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ABSTRACT

The purpose of this paper is to discuss the possibility of determining mass transports in a relatively small
ocean region, using a hydrographic dataset and some general physical principles. A new hydrographic dataset
of the Iceland Basin is used as an example. The physical principlesimply geostrophy for the baroclinic component
of the velocity field, whereas the barotropic component is determined in the first instance by assuming a uniform
level of no motion.

It is attempted to eliminate the subjectivity inherent in this method by using inverse modeling techniques,
which describe the physical principles (conservation of tracers) in a mathematical form. In this paper it is shown
that some of this subjectivity is misleading, by presenting in detail which choices are to be made and how they
influence the results. These choices include weighting parameters, omission of planned measurements, and
smoothing parameters.

From a simulation study on the Levitus dataset it is concluded that the stability of the inverse methods can
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be improved by choosing an aternative way of sampling.

1. Introduction

In this paper, the problem is addressed to estimate
geostrophic transports from hydrographic and tracer dis-
tribution measurements. In the area of interest, the Ice-
land Basin (60°-65°N, 10°-30°E), a hydrographic da-
taset was collected in spring 1990 and 1991. In Fig. 1
the hydrographic stations of the 1991 dataset are plotted
on atopographic map. The stations are arranged in box-
es that are either closed or bounded by land. Figure 2
shows the 1990 and 1991 stations that are grouped into
sections, through which the transports are to be deter-
mined. Stations on sections I, 11, 111, 1V, and V of the
1991 dataset have corresponding stations in the 1990
dataset that are closer than 2 km. One of the aims of
the measurement program was to obtain more insight
in the size, location, and branching of the overflow
transport and the deep northern boundary current (Mc-
Cartney 1992). In particular, it was hoped to quantify
some of the water movements determined by a water
mass analysis (van Aken and de Boer 1993, unpublished
manuscript, hereafter VADB) of the same dataset.
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The main topic of the present paper is concerned with
the possibility of answering the above research ques-
tions in an objective way, thereby only using the re-
gional dataset and some general physical principles. To
obtain an independent view the a priori knowledge from
other researchers who collected data in the same area
is avoided.

The hydrographic data alone give, through the geo-
strophic and hydrostatic approximation of the momen-
tum equation, a relationship between the vertical deriv-
ative of the horizontal velocity field and the horizontal
density gradient: the thermal wind balance. The inte-
gration constant, necessary to compute the velocity field
itself, may vary with the horizontal position. The clas-
sical way to find the integration constant is to assume
that at a certain pressure level p, the velocity vanishes.
The subjectivity in this solution originates from the as-
sumption that there is a uniform level of no motion
[which is questionable on theoretical grounds, Olbers
and Willebrand (1984)], and, if it exists, whereit should
be chosen. The ambiguity in the latter problem can be
removed by choosing the level of no motion such that
the net mass flux into a closed box is minimized.

In 1978 Wunsch proposed an inverse modeling tech-
nique to remove the subjectivity inherent to the as-
sumption of a level of no motion. In this method, the
missing integration constants are found by taking into
account that some of the tracers are conservative, so
that the net amount of tracer material flowing into a
bounded region is zero. By translating these kinds of
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Fic. 1. The bottom topography of the Iceland Basin with the locations of the 1991 stations. |sobaths are presented
in meters.

restrictions for different tracers and different regions straints resulting from the conservation assumptions of -
into a set of mathematical equations in which the in- ten appear to be linearly dependent, and therefore there
tegration constants act as the unknowns, the total flow is generally no unigque solution.

can be computed by solving these equations, at least in At first glance, it might seem hopelessto try to solve
principle. In practice, however, the mathematical con- an underdetermined system of equations. There are,
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Fic. 2. Schematic locations of the stations and sections of the 1990 (left) and 1991 (right) dataset. The positions of the stations corre-
sponding to one section have been blown up a little. In reality, the last station of section | coincides with the first station of section I1.
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however, reasons why the situation in the particular case
of the hydrographic inverse problem is different. In the
first place, one could select the large-scal e solution using
a singular value decomposition (SVD) of the model
equations. Wunsch (1978), Fu (1981), and Roemmich
(1980, 1981) argue that the SVD solution chooses,
among all possible solutions, the one in which the small-
scale variations are filtered out. In the second place,
oceanographers are generally only interested in the total
transports through sections, rather than in the velocities
at individual station pairs. In this way, the number of
degrees of freedom is substantially reduced.

Since the SVD method selects, among all possible
barotropic flows satisfying the inverse model equations,
the one that has minimum norm in aleast squares sense,
an alternative argument for the SVD solution is that it
gives the flow with the least kinetic energy (e.g., Van
Aken 1988). An important feature of the SVD solution
is that it depends on a reference level used to compute
the baroclinic velocity. This reference level can be con-
sidered as a source of subjective input from the re-
searcher. For example, the *‘large-scale interpretation’
of Wunsch and the ** minimum kinetic energy interpre-
tation” only work at this reference level. Another point
of concern is that for a large-scale filter, one would
prefer to minimize the horizontal derivative in flow,
instead of its amplitude. This idea has been put forward
before (e.g., Wunsch 1978; Stommel and Veronis 1981)
and in Mclntosch (1990) a formal relationship between
type of norm and length scale is given, but, as far as
the author knows, it has not yet been worked out in
detail for the problem at hand.

The interpretation of Fiadeiro and Veronis (1982) of
the SVD solution is that it determines the smallest pos-
sible correction to the classical level of no motion ap-
proach that is necessary to satisfy conservation prin-
ciples. The dependence of the SVD solution on the ini-
tial reference pressure is used to minimize the correc-
tion. Another variant is sketched in Veronis (1987).
First, a level of no motion is sought, which conserves
mass as well as possible. Then, using this level as a
reference for the baroclinic velocity, the smallest pos-
sible correction to this initial choice is computed by
using the SVD method. Both variants seem to solve the
reference problem but it still remains unclear what the
underlying physical principles are that lead to the pro-
posed two-step method. The implicit assumption that
there is a uniform level of **slow motion,” which con-
serves mass (although it is at unknown depth) enor-
mously restricts the solution space and overdetermines
the system of equations. But at the same time the phys-
ical basis underlying this assumption may be called
guestionable. In the present paper an alternative method
is shown that avoids the arbitrariness of the reference
level.

In the next section, the solution determined by an
optimal level of no motion will be presented and dis-
cussed. Then it will be attempted to improve this so-
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lution using inverse modeling techniques. In section 3,
these techniques are analyzed in detail and its under-
lying assumptions are made explicit. In section 4, the
results of several variants of inverse models are pre-
sented, compared, and discussed. In section 5, a sim-
ulation study is presented on an alternative way of sam-
pling, which yields more stable equations in which the
unwanted sensitivities are substantially reduced.

2. The optimal level of no motion

The sampling scheme of hydrographic data intended
for inverse modeling usually consists of a set of vertical
sections that enclose one or more water volumes
(boxes). At the vertical boundaries of these boxes the
in situ density p can be determined from temperature
and salinity measurements as a function of pressure p.
Since the density is measured as a function of pressure,
and not as function of geopotentials, the geostrophic
flow through the boundary can only be computed with
an arbitrary offset. This offset appearsin the geostroph-
ic-hydrostatic equations if they are transformed into a
coordinate system in which the pressure (instead of the
geopotential) acts as a vertical coordinate. If s is the
horizontal coordinate along a section, then the geo-
strophic flow perpendicular to the curve y: X = x(s), ¥

= y(s) is given by
_Lof [t d
v(s p) = 7 as{ L prye ggo(s)}. )

Here {,(s) is the unknown height of a (yet) arbitrary
pressure level p, over an equipotential surface of the
earth’s gravity field, f is the Coriolis parameter, and g
is the gravity acceleration. The positive flow direction
of v with respect to the curve is to the right-hand side
for increasing s.

