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ABSTRACT

The scattering of flexural–gravity waves in a layer of shallow fluid beneath an ice cover with irregularities
is investigated. The irregularities considered are the ice edges, cracks, areas of finely broken ice, and ice ridges.
Even this idealized problem formulation demonstrates that the accumulated effect of a large number of irreg-
ularities may lead to complete dissipation of the energy of wind waves and swells. The analysis shows a strong
scattering of such waves by periodic linear irregularities in the sea ice cover. The authors employ the shallow-
water approximation, which makes the results applicable for ocean shelf areas.

1. Introduction

A large portion of the ocean’s wave energy is carried
by the waves that either are influenced by wind or have
emerged from wind action areas—called wind waves
and swell, respectively. According to the data of the
USSR Register on the wave climate in Russian Arctic
seas (see Smirnov 1987), typical periods of wind waves
and swell lie in the range from 7.6 to 14 s. Experimental
data on the spectral composition of flexural–gravity
waves in the Arctic were analyzed by Nagurny et al.
(1994) and Wadhams et al. (1995) to show that a major
portion of the wave energy corresponds to waves with
periods greater than 16 s. Wadhams et al. suppose that
the most intensive vibrations of the ice cover are forced
by the low-frequency portion of the swell spectrum,
which propagates across long distances under the ice.
Let us consider a surface wave source to be in open
water. The waves propagating from such a source to the
marginal zone of drifting ice, scatter partially there, and
then propagate under the sea ice to a large distance. Sea
ice is strongly inhomogeneous in composition and prop-
erties. The marginal ice zone consists of alternating
regions of dense and sparse ice. The former often pro-
duce bands oriented along the wind direction. Cracks,
polynias, and hummocks are the characteristic irregu-
larities of dense ice, which can scatter the surface waves.
In the study of surface wave propagation, the ice cover
is conventionally modeled by a thin elastic plate. The
waves in it are referred to as flexural–gravity ones on
the assumption that the particle motion in them is gov-
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erned by gravity, particle inertia, and surface tension
acting upon water from the deformed ice cover. The
main approximations of this model are the following:
the wave’s amplitude is small compared to its length;
the plate thickness is small related to its curvature ra-
dius; and the ice elasticity greatly exceeds its viscosity,
relaxation, and plasticity. The model is valid for waves
of lengths greater than 100 m and amplitudes less than
a few meters.

The model of a thin elastic plate does not include the
floe’s undulation about its center of mass, which is in-
duced by waves. Spectral properties of the surface
waves traveling in the dispersed ice cover, which con-
sisted of isolated floes (rigid cylindrical discs), were
studied by Masson and LeBlond (1989) who accounted
for all degrees of freedom for each floe. At a sufficient
ice cover density, the undulating floes touch each other.
The modeling of ice collision and dispersion was con-
sidered by many authors [see the review by Squire et
al. (1995)].

Pure linear inhomogeneities are the simplest in an
elastic cover and are exemplified by a straight ice edge,
a crack joining the edges of two floes, and a hummock
ridge. The latter should have a width much shorter than
its length and the length of incident flexural–gravity
waves. Actually, these simple irregularities are rarely
observed in nature, but they are very important as model
examples.

Kouzov (1963) applied the Wiener–Hopf method to
consider the hydroacoustic wave diffraction at a crack
in an elastic plate floating on the surface of an infinitely
deep fluid. The exact solution to that problem allowed
him to calculate the coefficients of wave reflection and
transmission, as well as the properties of scattered
waves. Evans and Davies (1968) used the above tech-
nique to solve exactly the linear problem on surface
wave diffraction at the edge of a floating elastic plate.
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Meylan and Squire (1994) and Fox and Squire (1994)
analyzed numerically, minimizing a functional, the dif-
fraction of a plane surface wave at one and two parallel
ice bands and the oblique incidence of the wave onto
a straight edge of an ice plate floating on the surface of
a finite-depth fluid, respectively. The review by Squire
et al. (1995) contains a vast bibliography on wave scat-
tering in ice cover.

Marchenko (1994) proposed a method to solve the
spectral problem of periodic vibrations in an elastic ice
cover with an infinite number of cracks floating on the
shallow water surface. The spectral properties of waves
propagating in such a system were studied by Mar-
chenko et al. (1995) to show damping gaps in the wave
frequency spectrum: if the wave frequency matches the
gap, the wave decays exponentially when traveling be-
neath the ice.

We support the above idea of Nagurny et al. (1994)
and Wadhams et al. (1995) on a long-range propagation
of low-frequency waves under the ice. The primary goal
of the present paper is to investigate the scattering (dif-
fraction) of flexural–gravity waves at different frequen-
cies by typical irregularities of the sea ice cover—that
is, cracks, hummocks, and areas of broken ice. On the
basis of these simple examples, we try to demonstrate
that swell energy can be greatly scattered by a large
number of such irregularities. The main emphasis is
made on the dependence of wave reflection and trans-
mission on the number of irregularities in the ice cover.

