) = HYHZMW (4.8)
whereM, s is a constant.
On the other hand from (4.7), (4.8), for 4lin S(RY) we have
Z Z
P(X) P(y)$(y)wk(y)
e [|X]8 Fo(d)(X)Wk(X)dX= Mnys - HYHZMW dy. (4.9)

Ix)2

To obtain the value o, s we consider the functiofi(x) = e~ 2 P(x). Then from (2.11)
the relation (4.9) takes the form
2
P(y)e -
R mewk(wdy

i P2x) e z

2 Wi (X)dX = Mny.s

Ck md|X|®

By using spherical coordinates and Fubini’s theorem, we deduce that
ifnz [ 2 z [« _£

— e zrmArdslgr— M, e zrsldr
Ck o 0
The definition of the function gamma implies the relation (4.6).

We have proved the relation (4.9) in the case y+g < Res< n+2y+d. Butthe

two members of this relation are analytic functions of the complex vargblghe band
n < Res< n+ 2y+d. The identity (4.9) is then true in this band.
This completes the proof of the theorem.

We consider now the function
P(X)

whereP is in HY, with n > 1.
Lemma 4.1.The distribution denoted also 6y, defined by the relation
z
(G.9) =vp __GO)d(xwi(x)dx
_E ; (4.11)
= lim GO (W (X)dx, ¢ € S(RY),
e—0 ||x|>e>0
belongs tas’(RY).
Proof. We have
Z Z Z
G(X)d (X)wi(x)dx = G(X) (x)wic(x)dx+ G(X)d(x)w(x)dx,  (4.12)

Rd B(0,1) °B(0,1)
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whereB(0,1) is the unit closed ball aR? and®B(0, 1) its complementary. As the function
G(X)1eg(o,1) (X), With Leg g 1) the characteristic function 68(0,1), belongs td_2(RY), then
from Schwartz inequality we deduce that there exists a positive cortanth that

z

G(X) ¢ (x)wi(x)dX
¢B(0,1)

< Cysup|¢(x)]. (413

xeRd

On the other hand as the degreda$ greater than one, then by using spherical coordinates,
Fubini's theorem and the orthogonality of the polynomialésee Theorem 5.1.6 of [8] p.
177) we obtain

A Z,, 2
séuxuglG ugex= ( g1 P(U)Wk(U)dO(u)> dr=0.

Thus z .
£<Hx\|<1G X)d (X)W (X)dx = s<|\x\|<1G(X) [0 (X) — & (0)]wi(x)dx

From Taylor formula we deduce that

0 0
X) — 0 (0)| < ||X|| sup|=—¢(X) + ... + =—(X)].
60 = 0(0)] < X SUpI 5-9(X)+ .+ 5 -0(x)
As the function|x||G(x) 1g(o,1) (X), with 1g(0 1) the characteristic function &(0, 1), belongs
to LE(RY) , then
z

0 0
ceprer CONPL)  POIMIAXSC Pl PO+ + g d00 (419
with -
C= [[X[|G(X)wi (x)dx
B(0,1)

Using (4.11) and (4.12) (4.13), (4.14), we deduce that there exists a positive c@hstaft
that

Thus the distributior© belongs tas’(RY).

Theorem 4.2. The Dunkl transform of the distributio® given by (4.11) is the distri-
bution Try, of S'(RY) given by the functiorFw with

F(y) = M2, m . yeRd, (4.15)

where .
j—No—y-3 r(D)
MO — 2 4.16
ny Ck r(%) (4.16)

Proof. We shall see that to obtain (4.15) it suffices to maken+2y+d in Theorem
4.1.
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In the proof of Theorem 4.1 we have shown thatrier Res< n+ 2y+d, we have

z z
PYYWK(Y) .~ PX
ny.s Rd ||y||2n+2y+d75 - Rd ||X||s TD(q))(X)Wk(X)an ¢€5(R) (417)
° Py
Itis clear that in the left member, whetends tan+2y+d, we obtairi\/lr?y ) ||yﬂ/nwk(y)dy,
TR

with M3, given by (4.16).
On the other hand using the fact that
Z
. P(u)wg(u)do(u) =0,

and by cgnsidering the functiap= 7p(¢) in the right member of (4.17), we obtain
P(x
™ o 0) (gw)dx

m
s—n+2y+d Rd HXHS

Z
[W(x) — P(0)]wi (x)dx+
Z
- B(0.1) GOIW) — W(0)]wic(x)dx+ G(X)W (X)W (x)dx
9

CB(0,1)

P(x)
°B(0,1) [[X[|®

B(x)wi(x)dx

m ol
%n+2y+d B(o,1) ||X[|®

= b _ GOOWw(xdx

= GW).

Thus we obtain (4.15).
This completes the proof of the theorem.
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