If there is a uniform level of no motion at p = p,,
then {(s) = O for all s. Geostrophic velocities at a
pressure level p can be computed by integrating the
gradient of the specific volume anomaly from p, to p.
With these velocities, the corresponding net mass trans-
port of abox of Fig. 2will, in general, not vanish, which
violates the conservation of mass applied to that box.
The optimal level is determined by varying p, in such
a way that the sum of squared net transports (the rms
value) is minimum.

a. Results

Using the bisection method, it was found that for the
1990 dataset the optimal level of no motion is at 958
dbar and the rms value of the net transportsis 0.69 (Sv
= 10° m® s7%). For the 1991 dataset these numbers are
1009 dbar and 1.20 Sv. These resultsimply that at some
stations the level of no motion was deeper than the
station depth. At these stations p, was set to station
depth. In Fig. 3 the transports through each of the sec-
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FiG. 3. Transports in 1990, computed by a uniform optimal level of no motion at 958 dbar (left) and with a level of no motion at 1009
dbar for the 1991 data (right).

tions are graphically presented (left 1990, right 1991).
For this purpose, the water column is divided into four
layers, bounded by a surface of constant potential den-
sity (relative to the O dbar level): first layer, 27.30—
27.55; second layer, 27.55-27.70; third layer, 27.70—
27.85; and the fourth layer, 27.85-27.93 (bottom). In
Fig. 4 the isopycnals are given for each box boundary.
The first layer roughly corresponds to sub-polar mode
water (SPMW), the second layer corresponds to inter-
mediate water (IW), the third layer corresponds to L ab-
rador Sea Water (LSW), and the fourth layer corre-
sponds to the lower deep water (LDW) and the | celand—
Scotland overflow water (ISOW) (VADB). For each lay-
er, the transports through each section are presented
within a box in Fig. 3. The length of the black bars
gives the volume of the transport; the scale is given in
the lower right corner of the figure. The lower middle
box gives the total transports through each of the sec-
tions. Table 1 gives the total transports for 1990, com-
pared to those for 1991.

b. Discussion
From these results three conclusions may be drawn:

1) With the simple concept of alevel of no motion very
small mass deficits can be obtained.

2) The transports of corresponding sections all havethe
same sign (except section 1V) and the same order of
magnitude.

3) The location of the optimal level of no motion is
rather constant.

Furthermore, in both datasets the upper layer, repre-

senting the SPMW, is flowing toward the northeast and
at the bottom a return current is flowing toward the
south. This roughly confirms the qualitative ideas about
the area as presented in, for example, Harvey and Theo-
doroy (1986).

The results presented in Fig. 3 also demonstrate that
the mass deficit for the individual layers is quite large.
For instance, in the upper layer of the leftmost box of
the 1991 dataset, the transport over the Reykjanus Ridge
(section 1) is virtually zero whereas the difference in
transport through this layer of the remaining two sec-
tions amounts to 2.3 Sv. The mass deficit in the lower
two layers is of the same order but of opposite sign.
Therefore, the total mass deficit of box | is only 0.06
Sv. Similar effects play a role in the other two boxes.
These results can only be explained by a vertical ad-
vection across an isopycnal surface of about 2 Sv in the
left box. Vertical transports of this size roughly corre-
spond to an average vertical velocity of 5.0 X 10-5 m
s%, if an area of 200 X 200 km? is assumed. This
number is quite large because it is comparable to the
total vertical motion, which typically amounts to 10-¢
to 10* m s* (e.g., Apel 1987).

A more fundamental objection against these results
isthat they are based on the existence of auniform level
of no motion. Although the current meter measurements
carried out in the Iceland Basin (Van Aken 1997, manu-
script submitted to J. Phys. Oceanogr.) seem to indicate
that there is a minimum velocity at 1000 dbar, when the
amplitudes of all moorings are plotted in one figure
against pressure, this does not necessarily imply that the
there is a uniform level of no motion. An alternative
method to investigate the water movement as afunction
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of depth, with the given two datasets, is to plot the
temporal variability of the tracer measurements as a
function of depth. If it is assumed that temporal vari-
ability of the tracersis mainly determined by advection
of horizontal gradients and if, moreover, the horizontal
gradients are roughly depth independent, then one
would expect to find a minimum in variability at p =
1000 dbar.

Figure 5 shows the difference in salinity, oxygen,
silicate, nitrate, potential temperature and potential den-
sity between the 1990 and the 1991 dataset asafunction
of depth. All stations selected are deeper than 1500 dbar,
and have a counterpart of the complementary dataset
closer than 4 km. There were 22 station pairs meeting
these requirements. The level of maximum variability
in all tracers presented is approximately 800 dbar, which
is rather close to the optimal level of no motion. Figure
5 showsthat the level of minimum variability, if it exists,
is below 1500 dbar.

When all six tracers in all 22 station pairs are con-
sidered asindependent samples, it israther contradictory
to find a maximum variability close to 1000 dB if at
the same time it is assumed that the water is motionless
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Fic. 4. The isopycnals in each of the box boundaries using the
interpolation method described in the text. The layers correspond to
assumed original water types. The bar on top of the figure shows the
distribution of the layer thickness on the potential density scale (units
in kg m®). The large tics on the top and bottom of each figure show
where a new section begins. The small tics at the bottom indicate the
locations of the individual stations.

at that level. This analysis demonstrates the need for an
inverse method, in which thelevel of no motionisavoid-
ed.

3. The inverse method
a. Assumptions

The purpose of inverse methods, applied to the prob-
lem of transport estimation, is to improve the method
of auniform level of no motion. In the inverse method,
as introduced and developed by Wunsch (1978), the
barotropic component is estimated from a mathematical
model describing the measured tracer concentrations C.
This model is based on the assumptions that the tracer
is conservative. In integral form, this assumption can
be stated as

ff((,\/—KgradC)-d&+fff%d3x=0. )

Here, Sis total boundary of the box.
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TABLE 1. Total transports in 1990 and 1991 through each section (Sv) and the net transports (Sv) into each of the three boxes.

Transports through section

Net transports

| I} 11 v \ Left Middle Right
1990 .89 -155 -.77 —.88 —1.09 .33 —-.22 —.56
1991 .28 —-2.23 —-1.89 2.30 —.47 —.06 .88 .81

E N E N E in in in

In Wunsch (1978) and others, this equation is applied
in the following form:

J f Cv-di = 0, 3)
Stert

where S, is the vertical boundary of the box or the
vertical boundary of a box bounded by two levels of
constant tracer concentration.

In the following it will be shown which assumptions
are underlying the approximation of (2) in the form of
(3). First, it will be assumed that the box extends from
top to bottom and then it will be shown which additional
assumptions are to be made to divide the box into layers.
Equation (2) can be split into the following five terms:

Jf Cv-d&—Jf (f<gradC)-dFr+JJ Cv- d&
Siert Siert Shor
- ” (k gradC)- do- + Jff£d3x= 0. (4
. ot
box

The first term of Eq. (4) is built up from, say, three
or four vertical boundarieswith atypical size of H;L,CV
each, where H; and L; are the height and length scale
of the box, C is the typical tracer concentration, and V
isthetypical velocity scale. In order to neglect the other
four terms with respect to the first it has to be dem-
onstrated that each of these integrals is much smaller
than HgL CV.