2. Basic equations

We use the shallow water approximation to describe
the wave motion in the system fluid–ice cover. There-
fore, we will study the propagation of flexural–gravity
waves with typical lengths 2p/k exceeding the fluid
depth H. Formally the shallow-water equations result
from the substitution of factor tanh(kH) by kH in the
dispersion relation. Actually, since 1 2 tanh1 ø 0.2,
one can take the condition kH , 1, where k is a char-
acteristic wave vector, as a criterion of the relevant ap-
proximation. Then in the one-dimensional case the lin-
ear equations for shallow water beneath an elastic plate
are written as

2 4]h ] w ]w D ] h
1 H 5 0, 1 gh 1 5 0. (2.1)

2 4]t ]x ]t r ]x

Here w is the velocity potential on the fluid surface;
x and t are the horizontal coordinate and the time; h is
the fluid surface elevation over the horizontal position
of equilibrium; E, n, and h are the ice plate’s Young
module, Poisson’s ratio, and thickness, respectively; r
is the fluid density; and

3Eh
D 5

212(1 2 n )

is referred to as the plate’s rigidity on bending. For sea

ice the following parameters are typical (Bogorodsky
and Gavrilo 1980):

9 10 22E 5 10 2 10 N m , h 5 1 2 3 m,

n 5 0.3 2 0.4. (2.2)

Modeling the ice cover by a thin elastic plate imposes
additional limitations upon the scale of wave processes
governed by (2.1). The relevant theory is valid for (i)
plates of small thickness, related to the characteristic
radius of curvature of the middle surface on bending
and (ii) the plate vibrations of a small amplitude com-
pared to the characteristic horizontal scale. The first is
equivalent to kh K 1, which follows from the shallow
water criterion kH , 1 and the evident approximation
h K H. Condition (ii) in our case means simply that
the amplitude of a flexural–gravity wave is small com-
pared to its length; that is, (ii) corresponds to the ac-
cepted approximation of linear waves.

Equations (2.1) do not include the inertial motion of
ice, negligible as compared to that of moving fluid in
virtue of the above h K H at close densities of ice and
water.

The energy conservation law for plane linear waves
(of small amplitude and independent of the horizontal
y coordinate normal to x), that is, the integral of (2.1),
is written as

]Q ]P
5 , Q 5 E 1 E 1 E , (2.3)p k f]t ]x

where Qdxdy is the total energy of a cylindrical fluid
volume and a part of the elastic plate over the base dxdy
and P is the energy flux in the system fluid-elastic plate.
Therefore, Q includes the densities Ek and Ep of the fluid
kinetic and potential energies and Ef of the elastic plate
free energy

2
]w

22E 5 rgh , 2E 5 rH ,p k 1 2]x

22] h
2E 5 D , (2.4)f 21 2]x

while P is given by

]w ]w
P 5 rH

]x ]t

2 2 3] h ] h ] h ]h
1 D 2 . (2.5)

2 31 2]x ]t]x ]x ]t

Equations (2.1) have the simple solution oscillating
in the system at a constant frequency v

h 5 a exp[i(vt 1 kx)] 1 c.c.,

iva
w 5 exp[i(vt 1 kx)] 1 c.c., (2.6)

2k H

where
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FIG. 1. Schematics of (a) the ice crack with free edges and (b) the
ice hummock ridge.

2 2 4v 5 v(k), v(k) 5 k H(g 1 Dk ). (2.7)

At any real v, dispersion equation (2.7) has two real
6k0 and four complex conjugate 6ke, roots, for6k*e
definiteness k0 . 0, Rke . 0, and Tke . 0. For k 5
6k0, solution (2.6) presents real periodic flexural–grav-
ity waves traveling along the x axis. The complex roots
are due to the elastic plate on the fluid surface and
correspond to complex waves with an amplitude ex-
ponentially growing in one direction of the x axis or
decaying in the opposite direction. In the absence of the
plate, that is, as D → 0, the complex waves vanish with
zkez → `, while the real root k0 remains finite.

Let us calculate the energy density and flux for waves
(2.6)

2 2va 1 v
2iu 2Q 5 e 1 c.c. 1 (k 1 k*)

2 2[Hk 2 H(kk*)

D
2 2 2 i(u2u*)2 (k 2 (k*) ) aa*e ,]r

2 2v a
2iuP 5 e 1 c.c. 1 v(k 1 k*)

3Hk

2v D
2 2 i(u2u*)3 1 (k 1 (k*) ) aa*e ,

2[ ]H(kk*) r

u 5 kx 1 vt. (2.8)

After averaging (2.8) for real k over the wave period
2p/v, we find

22v
^P& 5 c ^Q&, ^Q& 5 aa*,0 2Hk

]v
c 5 , k 5 6k , (2.9)0 0]k

where the angular brackets mean the relevant averages.
One sees that real waves transfer energy at group ve-
locity c0. It also follows from (2.9) that in the case of
two waves of equal energy in fluid of the same depth,
the wave propagating beneath ice of smaller thickness
should have larger amplitude.

Similar averaging for complex waves yields

^P& 5 0,

21 v
2^Q& 5 (k 1 k*)

2[2 H(kk*)

D
2 2 i(u2u*)2 (k 2 (k*) ) aa*e . (2.10)]r

Thus, in spite of energy loss in production of complex
waves, they do not transfer energy, which also follows
from decay of the waves along an x direction with no
energy accumulation in any limited fluid volume.

We shall assume that the ice plate is inhomogeneous
and discontinuous. The irregularities considered are

cracks and hummock ridges. The discontinuities in the
ice cover are areas of open water or finely broken ice
whose elastic properties may be disregarded for the
wave propagation. All irregularities are supposed to be
one-dimensional to vary the ice properties only along
the x axis. The basic irregular elements affecting the ice
cover properties are shown in Fig. 1. Case a in Fig. 1
corresponds to free edges of the ice floes. In case b the
edges are elastically hinged to the hummock ridge mod-
eled by a concentrated mass. We assume the ridge to
be previously formed by ice compression, which is ab-
sent at the moment.