For the size of the second term, one finds HgLgx, AC,/
L .. Here AC, /L. isthetypical horizontal tracer gradient.
The vertical diffusion does not contribute because the
vertical tracer gradient is parallel to the vertical surface.
Therefore, the horizontal diffusion can be neglected
with respect to horizontal advection, provided that

K, < LVCIAC,. (5)

Using L, = 50 km, AC/C = 0.1, and V = 0.2 m s},
this condition is satisfied for k, < 10° m? s If C
represents the density, AC/C = 10-* might be more
realistic, and it is even found that k, < 10® m2s~%. The
standard value for k, given in LeBlond and Mysac
(1978) ranges from 10? to 10° m? s~*. With the density
as tracer, the required upper limit of k,_ is aimost cer-
tainly larger than the true value, so that horizontal dif-
fusion can be neglected without much concern.

When the box stretches from top to bottom, the third
and fourth integrals vanish, because w = 0 and 9C/oz

= 0 at the top boundary and at the bottom we have w
+ (u, v)V,H = 0 and 9C/on = 0. The size of the fifth
term can be estimated as Hg LAAC,/T, where AC; isa
typical scale for concentration changes on a timescale
T. Therefore, the time-dependent term may be left out
of the balance, when

T > L,AC,/CV. (6)

For Ly = 500 kmand V = 0.2 ms™%, AC/C = 0.1 the
tracer should be stationary for timescales of at least 3
days. For smaller boxes, this requirement becomes pro-
portionally less restrictive.

When S, stretches from top to bottom, we have only
one restrictive equation for the velocity field, for each
conservative tracer and for each box. If, however, in
addition to the aforementioned assumptions the tracer
under consideration has a vertical advection and dif-
fusion that is small with respect to the horizontal ad-
vection balance, the surface S, can be subdivided into
smaller parts, yielding more equations per box. We now
have to consider under which conditions the third and
fourth terms of (4) are small compared to thefirst, when
the horizontal boundary is defined by asurface on which
C is constant.

The amplitude of the vertical motion could be esti-
mated by the B effect as has been done by Tziperman
and Hecht (1988) but in the area examined here this
estimate would be much too small. The Iceland Basin
is characterized by the presence of overflow water, flow-
ing over the bottom topography thereby conserving its
potential density. Due to the large bottom topography
the vertical motion is much larger than the B-effect es-
timate. If the ** quasi-horizontal”” boundaries of the box-
es are defined by S,.: C(x, t;) = C, with t, the time
instant at which the measurements are done, then the
motion perpendicular to this surface can be expressed
in the time derivatives of the tracers. The normal of the
quasi-horizontal surface is directed parallel to the gra-
dient of the concentration and therefore its surface el-
ementsd & are given by (gradC/|gradC]) do. The vertical
advection through a surface of constant concentration
is given by

C (dC aC
Cv-do = ff (— - ,—) do.  (7)
f LU, o, loradCl\ dt ot

This equation, which is exact, expresses the vertical
transport in terms of tracer gradients and time deriva-
tives. Therefore, we found for the size of the vertica
transport CL3(H-/AC,)(AC,/T), where T isthetimescale
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Fic. 5. Temporal variability as a function of pressure. See text.

of tracer variation. The vertical advection is small com-
pared to the horizontal advection (~CVHg Lg with Hg
the thickness of the layer) if the timescale

T > LHAC, / HaVAC,. (8)

With Ly = 500 km, H. = 200 m, H; = 200 m, V =
0.2 ms% and AC, = AC,,, we find T > 30 days. So
if C represents the potential density, and if C varies 0.2
kg m=2 over a vertical distance of 200 m (see Fig. 4),
then the temporal variation in C should be much smaller
than 0.2 kg m=2 in 30 days. Figure 5 shows that in the
deeper waters the differences in potential density over
ayear are generally smaller than 0.2 kg m=3. However,
if these changes are due to seasonal variations, then the

water might reach a density change of 0.2 kg m=3 much
faster than in 30 days.

The vertical diffusion through the horizontal surface
[fourth term in Eq. (4)] is of the order of L2« ,AC,/ He.
Compared to the horizontal advection balance, this ef-
fect is small, provided that

Ky < HoVHRC/AC, L. (9)

With H. = 200m, V = 0.2 m s %, H; = 200 m, AC/C
= 0.1, and L = 500 km, we find that k, < 0.16 m?
s~t. When this upper bound is compared with the figures
given in LeBlond and Mysak (1978), x, = 3 X 10°%
to 2 X 1072 m? s7%, it appears that vertical diffusion
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plays no important role in the approximation of (2) as
a horizontal advection balance.

If the tracer balance is completely determined by the
horizontal advection, we find

[ ovsmc[ vermo
St S

The final approximation made here has a purely math-
ematical background. Thetracer concentration C always
varies between two almost equal positive constants,
whereas v - d & may have changes in sign. Therefore,
the tracer concentration may be placed in front of the
integral sign. If C refers to potential temperature, and
if the upper side and the lower side of the layer are
determined by 10°C and 8°C, then inside the layer C
can be considered as constant. For density and salinity
tracers this approximation holds even better. Note that,
although the symbol C does not appear in the final ap-
proximation (10), the balance still depends on the tracer
concentration because its value determines the precise
shape of the upper and lower boundary of the layer.

Equation (10) yields one restriction for each tracer,
for each box and for each layer (referred to by n) into
which the box is subdivided. The most critical assump-
tion appeared to be the stationarity of the tracers, when
asubdivision into layersis made. When the box extends
from top to bottom, the horizontal diffusion might be
problematic for some tracers, but not for density. The
stationarity of the complete box requires a timescal e of
three days, which is much smaller than the timescale
reguired to treat the whole dataset as synoptic.

To abtain equations restricting the barotropic current
pattern, (10) is used with the geostrophic flow substi-
tuted for v, split into an unknown barotropic part and
a known baroclinic part. If the tracer happens to be
solely dependent on pressure and if the box has no bot-
tom topography, then (10) is automatically satisfied be-
cause of the geostrophic degeneration. Therefore, in-
verse equations in the form of (10) can only restrict the
barotropic current pattern if there is a large bottom to-
pography or a horizontally inhomogeneous tracer.

(10)

b. Implementation

The theoretical model equations given in section 2
are valid for continuous fields and take on the form of
differentials and integrals. The data, on the other hand,
consist of tracers measured at discrete points in 3D
space. To apply the theory to a given dataset, the data
should be interpolated by which it is transformed into
continuous fields. Another reason to consider the inter-
polation carefully is that the inverse equations are au-
tomatically satisfied when the layers have uniform thick-
nesses and the boxes are not bounded by land. Only
deviations from this geometry yield nontrivial restric-
tions for the barotropic component.

In this paper, the interpolation is based on a trian-
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gulation of the data points. This implies that the data
points are connected by hypothetical triangles (see Fig.
6) on which the tracer function is interpolated linearly,
in a very similar way as with finite element methods.
The detail s of the method are mentioned in the appendix.

When the component of the geostrophic velocity nor-
mal to the box boundary is denoted by v(s, p) and when
the baroclinic and barotropic parts are denoted by (s,
p) and ¥(s) respectively, then the modeling equation
derived in section 3a can be stated as follows:

ff Uda:j @+ do=0 (12
S Sk

where S3,, S3,, 2, etc. are the vertical parts of the
layers in the different boxes. In order to discretize this
equation it is assumed that ¥ is constant between two
subsequent stations and its value is denoted by .. This
assumption is equivalent to the assumption that the dy-
namic topography ¢,(S) is a piecewise linear function.
Finally when §7, is partitioned into S, SP, ..., 9,
corresponding to the station pairs m, we can write

M

AUy = Dy, (12)

m=1

with

M
anmsz do, bn:—Eff vdo.  (13)
3@) m=1 3(;11)

The proper sign of a,,,, and b, depends on the direction
of positive flow compared to the direction of the outward
normal of the boundary.

Since many tracers may have very similar distribu-
tions, the ““inverse equations” may be linearly depen-
dent and the inverse relations might be insufficient to
determine a unique solution. Moreover, in a realistic
measurement situation, it might happen that equations
contradict each other so that no solutions exist at all,
even if there are more unknowns than equations. The
latter problem is solved by adding a noise term that
accounts for the model misfit. In matrix form this can
be expressed as follows:

AU =b + s. (14)
When |e[? is minimized, it is found that ¥ satisfies
ATAG = ATh. (15)

Equation (15) has at least one solution, but generally
more than one.

In order to determine the complete class of solutions,
it is useful to perform a singular value decomposition
on the matrix A (e.g., see Lee 1993)

A = UAVT, (16)

The number of equations N (number of rows of A)
equals the total number of layersin all boxes. The num-
ber of unknowns M (number of columns of A) equals
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the number of station pairs. There are different con-
ventions in literature concerning the precise definition
of U, A, and V. In this paper the matrix V is square and
orthonormal: V'V = VT = |, and A isasquarediagonal
matrix with non-negative numbers on the diagonal, or-
dered in decreasing order. Here it will be assumed that
there are more unknowns than equations, so that M =
N. This implies that U is column orthonormal, or UTU
= | and that there are at least M—N zeros on the diagonal
of A. In the subsequent analysis it will be more con-
venient to deal with a row-orthonormal matrix U, and
therefore as many zero rows are added to A (and zero
entries to b) until N = M. In this particular case U is
square and it is both row- and column- orthogonal, so
that UUT = U'U = I. Note that the meaning of the
symbols U, A, and V is different from that in, for ex-
ample, Wunsch (1978).

The physical dimension of the singular values is me-
ters squared. But since 2, A2 = Tr{ ATA}, which follows
directly from (16), it is more convenient to express the
squares of the singular values as a percentage of the
“total power’” of A, that is, as a percentage of Tr{ ATA}.

Since V contains as many columns as there are sin-
gular values, we can associate each column of V with
a singular value. When the columns of V corresponding
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FiG. 6. Results of the triangulation scheme used in this study. Each
picture describes a box boundary corresponding to the boxes in
Fig. 2.

to a zero singular value are put together in a matrix V,,
the columns of V, span the null space of A and we have
AV, = 0. Using V, and the SVD of A, the general so-
lution of the minimization problem can be represented
as

¢ = VAU™D + V. (17)
Here thefirst termisaparticular solution and the second
term is the general solution of the homogeneous prob-
lem. Furthermore, A is obtained from A by replacing

the zeros on the diagonal by infinite numbers, so that
its inverses vanish. In formulas,

ALt
At
At

>t

(18)

and
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(19)
0
0
Here, J is a square diagonal matrix with K ones and
M—K' zeros on the diagonal. The number of nonzero

elementsof A, A, and J, equalsthe rank K of the matrix
A.

¢. Modeling the null space

Equation (17) shows that there is an arbitrariness in
the barotropic flow if some of the singular valuesvanish.
The more vanishing singular values, the larger the am-
biguity. A generally applied way to handle this ambi-
guity is to express the norm of ¥ in the vector |, and to
minimize it:

92 = [AUTB[ + I]2, (20)

and the vector, which minimizes|e|? and which has min-
imum norm, is found simply by setting | = 0 in (17):

¥, = VAUTD. (21)

This solution is the one that minimizes the motion at
the pressure level p,. As discussed in the introduction,
there are objections to this kind of solution. First, there
iS no objective (physical) argument for minimizing the
norm of the solution and, second, the solution will de-
pend on the reference pressure p,, which was arbitrarily
chosen. In addition, as argued by Wunsch (1978), the
transports computed with the barotropic flow tend to be
unrealistically large at deep stations because in the min-
imization of (20) the shallower stations obtain a baro-
tropic component of the same order as the deeper sta-
tions. Therefore, according to Wunsch, not |92 should
be minimized, but [WV|2, where W is a well-chosen
weighting matrix that emphasizes the deeper stations.
The mathematical problem of minimizing the weighted
norm over al vectors minimizing the error £€'¢ can be
solved by transforming A into A’ = AW-* and b into
b’ = Wb and then using the normal procedure to find
the minimum norm solution of the primed system. This
only works if the inverse of W exists.

Here, a more general criterion is proposed. With this
criterion it is attempted to 1) circumvent the choice of
the a priori pressure level p, and 2) to minimize the
jumps in the total geostrophic flow caused by the linear
interpolation technique. The latter aim can be consid-
ered as a maximum smoothness criterion. To meet these
goals the solution of the following problem is studied:

H() = min|D ¥ — ¢]2
ATAV = ATb, (22)
where D and ¢ will be chosen such that the resulting
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velocity field has maximum smoothness. The choice of
Wunsch results by taking D = W and ¢ = 0. Note that
H(¥) is minimized over all vectors that minimize the
error in the inverse equations. Here it is not required
that the inverse of D exists, and therefore (25) can be
considered as a seminorm (e.g., Berthero et al. 1988).
The only requirement is that the null space of W and
the null space of A do not coincide (Mclntosch 1990).

The problem posed in (22) is most easily solved by
using the general solution (17). After substituting (17)
into (22), the value of | can be determined for which H
is minimum. This minimum can be found by differen-
tiation. The result is

0 = U, — V(VID'DV,)VID'(DV, — c). (23)

To meet our goals, the matrix D and the vector ¢ are
chosen such that

P

w, [
{DV — ¢} = —‘f dp [y (P) — vy (P)].  (24)
1 Jo
Here {}, is the jth component of the vector within the
brackets, j is a station not at the end of a section (so
that on either side there is a velocity profile), v+ (p) and
y (p) are the total geostrophic velocity profiles at both
sides of the station j, P; is the depth of station j and
finally w; are weighting constants to be chosen later.
Note that on the left-hand side of (24) we have the
unknown barotropic velocity function, but on the right-
hand side we have the total velocity field. With (24) as
a minimization criterion, the jumps in the total geo-
strophic flow, caused by the piecewise-linear interpo-
lation of the density are minimized. In this way the
smoothest solution is determined, that extracts the max-
imum amount of information from the inverse equa-
tions.

When y*(p) and v (p) are split into the barotropic
and the baroclinic part, a more explicit expression for
W and c can be given:

PJ
6 =5 f W lrE - TEL @)
1 Jo
and
w, —w, O 0
D= W W, (26)
W, —W

d. The dependence of the solution on the reference
pressure p,

An advantage of the minimization criterion given in
(22) is that the resulting sum of the baroclinic and bar-
otropic parts is independent of the a priori chosen ref-
erence level p,. This will be demonstrated next. The
baroclinic component was defined with respect to alevel
of no motion at p = p,. When thislevel is changed, the
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baroclinic component changes into V'(p) = V(p) + V.
Obviously, this change does not have an effect on A
(and hence derived quantities like V, and A) and D.
However, b ischangedinto b’ = b — A¥", and therefore
the minimum norm solution changes into

¥, = VAUTD' = ¥, — VAUTUAVTY"

=0, — ¥ + VI,

(27)

where use has been made of the identity V,V§ + VJ, VT
= |,,. The effect of changing the reference level on the
superposition of the barotropic and the baroclinic part is
given by

V'(p) = V'(p) + Vg = V(p) + Vo + VoVoir
= v(p) + V Vi (29)

This is true for the total flow in the norma SVD ap-
proach, where the norm of the solution is minimized.
In our approach, however, (23) is used for the bar-
otropic flow and the effect of changing the reference on
¢ must be characterized. Since the difference in offset
at the positive and negative side of station j is precisely
given by the difference operator D applied on V1, we

have
¢ =c+ DV. (29)

The effect on the barotropic component is found by
substituting (27) and (29) into (23),
V' =V, — Vo(VIDTDV,)VIDT(DV, + c')
=0y — U + VVIUr — Vo (VIDTDV,)t
X VIDT(DV, — DV" + DV VIVr + ')
=0y — U+ VVIUr — Vo (VIDTDV,)t
X VIDT(DV, + DV VIV + c)
=0 = U+ VU — V(VIDTDV,)*
X VIDT(DV VIVr)
=9 -7, (30)

so that the total flow v'(p) = ¥/ (p) + ¥, = ¥(p) + ¥,
= v(p) is independent of the reference level chosen.