An additional scale, that is, typical size of an irreg-
ularity, arises in the problem of inhomogeneous ice
cover. Therefore, we consider the y length of the ir-
regularity to be much longer than its x width. This
width is also much less than the length of flexural–
gravity waves. In general, short-wave (compared to the
irregularity’s width) perturbations can be produced by
diffraction of a long wave. But in the model of a thin
elastic plate we suppose that only negligible energy of
long waves scatter into short waves and the scattering
irregularity is purely linear (with no width). Such an
approach allows us to model the irregularities by ad-
ditional boundary conditions between contacting in-
homogeneous floes.

To each type of irregularity correspond certain con-
tact-boundary conditions to relate edge displacements,
shear forces, and bending moments. The shear force Fx

and bending moment Mxx are given by
3 2] h ] h

F 5 2D , M 5 2D . (2.11)x xx3 2]x ]x

The curved arrows in Fig. 2 show the positive direc-
tion of the bending moments that act on the floe edges
AB and CD. The straight arrows show the positive di-
rection of shear forces.

On a free plate edge the contact-boundary conditions
are

Mxx 5 0, Fx 5 0. (2.12)

The hummock ridge is modeled by a thin inertial rigid
rod frozen into the ice cover along the line x 5 0, z 5 0
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FIG. 2. Curvilinear arrows show the positive direction of bending
moments acting on edges AB and CD of the ice plate. Horizontal
arrows indicate stress directions in the plate.

(Marchenko 1994, 1995). A cross section of the rod con-
sists of two triangles fixed by their bases to lower and
upper surfaces of the plate (see Fig. 1b). The hummock’s
open height (‘‘sail’’) is about three times less than the
thickness of its underwater part so that the hummock is
statically balanced. The sloping angles of both the open
and underwater parts are assumed to lie in the range from
308 through 458. This presentation is in agreement with
actual hummock structures (see, e.g., Zubov 1943). Co-
efficients in the equations of the rod motion depend on
the mass m of unit length and the moment of inertia I
related to the line x 5 0, z 5 0 in the absence of strain.
Marchenko (1994) proposed for these parameters the es-
timates

m 5 r h (9.5h 1 2h),i r r

3I 5 2r h (7h 1 0.3h),i r r (2.13)

where hr is the sail of hummock and ri is the ice density.
Torsion of the hummock is related to rotating the rod’s

vertical cross sections about the axis, while the bending
is due to the axis curvature. We assume the hummock
to hinge elastically to floe edges so that the bending
moment is proportional to the variation in angle F (see
Fig. 1b). In the one-dimensional case, there is no torsion
and bending because the problem does not depend on
the coordinate parallel to the hummock axis. In the ab-
sence of strain, the hummock is actually a concentrated
mass with inertia related to vertical displacement and
rotation about the y axis.

The contact-boundary conditions at the straight hum-
mock ridge extended along y are given by Marchenko
(1994):

2d h0m 5 2 lim F 1 lim F , lim h 5 h ,x x 02dt x→20 x→10 x→60

2d F
I 5 2 lim M 1 lim M ,xx xx2dt x→20 x→10

]h
lim M 5 7a lim 1 F , (2.14)xx 1 2]xx→60 x→60

where the angle F of hummock rotation is counted from
the vertical. We choose F . 0 for clockwise rotation.

The factor a corresponds to the rigidity of hinges fixing
the hummock to the ice edges.

In each vertical cross section of the fluid layer con-
sidered, the conservation laws should hold for mass and
momentum:

]w
[w] 5 0, 5 0, (2.15)[ ]]x

where the brackets show a jump of functions at certain x.

3. Wave diffraction at a crack and a hummock

Let us consider the diffraction of plane waves at an
irregularity changing the thickness of ice cover by a
jump. Parameters of the cover in regions x . 0 and x
, 0 are denoted by subscripts 1 and 2. We introduce
dimensionless coordinates, denoting them by primed let-
ters (the primes will be omitted hereafter):

2l
2Tt9 5 t, lx9 5 x, T 5 ,

gH
3Eh14l 5 . (3.1)

212rg(1 2 n )

This normalization with clear physical meaning re-
duces the number of parameters of the initially stated
problem. Therefore, the value of l does not obligatorily
exceed much the fluid depth H.

Eliminating the elevation h in (2.1), passing to the
dimensionless variables (3.1), and assuming the solution
to be dependent on time t via the factor exp(igt), we
find

4 2] ] w
2g w 1 1 1 5 0, x . 0,

4 21 2]x ]x (3.2)

3 4 2h ] ] w22g w 1 1 1 5 0, x , 0.
3 4 21 2h ]x ]x1

Dispersion equation (2.7) in normalized variables
(3.1) is given by

2 2 4g 5 k (1 1 k ), x . 0;

3h22 2 4g 5 k 1 1 k , x , 0, (3.3)
31 2h1

where k is a dimensionless wavenumber.
The general solution to the problem (3.2) is presented

by the linear combination of solutions (2.4) with arbi-
trary coefficients

6

(l) (l)w 5 w exp(ik x),O j j
j51

l 5 1, x . 0; l 5 2, x , 0, (3.4)

where the numbers 5 2 , . 0 are real roots ofl l lk k k2 1 1

dispersion equation (3.3), while , 5 ( )*, 5l l l lk k k k3 4 3 5
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2 , and 5 2( )* are its complex roots. Velocityl l lk k k3 6 3

potential (3.4) is defined by 12 arbitrary constants ,(l)wj

specified by asymptotic conditions as zxz → ` for the
waves bringing energy from infinity to the irregularity,
by conservation laws and by the contact-boundary con-
ditions at the proper irregularity.