Note that in Wunsch and Grant (1982) it has been
derived that only the filtered version of the estimated
velocity, in our symbols (I, — V,Vi)v, is independent
of the reference level.

e. Further smoothing of the solution

In practice it appears that many of the singular values
of the matrix A are very close to zero. Mathematically
this means that the inverse equations are amost linearly
dependent and the solution of the inverse problem, Eq.
(17), becomes unstable no matter what model for the
null space is taken. The geometrical analogy is that two
almost parallel lines intersect at infinity. A simple but
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ad hoc method to remove the instabilities is to set to
zero al singular values smaller than some truncation
value é. In this way the norm of the solution is reduced
to realistic values at cost of a small mismatch in the
sum of the conserved transports. In this section the ef-
fects of truncation on the mismatch error will be quan-
tified.

The truncation has an effect on the way A is derived
from A. Instead of setting all zero singular values to
infinite, all singular values smaller than & are made in-
finite before taking the reverses. It will be assumed that
the first K, singular values are larger than 6 and the
truncated A will be denoted by A;. To compute the
mismatch error in case of truncation, it is convenient to
express the vector b as

b = Um. (31)

Since U is an orthonormal, we have that |b| = |m|, so
that m is arotated version of b. From (17) and (31) we
find fore = AV — b

e = UAVTVA,UTUm + UAVTV, — Um

0 0
= UQ,, — I)m + U Ao I (3
K5+2
0 0

Here the matrix between U and | consists of the last M
— K, columns of A. For the minimum of ¢"e, we find

K M
ge = > (M + A2+ > me
k=Kg+1 k=K+1

Here the m, reflect the mismatch caused by the fact that
b does not exactly lie in the range of (the truncated) A.
The physical meaning of this mismatch is that the mea-
surements are not completely described by the model.
The A, is an effect of the model used to describe the
null space. This effect is, however, small because the
A in the sum of (33) were small by definition.

An aternative method to remove the effect of the
small singular values is based on Bayes' estimation. If
there is a priori information about the solution in sta-
tistical form, that is, if it is known that ¥ has a zero
expectation value and a covariance matrix of ¢?C, then
the best possible estimate of ¥ based on the combination
of experimental data and a priori knowledge is obtained
by minimizing [see, e.g., Lorenc (1986) for aderivation]

Hs = (AV — b)T(AV — b) + o*0"CV. (34)
When nothing is known about the length scales in-

volved, C is the identity matrix and the minimum of Hg
is obtained by

(33)

¥ = VAUD, (35)

where A = diag[\/(A\2 + ¢?)]. Clearly, o reduces the
effect of At when A, is small. This way of smoothing
is also known as ‘‘tapering”’ (Olbers 1989).
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TABLE 2a. Results of simulation, conditions see Table 2b. Rms? is defined as (I + 11 — [11)2 + (Il + IV — V)2 + (V — VI)2 The column
cor is the number of sections that have the same sign as experiment C3. See text for the precise definition.
Total transport Transport section I11

| I 11 v \% VI 11 12 13 14 Rmg? cor
Al 3 -2.2 -1.9 23 -0.5 0.3 19 0.0 -3.1 -0.6 1.44 -2
A2 3 -21 -18 2.2 -0.5 1.8 0.0 -31 -0.6 0.71 -2
A3 3 -21 -1.9 18 0.0 -31 -0.6 0.00 -2
A4 -54 6.7 12 0.9 -0.6 -4.9 -0.9 0.00 0
B1 1 85 8.7 -4.9 3.2 3.2 5.8 25 -0.7 0.4 0.40 4
B2 -.6 0.0 -0.9 4.3 19 21 21 2 -2.7 -0.6 2.30 1
B3 -3 16 0.5 18 11 1.6 2.8 .6 -2.3 -0.6 2.40 3
C1 -5 15.1 14.5 -10.6 3.6 3.6 7.4 35 3.6 0.0 0.16 4
Cc2 -5 3.2 23 2.7 3.8 4.0 34 1.0 -15 -0.5 143 4
C3 -2 5.0 4.0 0.1 3.0 35 4.0 13 -0.9 -0.5 2.02 4
D1 3 6.6 7.1 -4.0 24 23 55 2.2 -0.1 -0.5 0.63 4
D2 -.8 0.0 -1.0 4.2 1.7 1.9 21 0.2 -2.7 -0.6 222 1
D3 -5 13 0.1 2.0 0.8 13 2.7 0.5 -25 -0.6 2.29 3
E1 2 7.2 7.5 -22 4.7 4.8 5.4 0.1 0.4 -0.4 0.37 4
E2 -2 21 18 14 2.2 2.7 33 0.9 -1.8 -0.5 1.33 4
E3 -4 2.6 1.7 .8 1.6 2.3 34 0.8 -17 -0.5 1.53 4
G1 -.8 -15 -25 2.7 -1.0 17 0.1 -34 -0.6 1.63 -3
G2 2 75 8.2 6.0 25 -0.2 -0.4 0.27 2
G3 -21 2.3 -0.7 17 0.1 -3.2 -0.6 0.82 -2
H1 -3 9.3 9.8 -6.9 2.2 2.3 6.2 2.7 1.2 0.3 0.51 4
H2 .6 3.6 2.7 0.2 17 19 33 0.9 -1.0 -0.4 171 4
H3 -4 4.7 3.6 —-24 0.3 0.7 3.7 12 -0.9 -0.4 1.50 3
11 -24 15.2 12.8 -14.9 -3.0 -3.0 7.1 3.0 27 0.0 0.96 0
12 -.6 34 2.8 4.0 5.9 6.0 4.3 1.0 -19 -0.6 0.87 4
13 .6 6.3 59 13 6.3 6.7 55 16 -0.8 -0.5 112 4
J1 -4 -3.2 —-4.3 31 -22 1.0 -0.4 -4.1 -0.8 1.48 -3
J2 -2.0 10.6 8.9 6.7 21 0.4 -0.3 0.14 2
J3 -35 -1.0 -5.7 0.9 -0.4 -34 -0.6 0.48 -2

E N E N E E E Sv

4. Results and comparison

In this section several variants of the inverse model
given in section 3 are applied on the 1991 data and
compared. For each variant, the transports through each
section of Fig. 2 and each layer of Fig. 4 were computed.
To save space, only the total transports through each
section are presented (Tables 2a and 2b) and only the
transport through section Il is divided into different
layers. In al computations, the wind-driven layer was
removed by disregarding all water masses above 100
m. Since all three boxes are almost completely bounded
by sea, the net mass flow into this top layer will add
up to about zero, automatically. Therefore, its omission
will have a small effect on the results, which was ver-
ified in separate experiments (not presented here). All
transports are expressed in Sverdrups.

The symbol in the first column of Table 2a refers to
the precise computation method (summarized in Table
2b). Columns 2—7 give the total transport through sec-
tion | to VI, columns 8-11 give the transports through
layers 1-4 of section |11, and column 12 gives the sum
of squared errors of the net transports through the boxes
involved in the computations. Note that in the inverse
methods this is not the optimized quantity. The opti-
mized quantity is the sum of sguared errors over al
boxes and al layers, and therefore this quantity is not
comparable for al experiments.

To compare the distributions of the total transports
through all sections, the following correlation coeffi-
cient was used (last column of Table 2a):

6
cor(X, Y) = Zl sgn(x;) san(y,), (36)
with
transporti .. |[|transport i| > 0.5 Sv
= f 7
% {O ! {ltransport i| = 05 Sv. 37

Here, X and Y refer to different experiments. The effect
of taking the sign of the transport, instead of the trans-
port itself, is that the correlation coefficient is not dom-
inated by large transports that appear if small singular
values are included. The threshold of 0.5 Sv prevents
the correlation coefficient from being dominated by
small transports (with almost arbitrary signs). The cor-
relation coefficient defined by (36) ranges between —6
and +6. Coefficients of 3 or larger are considered as
“large.”

In the first computation method an optimal level of
no motion was used, as described in section 2. In ex-
periment A1 all boxes were used, in experiment A2 the
right most box was removed, in experiment A3 the mid-
dle and the right boxes were removed, and in experiment
A4 only the middle box was used. The purpose of these
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TABLE 2b. Abbreviations are |.n.m.: optimal level of no motion,
SVD: minimum normal solution (no weighting), DIF: maximum
smoothing (no weighting), W: minimum weighted norm, WDIF: min-
imum weighted differences, pref: reference level, trunc: truncated
inverse model matrix, tap: tapered least squares, and Imr: left middle
or right boxes.

Null-

space Pref  Smoothing Level Layers Boxes
Al l.n.m. 1009 Imr
A2 l.n.m. 1015 Im
A3 l.n.m. 1013 |
A4 l.n.m 717 m
B1 SVD 1000 trunc 01% 4 Imr
B2 SvD 1000 trunc 1.0% 4 Imr
B3 SVD 1000 trunc 10% 8 Imr
C1 DIF trunc 01% 4 Imr
c2 DIF trunc 1.0% 4 Imr
C3 DIF trunc 1.0% 8 Imr
D1 w 1000 trunc 01% 4 Imr
D2 w 1000 trunc 1.0% 4 Imr
D3 w 1000 trunc 10% 8 Imr
E1l w 1000 tap 01% 4 Imr
E2 w 1000 tap 1.0% 4 Imr
E3 W 1000 tap 10% 8 Imr
Gl w 1000 trunc 1.0% 4 Im
G2 W 1000 trunc 10% 4 |
G3 W 1000 trunc 1.0% 4 m
H1 w 1300 trunc 01% 4 Imr
H2 w 1300 trunc 1.0% 4 Imr
H3 w 1300 trunc 1.0% 8 Imr
11 WDIF trunc 01% 4 Imr
12 WDIF trunc 1.0% 4 Imr
13 WDIF trunc 1.0% 8 Imr
JL WDIF trunc 1.0% 4 Im
2 WDIF trunc 1.0% 4 |
J3 WDIF trunc 1.0% 4 m

experiments was to find out how sensitive the method
is to the unwanted omission of planned measurements.
It was found that the optimal levels of no motion were
1009, 1015, 1013, and 717 dbar respectively. Since
these levels are very close (except A4), it is not sur-
prising that the transports shown in Table 2 are also
very similar. Consequently, the transport through sec-
tion 11 is highly independent of the measurements on
section V when the optimal level of no motion is used.
The reason why the result for experiment A4 is rather
different is that, contrary to A1-A3, the minimum was
very flat. For instance, the rms error at 1000 dBar was
only 0.2 Sv. Note that in experiments A3 and A4 there
was only one box and the sum of squared errors consists
of only one term. Therefore, the rms error can be made
zero exactly in these cases.

In experiments B1-B3 the minimum norm solution
was computed according to (21). Slightly different con-
ditions were used in B1, B2, and B3. In experiments
B1 and B2, the conservation laws were applied to the
four layers depicted in Fig. 4. In B1 the truncation level
of the singular value decomposition was set at 0.1% and
in B2 at 1 %. In B3 the truncation was also set to 1 %,
but the water column was divided into eight layers de-
fined by equal differencesin potential density (asshown
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in Fig. 7). Table 2 shows that the results for B2 and B3
are rather similar [cor(B2, B3) = 3]. In experiment B1,
however, there is a rather strong northward transport
through section |l and a strong eastward transport
through section I11. These transports are absent in the
other experiments[cor(B1, B2) = Q]. The lower residual
and the larger transports in B1 are in accordance with
the theory presented in section 3. In other experiments,
not shown here, it appeared that the minimum norm
solution is quite sensitive to the omission of boxes and
the division into layers when a small truncation value
is applied.

When instead of the norm, the vertically integrated
differences of subsequent stations were minimized, Egs.
(25) and (24), the results labeled with C1, C2, and C3
were obtained. The truncation levels and division into
layers corresponds to B1, B2, and B3. Similar to the
minimum norm solution, the division into layers has
only a minor effect on the result (cor(C2, C3) = 4).
There also is alarge similarity between B1 and C1, B2
and C2, and between B3 and C3, which is illustrated
by the respective correlations: 5, 2, and 3.

In Fig. 8, the complete current pattern of experiment
C3 is depicted. Note that there is a negative correlation
with A2 (Fig. 3). However, both figures show a strong
northeastern current in the upper layer. In the case of
the optimal level of no motion, this current is compen-
sated by a return current at the level of the LSW. This
return current is absent in theresults of C3, and therefore
the directions of the total mass transports are completely
reversed.

If instead of the simple minimum norm a weighted
minimum norm is used [Eq. (22) withc = 0and W =
diag(area,)] as proposed by Wunsch, then the results
D1, D2, and D3 are obtained. Again, the number of
layers only has a small effect (cor(D2, D3) = 3). When
the smoothing was realized by tapering, as was donein
experiments E1-E3, the results were similar: cor(EL,
D1) = 5, cor(E2, D2) = 2, and cor(E3, D3) = 4.

In experiments G1-G3 the sensitivity of the weighted
minimum norm to the omission of measurements is
demonstrated. Here, different combinations of boxes
were used, all with the same truncation level (1 %) as
in D2 and the same layers as in D2. If only the right
box is omitted (G1), the resulting transports show some
similarity to D2 (cor(G1, D2) = 2). However, if both
the right and the middle boxes are left out of the com-
putations, the correlation with D2 is very low: cor(D2,
G2) = —1. If only the middle box is included, as in
experiment G3, the correlation with D2 equals 1. The
large sensitivity of the current pattern to the omission
of boxes is further shown in the last column of Table
2A: the correlations with C3 are —3, 2, and —2, re-
spectively.

The weighted minimum norm is dependent on the
initial reference level. This is demonstrated in experi-
ments H1-H3, for two truncation levels and two layer
distributions, where all conditions were similar to ex-



1648

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 27

l | | |

27.30 27.38 27.46 27.53

LI T I L L L I L S L B B |

AV @

~

1400.0 km

7%

LA B L B | LI L L B B B B |

periments D1-D3, except the referencelevel, which was
set equal to 1300 dbar. This reference level is closer to
the level of minimum variability than the 1000-dbar
level. A comparison of transports by means of the cor-
relation coefficients shows cor(D1, H1) = 5, cor(D2,
H2) = 0, and cor(D3, H3) = 1. This demonstrates that
the effect of the reference level is substantial.