The above asymptotics as zxz → ` is given by two
pairs of superposed real waves, two of them incident
with amplitudes and bringing energy onto the(1) (2)w w1 2

irregularity and the other two (reflected with and(2)w1

) taking energy away from there:(1)w2

(1) (1) (1) (1)w ; w exp(i(k x 1 gt)) 1 w exp(i(k x 1 gt)),1 1 2 2

x → `,
(2) (2) (2) (2)w ; w exp(i(k x 1 gt)) 1 w exp(i(k x 1 gt)),1 1 2 2

x → 2`,
(1) (2)w 5 0, j 5 4, 5; w 5 0, j 5 3, 6.j j (3.5)

The balance of energy fluxes directed to and from the
irregularity, invoking (2.9), yields

(1) (1) 2 (1) 2 (2) (2) 2 (2) 2c (zw z 2 zw z ) 5 c (zw z 2 zw z ),1 2 1 2

]g
(l) (l)c 5 , k 5 k , l 5 1, 2.1]k (3.6)

Then we can introduce the complex coefficients of
wave reflection and transmission as

2(1) (2) (2)w w k2 1 1R 5 , T 5 ,11 12(1) (1) (1)1 2w w k1 1 1

2(2) (1) (1)w w k1 2 2R 5 , T 5 , (3.7)22 21(2) (2) (2)1 2w w k2 2 2

where R11 is the ratio between complex amplitudes of
the wave coming from x 5 1` and the backscattered
wave, T12 is the ratio between the amplitudes of the
waves outgoing to x 5 2` and incident from x 5 1`.
Coefficients R22 and T21 have similar physical meaning.
(Recall that wave amplitude corresponds to the ampli-
tude of fluid displacement above the equilibrium hori-
zontal position.)

From (3.6) and (3.7), the reflection and transmission
coefficients are related by Fresnel formulas

(1) 2 (2) 2 (2) 2 (1) 2(k ) c (1 2 zR z ) 5 (k ) c zT z ,1 22 2 21

(2) 2 (1) 2 (1) 2 (2) 2(k ) c (1 2 zR z ) 5 (k ) c zT z ,2 11 1 12

(2) 2 (1)(k ) c (R T* 1 R* T )2 11 21 11 21

(1) 2 (2)1 (k ) c (R T* 1 R* T ) 5 0.1 22 12 22 12 (3.8)

For instance, if the ice cover thickness is the same
on the two sides of an irregularity, (3.8) reduces to

2 2zRz 1 zTz 5 1, RT* 1 TR* 5 0,

T 5 T 5 T, R 5 R 5 R. (3.9)12 21 11 22

Let us consider Eq. (3.9) in the asymptotic case as g
→ `, which is formally beyond the shallow-water the-
ory but is useful for understanding general features of
the similar finite depth problems. At D2 . 0 from the
first equation in (3.9) we find

D2(1 2 zR22z2) 5 zT21z2, g → `,Ï (3.10)

whence T21 → 0 as D2 → 0. In other words, the trans-
mission of high-frequency flexural–gravity waves from
an area covered with thin ice into a field of thick ice is
close to zero. Actually, at D2 5 0 we deduce from (3.9)
that

1 2 zR22z2 5 3g2zT21z2, g → `. (3.11)

Therefore, the elastic plate represents a rigid wall
reflecting totally the incident high-frequency waves.

The second equation of set (3.9) reduces to

2 2ÏD zT z 5 (1 2 zR z ), g → `,2 12 11

2 2 2zT z 5 3g (1 2 zR z ), (3.12)12 11

which cannot explain the asymptotics of wave trans-
mission from thick ice to thin ice or to open water. In
section 2 we showed that for two waves of equal energy
the larger amplitude belongs to the wave propagating
beneath the thinner ice. Hence, the amplitude of a wave
passing from thick to thin ice can grow, in principle but
not necessarily, because some energy transfers into the
reflected wave. Thus, this problem should be solved in
a complete diffractional formulation.

Before a numerical analysis, we rewrite the contact-
boundary conditions, respectively, for a crack (2.12)

4 5] w ] w
lim 5 0, lim 5 0 (3.13)

4 5]x ]xx→60 x→60

and a hummock (2.14)

3 3] h ] h
2mg h 1 lim 2 lim 5 0,0 3 3]x ]xx→10 x→20

2 2] h ] h
2m g f 1 lim 2 lim 5 0,t 2 2]x ]xx→10 x→20

2] h ]h
lim 6 ã lim 1 f , lim h 5 h ,02 1 2]x ]xx→60 x→60 x→60

mH IH a
m 5 , m 5 , ã 5 (3.14)t3 5 3rl rl rgl

with the normalized parameters and angular variable

af
F 5 ,

l

where a is a characteristic vertical displacement of the
ice cover.

Further computations are conducted for the case when
the wave of unit amplitude 5 1 brings energy from(2)w2

the side x 5 2` with no energy flux from the other
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FIG. 3. Dependency of the squared modulus zT21z2 of wave trans-
mission coefficient on the incident wavenumber and the ratio h2/(2)k2

h1 of ice thicknesses separated by the cover irregularity: (a) crack
with free edges; (b) hummock with the reduced values of mass m 5
0.6, moment of inertia mt 5 0.05, and rigidity of hinges 5 105;ã
and (c) crack with fused edges.