In experiments 11-13 and J1-J3 it was attempted to
combine the weighting method of Wunsch with the cri-
terion of minimized vertically integrated differences.
This was achieved by using (22), (25), and (26) with
w, = P,. It appears that this way of weighting has a
strong effect when a small truncation level is used:
cor(C1, 11) = 1, cor(C2, 12) = 5, and cor(C3, 13) = 4.
The number of boxes included in the method has a
dramatic effect on the results (as in G): cor(12, J1) =
=2, cor(l2, J2) = 3, and cor(12, J3) = —3. This effect
is further demonstrated in the last column of Table A2,
where a comparison with C3 is made.

When it is assumed that the previous experiments are
representative of the infinitely many experiments that
could be done, the following general conclusions may
be drawn:

27 .61

2800.0 m

27.869 27.77 27.85 27.83

0om | ] |
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Fic. 7. Asin Fig. 4 but here it is attempted to create layers of
equal thickness.

1) The mean transport over section | (the Reykjanus
Ridge) is probably smaller than 1 Sv, but itsdirection
cannot be determined.

2) The mean transport over section 1V isdirected to the
east; its amplitude ranges between 1 and 4 Sv.

3) When atruncation value of 0.1 % is used, thisresults

in large (compensating) transports. The direction of

these transports is very systematic: north on section

I1, east on section I1l, and south on section IV. A

problem is that for a larger truncation value, these

transports can have any direction.

The comparison on the basis of the correlation co-

efficient shows that the removal of complete boxes

has the dramatic effect on the estimation of the di-

rections of the transports.

The latter two conclusions indicate that the inverse
method hardly improves the solution obtained with a
level of no motion. The results were diverging even
further when more layers were included, other boxes
wereleft out, other tracers were used, and when all these
conditions were combined in different ways.
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FiG. 8. Transports for the 1991 dataset, using the maximum smoothness criterium. The
precise parameters of the applied inverse model correspond to case C3 of Table 2.

5. A simulation with an alternative sampling
strategy

One might argue that the weighted minimum norm
solution is based on a more or less ad hoc argument.
The other solutions presented in Table 2 all have arather
small rms error, and they are all based on sensible mod-
elsfor the null space and therefore they represent equal -
ly valid candidates for the pattern of transports in the
Iceland basin. To find out whether the large variations
in the solutions are caused by the noise of high spatial
freguency present in our dataset, asimilar seriesof com-
putations was performed using the Levitus climatol og-

66.0 N

500. km

59.0 N

31.0 E 8.0 E

FiG. 9. Levitus sampling scheme corresponding to Fig. 2.

ical dataset (Levitus 1982) of the same area. The sam-
pling scheme used for these computations is shown in
Fig. 9. The computations resulted in a table comparable
to that of Table 2: there were large sensitivities for the
number of boxes, truncation levels, etc., even though
the Levitus dataset is highly smoothed.

The central difficulty in the estimation procedure is
that the inverse equations are not restrictive enough to
determine a unique solution. There are six sections
through which the transports are to be computed and a
simple mass balance gives only three equations. When
the mass balance is applied to the individual layers, this
results in equations that are very much dependent on
the three equations for the complete boxes. Thisis dem-
onstrated in Fig. 10, where the distribution of the sin-
gular values is logarithmically plotted for some of the
experiments described in Table 2.

In Fig. 10a the singular values correspond to exper-
iment G2. There is only one box that is divided into
four layers, which yields four equations and four non-
zero singular values. The first singular value is domi-
nating (~85%), the second oneislessthan 10%. In Fig.
10b the number of boxes is increased to 2 (experiment
G1), and the boxes are divided into four layers each.
The eight singular values are dominated by thefirst two,
which are the only singular values larger than 10%.
When the boxes are divided into more layers, the ad-
ditional equations do not increase the amount of infor-
mation because only small singular values are added.
Thisisdemonstrated in Fig. 10c, wherethree boxeswere
used and the conserved tracers were potential density,
oxygen, and phosphate. It appears that only three sin-
gular values are larger than 10%. The general conclusion
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Figure B: Left and middle box of figure 2
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Figure D: sampling of figure 10A
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Fic. 10. Distribution of the (squares) of singular values plotted on a logarithmic scale for
different sets of computations. (a) Experiment G2 of Table 2 and (b) G1. (c) Various tracers

were used. (d) The sampling scheme presented in Fig. 11a

from these plots is that the number of ““truly” inde-
pendent equations is highly related to the number of
boxes.

It is expected that a much more favorabl e distribution
of the data points is obtained when the number of boxes
islarge compared to the number of sections. Such sam-
pling schemes are given in Fig. 11. The interstation
distance is one degree (which corresponds to 60 km in
the x direction and 110 km in the y direction), and the
station positions coincide with the Levitus dataset. In
order to find out if this sampling scheme indeed gives
more stable results, some simulations were performed.

For each triangular box it is assumed that only the
total mass is conserved. In the case of Fig. 11a this
gives 40 equations and 79 unknown flows. The distri-
bution of the singular values of the matrix A, ordered
from large to small, is shown in Fig. 10d. This shows
that the singular values are much more evenly distrib-
uted than in the cases presented in the previous section.
Therefore, it may be expected that if the transports
through five surrounding sections are computed, the re-
sults will be more stable than in the conventional con-
figuration. Although no truncation was applied, the max-
imum transport that occurred was only 2.2 Sv, so that
the ““blow up effect” present in the cases of previous
sections is diminished. Therefore, in this case there is
no need to introduce a truncation parameter and study
its effect. If, however, the singular values smaller than
0.1% are made zero, the computed transports were hard-
ly different. Furthermore, the results shown in Table 3
have a clear interpretation: there is a superficial layer
flowing to the northeast and a return current at the bot-
tom flowing in the opposite direction.

In the conventional configuration, leaving out one box
had a major effect on the unweighted solution. When

in the alternative sampling scheme the right-hand side
was left out (Fig. 11b) or when both the left- and right-
hand sides were left out (Fig. 11C), very similar qual-
itative and quantitative transports were obtained, see
Table 3. In this way the stability of the alternative sam-
pling scheme has been demonstrated, at least for an
idealized dataset.

6. Discussion

The main issue raised in the present paper is whether
it is possible to extract physically meaningful infor-
mation from a linearly dependent and underdetermined
set of inverse modeling equations. This question is
closely connected to the discussion between Wunsch
(1985, 1986) and Veronis (1986) in ‘‘recent” oceano-
graphic literature. This discussion was triggered by a
simulation study of Fiadeiro and Veronis (1984) on the
possibility of estimating the two-dimensional flow pat-
tern based on tracer measurements. They concluded that
this was impossible, unless enough data were sampled
to obtain an overdetermined system. The main argument
of Wunsch against this conclusion was that by using
special mathematical estimation techniques it remains
possible to estimate at least the large-scale flow pattern.

The inverse problem treated here is different from the
studies of Fiadeiro and Veronis (1984) and, since we
did not have information about the true velocity field,
we could only study the stability of the solution, not its
reliability. On the basis of our results it may be con-
cluded, similar to Fiadeiro and Veronis, that there are
substantial intrinsic limitations to a successful appli-
cation of inverse modeling of hydrographic data. On the
other hand, the simulation studies with the alternative
sampling scheme yielded physically relevant results, but
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Fic. 11. An aternative way of sampling the same area as Fig. 2. By following a zig-zag course, many more boxes
can be created upon which the conservation principles can be applied. (a) All zig-zag sections included, (b) right-hand

part removed, (c) left- and right-hand side removed.

the underlying system of equations is still formally un-
derdetermined. This result seems to support the stand-
point of Wunsch. The central question is: How should
one count the number of unknowns and the number of
equations? If only the mass balance istaken into account
for each box and if one assumes that the other equations
are linearly dependent from it, then the number of equa-
tions equals the number of boxes. If for the number of
unknowns one counts the number of station pairs, the
mathematical system is underdetermined in either sam-
pling scheme. But if, on the other hand, the number of
sections is counted, we have an overdetermined system
in the alternative sampling scheme and an underdeter-
mined system in the conventional sampling scheme.