FIG. 4. Wavelength L of the incident wave with the highest trans-
mission, depending on the ice thickness h1.

side, 5 0. For the diffraction at a hummock we take(1)w1

the numerical parameters m 5 0.6 and mt 5 0.05 to
correspond to estimates (2.2) and (2.13) if the fluid
depth does not exceed H 5 100 m and the hummock
sail is on the order of the ice thickness, hr # 3 m.

Some computations are also made for the limiting
case of m 5 mt 5 5 0—that is, for the ice crack withã
edges not displacing but rotating freely around the con-
tact line. This is the case of compressed ice cover, where
the relative displacement of the edges is hindered by
friction; then the plate’s motion should, in general, be
affected by the vertical compressing force. A simple
estimate shows that a vertical compression up to 106 N
m22 [ice strength by Bogorodsky and Gavrilo (1980)]
is negligible compared to the effects of gravity and elas-
ticity.

Figure 3 is a plot of the dependency of the squared
modulus zT21z2 of the transmission coefficient, that is,
transmission by wave energy, versus incident wave-
number and the ratio of ice thicknesses separated(2)k2

by the cover irregularity (this figure is for wave vectors
within the range of the shallow water approximation).
Wave diffraction at a crack with free edges is presented
in Fig. 3a; the process at a hummock for 5 105 isã
shown in Fig. 3b, and Fig. 3c corresponds to the dif-
fraction at the crack with no relative displacement of
edges.

The wave transmission through a crack with free edg-
es (Fig. 3a) decreases monotonically as the wave vector

grows at rather small ratio h2/h1. Beginning with a(2)k2

certain ratio less than unity, we see a local transmission
maximum at ø 0.5, which is the greater at larger(2)k2

h2/h1. At h2/h1 5 5 the modulus of transmission coef-
ficient reaches approximately 2.8. The shorter waves are
more strongly reflected by the crack, in the relevant limit
the amplitude of transmitted waves exceeding that of
reflected ones, if the ratio h2/h1 is greater than some
critical value above the unity.

The maximum amplification at 5 0.5 in dimen-(2)k2

sional parameters corresponds to wavelength L 5 4pl,
where the characteristic length l is determined by (3.1)
through the ice rigidity and cover thickness. For clarity,
the dependence of L on h1 is plotted in Fig. 4 to show
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FIG. 5. Wave energy transmission zT21z2 in the shallow water limit
for (a) the wave coming from the open water to the ice field and (b)
in opposite direction.

FIG. 6. Frequency dependency of the wave energy transmission
zT21z2 through the ice ridge for various hinge elasticities .ã

that, for example, at 0.8 , h1 , 1 m, the length of the
most penetrative wave is (on the crack’s left side) about
200 m, thus corresponding to the shallow water ap-
proximation at fluid depth no more than 30 m. The
transmitted wave is a little less than 150 m long.

As mentioned above, the short-wave asymptotics is
outside of the shallow water approximation; however,
it demonstrates the wave transmission qualitatively at
arbitrary fluid depth. It is clear from qualitatively similar
shallow water dispersion law (3.3) and relation g2 5
k(1 1 Dk4)tanh(kH) for a fluid of finite depth H. The
asymptotics of g(k) as k → ` has powers 5/2 and 3,
respectively, for finite depth and shallow water, and ev-
idently coincides for small wave vectors. The group and
phase velocities of short waves greatly exceed those of
long waves in the two cases. At D 5 0 the short wave
velocities are much less than those of long ones at finite
depth, but all wave velocities are the same in shallow
water (as a function of depth).

Figures 5a and 5b present the shallow water depen-
dencies zT21z2( ) in limiting cases h2 5 0 and h2/h1 5(2)k2

`, corresponding respectively to the wave output from
the open water to the ice field and vice versa. In the
former case, the transmission vanishes for short waves,

while in the latter it grows monotonically as → `.(2)k2

Thus, short-wave transmission is asymptotically the
same for h2 5 0 and h2 → 0, whereas it differs dra-
matically for the cases of h2 . 0, h1 5 0, and h2 k h1

. 0, which indicates a strong impact of ice cover of
any thickness on the short waves. Therefore, the as-
ymptotic wave transmission through a crack dividing
thick and thin ice fields always differs from that as a
short wave propagates from an area covered with ice
into open water.

The dependency of zT21z2 on and h2/h1 on a hum-(2)k2

mock (Fig. 3b) is rather complicated. Some transmission
features are the same as in the case of a crack with free
edges: the local maximum at wavelength close to L and
asymptotically zero transmission of short waves at h2

5 0. This complex shape of the surface zT21( , h2/h1)z2,(2)k2

as in Fig. 3b, is due to interaction of rotational and
vertical (heave) modes of the hummock motion. The
wave diffraction by a hummock frozen within a ho-
mogeneous ice plate is illustrated in Fig. 6 for various
parameters of coupling between the hummock andã
the plate. The main common feature there is the point

ø 2 of almost the total transmission, depending but(2)k2

slightly on . (Even the curve with 5 1025 showsã ã
the unit transmission there, designated in Fig. 6 by a
thin vertical line.) It is noteworthy that the above pe-
culiarity is only probable since it lies somewhere at the
edge of the range of applicability for shallow water
theory.

The dependency of transmission on the wave vector
and the ratio of ice thicknesses for a crack with fused
edges is qualitatively similar to that for a crack with
free edges, differing only for short waves more strongly
reflected by free edges. Physically, it is quite clear be-
cause the plate-free edges present a greater inhomoge-
neity than adhered ones.

It is noteworthy that in all the three cases illustrated
by Fig. 3 the local maximum of transmission is near the
wave vector 5 0.5. This value is characteristic of(2)k2

the reflecting effect for the thin ice. For comparatively
long incident waves and h2 . h1, the wave transmission
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FIG. 7. Wavenumber dependency of the wave transmission through
two (a) and three cracks with free edges in the ice cover with (b)
equal and (c) strongly different (1:20) spacing between them.

through an irregularity is qualitatively similar to the
output from the ice field to the open water.

4. Diffraction at several cracks

Let the fluid motion be caused by a flexural–gravity
wave of unit amplitude with the wave vector k, in-
cident from x 5 2` onto N irregularities. The com-
plex amplitudes of waves reflected RN21 and trans-
mitted TN21 through the N 2 1th irregularity are
known and the spacing between N 2 1th and Nth
irregularities is lN21. The irregularities lie along the
straight lines x 5 aj, j 5 1 2 N 2 1; a1, a2, ··· , aN21.
By virtue of linearity of the problem, interactions of
the wave with each irregularity are independent.
Therefore the amplitudes of waves reflected RN and
transmitted TN by N irregularities of the same type are
presented by the series:

2 2ikl 2iklN21 N21R 5 R 1 (T ) e R (1 1 R R eN N21 N21 1 1 N21

2ikl 2N211 (R R e ) 1 ···),1 N21

ikl 2iklN21 N21T 5 T T e [1 1 R R eN N21 1 1 N21

2ikl 2N211 (R R e ) 1 ···].1 N21 (4.1)

Calculating the sums of geometric progressions, we
find

2 2ikl N21(T ) e RN21 1R 5 R 1 ,N N21 2ikl N211 2 R R e1 N21

ikl N21T T eN21 1T 5 . (4.2)N 2ikl N211 2 R R e1 N21

For two of the same irregularities spaced by distance
l1, we have respectively

2 2ikl1R (T ) e1 1R 5 R 1 ,2 1 2 2ikl11 2 (R ) e1

2 ikl1(T ) e1T 5 . (4.3)2 2 2ikl11 2 (R ) e1

As mentioned, at rather high frequencies the coeffi-
cients R1 and T1 are virtually constant. In this case it
follows from (4.3) that R2 and T2 depend on k quasi-
periodically with amplitude of the oscillations close to
unity. In other words, a countable set of frequencies
exists with k 5 np 2 arg(R1), n 5 0, 61, 62, ··· , at
which the waves pass the system of two irregularities
without energy loss. Physically it is quite clear because
some resonant (Bragg type) wave scattering is observed
at the crack grating in the frequency range where the
wave transmission through a single crack is independent
of frequency.

The dispersion of transmission coefficient for two
cracks, zT2(k)z2, is presented in Fig. 7a, where their spac-
ing is chosen as a scale and the normalized ice plate
rigidity is D 5 1022. For elasticity E 5 1010 N m22 and

ice thickness h 5 2 m, the scale is l ø 94 m; that is,
the dimensional wave vector is k/94 m21. One sees that
at k . 2 the wave transmission becomes quasiperiodic
with narrow unit maxima, while the wave vector inter-
vals with minimum transmission are wider, excluding
the range of long waves with almost the total trans-
mission.

The dependency zT3(k)z2 for the wave diffraction at
three equidistant cracks is plotted in Fig. 7b at the above
ice cover parameters. The general run of this function
is quite similar to that for two cracks. However, in a
small vicinity of each local maximum of zT2(k) z2, there
are two maxima of zT3(k)z2, and the minimum of zT3(k)z2
is less than that of zT2(k)z2.
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In a general case of N irregularities arranged through
the same spacing, relations (4.2) give also the periodic
dependence of RN and TN on k at high frequencies. But,
if the distances between irregularities differ, then the
high-frequency wave coefficients RN and TN are ex-
pressed via products of periodic functions with incom-
mensurable periods. Therefore, the coefficients should
have numerous local extrema with varying distances
between them. A typical example is shown in Fig. 7c
for three cracks, where the distance between the second
and third cracks exceeds that between the first and sec-
ond by a factor of 20.

It seems that as N → `, one can only consider the
probability of the wave passing through an infinite num-
ber of irregularities with random spacing because in any
vicinity of a wave vector with nonzero transmission a
point k with total reflection exists. If the spacing be-
tween irregularities is constant, the frequency depen-
dencies of reflection and transmission should contain
forbidden gaps of zero transmission and allowed zones
of total transmission. We consider these effects in more
detail next.

5. Diffraction at a periodic system of
inhomogeneities in the ice cover

We analyze two types of periodically inhomogeneous
ice cover. In the first case it is supposed that the ice
plate is discontinuous but consists of ice bands with
finely broken ice floating in between. In the second case
we assume the ice cover contains an infinite number of
rectilinear, parallel, and equidistant hummock ridges.
We will try to determine the conditions under which
undamped surface waves exist.

Let us employ the dimensionless variables (3.1), tak-
ing the period of irregularity in the ice cover as a char-
acteristic horizontal scale l. The equations of motion are
then reduced to the system of the type of (3.2) with

4 2] ] w
2g w 1 1 1 D 5 0,

4 21 2]x ]x
(5.1)

where

3Eh
D 5

2 412rg(1 2 n )l

in the ice bands and D 5 0 in the areas filled by finely
broken floating ice.