The unfavorable distribution of singular values re-
ported in the present study is well comparable with the
findings of Fiadeiro and Veronis (1982). In their study,
an inverse model was derived for one box consisting of
four layers. From the numbers given in their paper it
can be computed that the distribution of singular values
IS 94.22%, 4.73%, 1.01%, and 0.04%. This distribution
shows that there is essentially one equation per box and
therefore large instabilities can be expected if the in-
verse model would be applied to compute transports
through sections bounding the box.

The alternative sampling scheme studied here has
some similarity with the ones used by others. For in-
stance, in Tziperman (1988) a hydrographic dataset con-

TABLE 3. The effect of leaving out one or two branches of the
sampling scheme (Fig. 11), upon the distribution of transportsthrough
the middle section of Fig. 11A. Transports are in Sverdrups: positive
flow is directed toward the east.

Layer A B C
27.20-27.52 .68 .64 .65
27.52-27.62 -.27 -.30 —-.30
27.62-27.75 -.36 -.39 —-.38
27.75-27.83 —.41 —.43 —.42 Sv

sisting of a 2D grid was used to study the oceanic cir-
culation and mixing coefficients. This sampling scheme
made it possible to include unknown mixing coefficients
without creating an underdetermined system. In Leeand
Veronis (1991, 1993) a 2D data grid was used to com-
pare the velocity patterns determined by geostrophy and
by tracer advection. Also, in large-scale studies of the
entire North Atlantic, by, for example, Olbers et al.
(1985), Hogg (1987), and Bogden et al. (1993), 2D grids
(of Levitus data) were analyzed with inverse modeling
techniques.

The purpose of the present paper, however, was to
explore the possibilities of extracting the masstransports
from a regional synoptic dataset. A full 2D sampling
scheme of alarge oceanic areaisfar beyond the practical
possibilities. The sampling scheme studied in the pres-
ent paper may be considered as a compromise between
afull 2D scheme (with high stability) and the 1D section
scheme (which covers a large area but may become
unstable). The proposed scheme could be applied in
practice by following a zigzag course and could there-
fore be realized in about twice the time needed for the
conventional sampling scheme. Moreover, the sampling
scheme presented in this paper could be further opti-
mized using, for example, the approach of Barth and
Wunsch (1990).

Compared to the **normal” way of sampling, the al-
ternative sampling scheme has the advantage that the
data corresponding to the same box is more synoptic.
It takes perhaps only half aday to perform threestations,
the corners of the proposed boxes, and therefore it is
much more likely that the data can be treated as syn-
optical than in the ““normal’” case, where it may take
more than a week to close a box. Other theoretical ad-
vantages are that

1) the stability is obtained without assuming more than
conservation of mass so that no division into layers
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is necessary. This appeared to be a critical assump-
tion of the inverse model.

2) the required scaling of the the ocean becomes more
favorable for assuming stationarity (6).

3) thereis no need to truncate the SVD solution, which
eliminates an important source of subjectivity.

However, the author is well aware that the practical
usefulness for real data still has to be demonstrated.
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APPENDIX
Data I nterpolation

The interpolation of the data can be performed in
many different ways. The basic idea behind most in-
terpolation methods is to express the data as a linear
combination of a set of base functions, which are func-
tions of the horizontal coordinate s and the vertical co-
ordinate p, and to determine the coefficients of this ex-
pansion by requiring that the differences between the
interpolated and measured valuesisminimal. Thechoice
of the base functions is relatively arbitrary. In this study
we choose base functions derived from a triangulation
of the data points. With atriangulation of the data points
itis meant that the surface S, on which the measurement
points are located, is divided into a set of nonoverlap-
ping triangles of which the union equals S, and of which
the corner points coincide with measurement points. On
each triangle the interpolated value is a linear combi-
nation of the values at the corners of the triangle. If the
triangle is given by the points (s,, p.), (S, P.), and (s,
p,) a which the measured quantities take on the values
f,, f,, and f,, then the interpolated value at (s, p) equals

f(sp) = fil(s—s)(p.— ps) +(ss—s)(Pp— po)I/d
+ fol(s—s)(Ps = Pu) +(s. — S5)(p— pa))/d
+ fal(s—s)(p = p) + (s, — s)(p— po)l/d,
(A1)
with
d=(s; = s)(P. = P) T (S = s)(ps — P),  (A2)

which appears to be twice the area of the triangle. It is
readily verified that a substitution of (s, py) into (Al)
yields f,, for k = 1, 2, 3.

Interpolation with a triangulation and functions like
(A1) yield piecewise linear fields, which are continuous
at the edges of the triangles. The advantages of inter-
polation with these base functions are:

1) Theinterpolated fields depend only on the surround-
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ing measurements and are not disturbed by the prop-
agation of errorsin far away measurements.

2) This interpolation method does not create artificial
minima or maxima. Instead, the minimaand maxima
are located at the corners of the triangles, that is, at
the measurement points themselves.

3) The base functions have a relatively simple mathe-
matical form, which facilitates mathematical oper-
ations like integrations and differentiations.

A minor disadvantage is that the method requires arath-
er inconvenient way of ‘‘bookkeeping’” of indices. This
bookkeeping is further complicated by the use of neigh-
boring boxes with common boundaries.

The measurement points have the coordinates (s, p;),
j=1,-,Jandi =1, -, |;. Here the index i refers
to the ith measurement at station j. The depths and the
number of depths I; may vary from station to station
and they may also vary from tracer to tracer. The basic
idea behind the triangulation scheme proposed here is
that for each pair of stations m, a set of triangles is
defined which consists of two ‘“horizontal”” edges (con-
necting measurement points of two subsequent stations
on a section) and one vertical edge (which connectstwo
measurements at the same station). The result of this
triangulation is shown in Fig. 6.

To apply the above triangulation on the computation
of the baroclinic velocity, we first compute at each point
(s, p;) the inverse of the density, 1/p;. Then the 1/p
field isinterpolated using (A1) and differentiated in the
s direction. We obtain

91 Pxa = Ps Pxs = P P — Pi2
—— = + + , A3
0s P dpkl dpkz dpk3 ( )
where in this case d simplifies to
d= (§2 - %1)(pk3 — P (A4)

where j1 and j2 are used to denote the two stations and
ki, k,, and k; refer to the bottle numbers at the corners
of the triangle.

Since (A3) is independent of s and p, a piecewise
constant function is obtained, that is, a function that is
constant on each triangle, but which may jump if (s, p)
ismoved over the edge of atriangle. If (A3) isintegrated
over p, then the baroclinic velocity field ¥(s, p) so ob-
tained is again a piecewise linear function, at least in
the direction of the p coordinate. However, if p is kept
fixed and sis varied, then v(s, p) will vary linearly until
s goes from one station pair to the next, where v will
jump.

The advantage of computing the baroclinic velocity
in this way is that it automatically gives an estimate of
the baroclinic velocity at the bottom end of two stations
of unequal depth, without making special assumptions.
The jumps that occur in o(s, p) are not a particular
disadvantage of the triangulation method; they also oc-
cur when (s, p) is computed in the conventional way.
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