In order to solve the problem in the case of bands,
we must determine the conditions under which (3.2) has
bounded traveling-wave solutions satisfying an infinite
number of the contact-boundary conditions on the floe
edges

4 5] w ] w
5 0, 5 0,

4 5]x ]x

x → j 1 0, x → J 1 N 2 0,

j 5 0, 61, 62, ··· (5.2)

and conservation laws for energy and momentum

[w] 5 0, []w/]x] 5 0,

x 5 j, x 5 j 1 N. (5.3)

Note that one spatial period takes the interval j , x
, j 1 N, where N characterizes the ice concentration
on the fluid surface and is an analogue of the ice cover
compactness.

In the second case of floating broken ice, the contact-
boundary conditions and conservation laws are given by

3 3] h ] h
2D lim 2 lim 2 mg lim h 5 0,

3 31 2]x ]xx→j10 x→j20 x; raj10

2 2] h ] h
2(ã 2 m g D) lim 2 ã limt 2 2]x ]xx→j20 x→j10

]h
22 ãm g lim 5 0,t ]xx→j20

2 2] h ] h
2(ã 2 m g D) lim 2 ã limt 2 2]x ]xx→j10 x→j20

]h
22 ãm g lim 5 0,t ]xx→j10

]w
lim h 5 lim h, [w] 5 5 0, x 5 j. (5.4)[ ]]xx→j10 x→j20

Solution of these problems reduces to finding the ei-
genvalues of the monodromic matrix. The intervals of
frequency g in which the modulus of each eigenvalue
is not equal to unity are the forbidden gaps. Waves
whose frequencies belong to forbidden gaps cannot
propagate undamped beneath the inhomogeneous ice. If
the wave frequency lies outside the forbidden zones,
then the equations have bounded solutions that are pe-
riodic functions of time. These solutions correspond to
waves that propagate without energy loss.

Let us construct the monodromic matrix for the case
of broken ice cover. Within the interval x ∈ (j, j 1 1),
the solution for the wave amplitudes can be written as

j j j jw 5 C w 1 C w ,1 1 2 2

6

j ik (x2j) ik (x2j)r lw 5 e 1 C e ,Or rl
l53

x ∈ ( j, j 1 N),
j j ig(x2j) j 2ig(x2j)w 5 C e 1 C e ,r 1r 2r

x ∈ ( j 1 N, j 1 1), r 5 1, 2,

where the wavenumbers k1,2 and k3–6 are the real and
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FIG. 8. Forbidden gaps for the wave propagation in a broken ice:
the ordinate axis corresponds to (a) the relative ice concentration N
and (b) the ice thickness h for the concentration N 5 0.8. The abscissa
is the dimensionless wave frequency g.

complex roots of the dispersion equation g2 5 k2(1 1
Dk4). The constants and Crl satisfy a system of linearjC6r

algebraic equations, which follow from the contact-
boundary conditions (5.4):

6 6

4 4 5 5k 1 C k 5 0, k 1 C k 5 0,O Or rl l r rl l
l53 l53

6

4 ik N 4 ik Nr lk e 1 C k e 5 0,Or rl l
l53

6

5 ik N 5 ik Nr lk e 1 C k e 5 0,Or rl l
l53

6

ik N ik N igN 2igNr lk e C k e 5 g(C e 2 C e ),Or rl l 1r 2r
l53

6

ik N ik N igN 2igNr le 1 C e 5 C e 1 C e .O rl 1r 2r
l53

Let the solution in the interval x ∈ (j, j 1 1) be equal
to . The constants are found from the conditionsj j11w Cr r

(5.3) at the points x 5 j,

6

ig 2ig j11C e 1 C e 5 C 1 1 CO1r 2r 1 1 l1 2l53

6

j111 C 1 1 C ,O2 2 l1 2l53

6

ig 2ig j11g(C e 2 C e ) 5 C k 1 k CO1r 2r 1 1 l 1 l1 2l53

6

j111 C k 1 k C . (5.5)O2 2 l 2 l1 2l53

Equations (5.5) have solutions corresponding to r 5
1 and r 5 2. The monodromic matrix has the form

j11 j11C z C z1 r51 2 r51T 5 .
j11 j111 2C z C z1 r52 2 r52

We pass to another basis in the space of functions
in which T is a diagonal matrix. An arbitrary solutionjwr

in the new basis is a superposition of new basis functions
. In this basis, the elements of T are its eigenvaluesjc r

Tr. The solution (x0), where x0 ∈ (j 1 1, j 1 2), isj11c r

equal to the product Tr (x0 2 j). This shows that if thejc r

absolute eigenvalue of the matrix is not unity, then the
wave exponentially decays in one direction or grows in
the other.

The monodromic matrix T for an ice cover with a
periodic system of hummocks is constructed in a similar
way. The solution is represented in the form

6

j ik (x2j)lw 5 C e , x ∈ ( j, j 11),O l
l51

where the constants are related to via (5.4). Thej11 jC Ck l

nth row of T (which is a 6 3 6 matrix) is a solution to
(5.4) in terms of for 5 0, k ± n, 5 1. Thej11 j jC C Ck k n

eigenvalues of the monodromic matrix are functions of
the frequency g and the ice cover parameters N, D, m,
mt, and .ã

Numerical calculations were carried out for a fixed
l and various values of g, N, h, and hr. The hummock
parameters m and mt were determined by (2.14) and
(3.11). The calculated data are shown in Figs. 8 and
9 in the parameter planes (g, N), (g, h), (g, hr). Thus,
when each point is calculated, all parameters are fixed
except the fluid depth H, which enters the definition
of dimensional frequency v 5 g gH/l. Therefore,Ï
the interpretation of these data in dimensional vari-
ables depends on the depth H.
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FIG. 9. Forbidden gaps for the wave propagation in a hummocked
ice: dependency of the ridge sail on dimensionless wave frequency g.

The fluid and ice parameter values were typical for
shelf areas of the Russian Arctic seas. The depth H
was varied from 10 to 50 m. The Young module, Pois-
son’s ratio, and ice density were determined by (2.2).
The ice thickness and the hummock sail were varied
from 1 to 3 m. Because the hummocks usually arise
at the places of contact between floes, the distance
between adjacent hummocks was assumed to be on
the order of the floe size. The characteristic horizontal
scale l was set to 100 m. (At a smaller scale the shal-
low water equations are invalid, while for l k 100
m the ice cover virtually does not interact with the
surface wave.) The dimensionless coefficient of theã
hummock coupling with ice was taken to be 1025. The
dimensional quantity a is produced by multiplying
the latter by rgl3 $ 1010 N. For a hummock rigidly
fixed to the ice cover, a 5 `, and for floe edges
rotating freely around the hummock, a 5 0. Thus,
the value of used in the calculations correspondsã
to the hummock weakly attached to the ice.

The forbidden gaps in the wave frequency spectrum
are shown in Fig. 8 by gray shading. Typical examples
of forbidden gaps for waves in broken ice are plotted
in Figs. 8a,b. The dimensionless frequency g lies
along the horizontal axes. In Fig. 8a the vertical axis
is the concentration parameter N for h 5 2 m. The
frequency spectrum displays forbidden gaps at N .
0.2. With growing N these zones become wider, and
the boundary of the first gap shifts toward lower fre-
quencies down to g1 ø 7. Let us suppose that surface
wave packets of various spectral composition prop-
agate under an ice cover that has extended fields of
different tightness. Then scattering by these irregu-
larities should lead to an exponential attenuation of
all waves whose dimensionless frequencies are great-
er than 7. The dimensional frequency v1 correspond-

ing to g1 varies from 0.7 to 1.5 s21 as H varies from
10 to 50 m, and embraces wave periods from 4.2 to
9 s.

Figure 8b shows the forbidden gaps at ice concen-
tration N 5 0.8. The ice cover thickness in meters is
plotted along the vertical axis. The forbidden gaps
become wider with growing ice thickness, their left-
hand boundary remaining virtually the same.

Typical forbidden gaps for a hummocked ice cover
are shown in Fig. 9 for h 5 1 m. The dimensionless
frequency g is plotted along the horizontal axis in the
same range as in Figs. 7a,b. Along the vertical the
hummock sail hr is plotted in meters. As this sail and,
hence also, the hummock mass increase, the forbidden
gaps widen with no virtual change in their right-hand
boundary. Calculations show that at wave passage
through hummocked ices the boundary of the first gap
can shift toward lower frequencies down to g 5 4.
In dimensional variables, this boundary can lie in the
frequency range 0.4 , v2 , 0.9 s21 for sea depth H
varying from 10 to 50 m, that is, period of waves with
relevant frequency in the interval from 16 to 7 s.

6. Conclusions

We have studied the interaction of flexural–gravity
waves propagating at the surface in shallow water
beneath an elastic ice cover with linear irregularities
modeling cracks and hummocks. In all the cases con-
sidered the transmission coefficient tends to unity as
the wavelength tends to infinity. Physically this means
a weak impact of ice cover on propagating long
waves.

When passing a single irregularity, the wave energy
is partly reflected and transmitted. If the ice thickness
has a discontinuity there, then the amplitude of passed
wave can exceed that of the incident one. An extreme
increase of wave amplitude occurs when the dimen-
sionless wavenumber is close to 0.5. For instance, if
the ice thickness is 1 m, then such a value corresponds
to wavelengths of about 200 m.

For wave diffraction on a finite set of the ice cover
irregularities with the same spacing, the transmission
depends periodically on wavenumber for sufficiently
short incident waves. There are a countable set of
wavenumbers at which the transmission coefficient is
equal to unity in absolute value and the waves pass
totally through the irregularity. Another countable set
of wavenumbers has the transmission close to zero.
These local minima are rather smooth so that waves
with numbers in the vicinity of the minima are strong-
ly reflected by periodic irregularities.

For different spacing between adjacent irregulari-
ties, the transmission dependency on wavelength is
sharply stepped. There are local maxima in small vi-
cinities of local minima; therefore the scattering of
waves with close frequencies can proceed with dif-
ferent scenarios.
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If an infinite set of irregularities is periodically dis-
tributed over ice cover of permanent thickness, the
frequency spectrum has forbidden gaps where the in-
cident waves are totally scattered by the irregular ice
cover and attenuate exponentially when propagating
under it. The first forbidden gap is separate from the
zero frequency, and very long waves travel beneath
the ice with small energy loss. Meanwhile, the gap
can contain the frequencies of typical swells and wind
waves, which should be strongly scattered by the ir-
regular ice cover. This pattern agrees with the exper-
imental observations in the Arctic by Wadhams and
Wells (1995), who measured only the low-frequency
part of swells propagating under the ice from open
water.

In the case of a large number of irregularities ar-
ranged randomly over the ice cover, one could prob-
ably speak only about a probable existence of an un-
damped flexural–gravity wave with specified period.
Therewith, the probability of surviving low-frequen-
cy waves is close to unity. If the system of irregu-
larities is nearly periodic, the probability reproduces
the structure of forbidden gaps; that is, the probability
of an undamped wave is almost zero in the vicinity
of these gaps for the periodic problem.

It must be pointed out that all of the above results
were derived for the shallow water approximation and
are directly applicable only to shelf areas of the ocean.
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