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ABSTRACT

Coherence maps are a useful tool to study the oceanic response to atmospheric forcing. For a specific frequency
band these maps display the coherence between the oceanic current (or pressure) at a single mooring location
and the atmospheric forcing field at other locations as a function of separation. This paper calculates such
coherence maps from a simple linear quasigeostrophic model forced by a statistically stationary and homogeneous
wind field. The calculated coherence maps show values less than one. Such values are not due to the presence
of noise but are a consequence of the ocean being forced at many locations. The maps also show characteristic
patterns with maxima either at the mooring location or away from it. The locations of the maxima do not indicate
the locations of the forcing but instead reflect the scales of the atmospheric forcing spectrum and of the Green’s
function of the potential vorticity equation. Coherence maps can be used to estimate the Green’s function in a
multiple regression analysis. The presence of noise or nonlinearities in the system can be inferred from the
multiple coherence, which is a number. Emphasis is on understanding the information content of coherence
maps, not on reproducing observed maps. The results can be generalized to other systems where response and
forcing are related by a Green’s function.

1. Introduction

In studying the oceanic response to wind forcing, Brink
(1989) introduced an important new analytical tool: the
cross-covariance or coherence map, which displays the
cross-covariance or coherence between the oceanic current
(or pressure) at a fixed point (the mooring location) and
the wind stress curl field at other locations as a function
of separation in a specific frequency band. For various
subinertial frequencies such coherence maps have been
estimated by Brink (1989) and Samelson (1990) using
current observations in the western and eastern North At-
lantic and wind fields from the Fleet Numerical Ocean-
ographic Center (FNOC) and by Luther et al. (1990) and
Chave et al. (1992) using barotropic current and pressure
observations in BEMPEX (Barotropic Electromagnetic
and Pressure Experiment) and FNOC winds. These maps
show significant nonzero coherences, often with maxima
away from the mooring location. These are highly sig-
nificant observations since they provide the first direct
evidence that part of the subinertial variability in the ocean
is directly forced by the atmospheric wind stress, a notion
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that has earlier been asserted by Frankignoul and Müller
(1979), Willebrand et al. (1980), and others by more in-
direct means. The maxima in the coherence maps, at the
mooring location or away from it, have often been inter-
preted as the location of the forcing.

The observations immediately prompted theoretical in-
vestigations to rationalize the findings. Brink (1989), Sa-
melson (1990), and later Lippert and Müller (1995) all
calculated coherence maps from a simple linear quasi-
geostrophic model with stochastic wind forcing, for com-
parison with the observed maps. The model has a flat
bottom and no mean currents. The forcing is assumed to
be statistically homogeneous and described either by its
autocovariance function in separation space or by its spec-
trum in wavenumber space. Choosing certain idealized but
reasonable spectra or autocovariance functions, all authors
were able to reproduce basic aspects of the observed co-
herence maps, including nonlocal maxima away from the
mooring location. Samelson (1989) and Samelson and
Shrayer (1991) used inhomogeneous forcing and a more
complex basic state to explain aspects of the coherence
maps that were not reproduced by the simple model.

In this paper we analyze theoretically the information
contained in cross-covariance or coherence maps, using
the simple quasigeostrophic forcing model as an ex-
ample. We specifically show that for this model the
location of the maxima reflects the scales of the forcing
spectrum and the scales of the Green’s function of the
quasigeostrophic potential vorticity equation. In models
with statistically homogeneous forcing, the location of
the maxima does not indicate the location of the forcing.
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FIG. 1. Wavenumber plane displaying (i) the dispersion circle with
center at (k, l) 5 (kc, 0) and radius a, (ii) the real and imaginary parts
of the functions ka(l) and kb(l), and (iii) the ‘‘polar coordinates’’ K0

and u0.

This point can be made quite generally but it is most
easily made in a horizontally unbounded ocean where
the response to statistically homogeneous forcing is also
statistically homogeneous. Brink (1989) and Samelson
(1990) consider the response in a meridional channel.
This complicates the algebra because the response be-
comes inhomogeneous, despite homogeneous forcing,
and because an additional length scale, the basin width,
enters the calculation.

We first discuss the simple quasigeostrophic model
and its Green’s function. The Green’s function describes
how the forcing at different locations contributes to the
response at a specific point. These different contribu-
tions can interfere, either constructively or destructively.
This interference determines which forcing locations
contribute to the signal at a specific point. As an ex-
ample, we calculate the response to a single ‘‘wave.’’
Next we consider statistically homogeneous and sta-
tionary forcing. We follow observational practice and
perform our analyses in frequency space. Thus, all sta-
tistical quantities in this paper are spectra in frequency
space. In regards to space, the analysis would be sim-
plest in wavenumber space. The Fourier amplitudes at
different wavenumbers are uncorrelated for statistically
homogeneous fields. The potential vorticity equation
linearly relates the Fourier amplitudes of the response
to those of the forcing. However, the spatial Fourier
amplitudes of the response cannot be estimated from
measurements at a single mooring location, only from
space-resolving measurements such as altimetric mea-
surements. Therefore, observationalists who only have
data from one or a few moorings must carry out their
analysis in separation space. They can only estimate
cross-covariance or coherence maps, that is, the cross-
covariance or coherence between the response at the
mooring location and the forcing at other locations as
a function of separation. We calculate these maps from
the simple forcing model and analyze both generally
and by example how the basic features of these maps
depend on the scales of the forcing and the Green’s
function. The emphasis is not on reproducing observed
maps but on understanding their information content.
We then suggest that cross-covariance maps be used to
estimate the Green’s function. The noise can then be
estimated from the multiple coherence, which is a num-
ber.

2. Potential vorticity equation

The linear quasigeostrophic response of a homoge-
neous, beta-plane, constant depth ocean to wind stress
forcing is given by the potential vorticity equation

22(] 1 n)(] ] 1 ] ] 2 R )p(x, y, t)t x x y y 0

1 b ] p(x, y, t) 5 F(x, y, t), (2.1)0 x

where p is the pressure, t time, x the zonal coordinate,
y the meridional coordinate, b0 the meridional gradient

of the Coriolis parameter, Ro the external Rossby radius
of deformation, F the forcing, and n a Rayleigh friction
coefficient. Friction is included to limit the response in
a horizontally unbounded ocean. In most cases we as-
sume friction to be small and only use it as a tool to
properly deal with the singularities of the frictionless
theory. In these cases the friction coefficient is set to
zero in the final result.

Without forcing and friction the potential vorticity
equation has free wave solutions of the form p(x, y, t)
; exp[i(kx 1 ly 2 vt)], called Rossby waves, with
dispersion relation

b k0v 5 V(k, l) 5 2 . (2.2)
2 2 22k 1 l 1 R0

Here k and l are the zonal and meridional wavenumber
component and v is the frequency. In the wavenumber
plane the locus V(k, l) 5 v 5 const represents a circle
with center at (k, l) 5 (kc, 0), where

b0k (v) 5 2 (2.3)c 2v

and radius
2 22 1/2a(v) 5 (k 2 R ) (2.4)c o

(see Fig. 1). The group velocity points toward the center
of the circle. Such free waves only exist for zvz , vmax

5 b0Ro/2.
In frequency space the potential vorticity equation

takes the form

22 ˜(] ] 1 ] ] 2 R )p(x, y, v) 2 2ik ] p(x, y, v)x x y y o c x

i
5 F(x, y, v), (2.5)

ṽ
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where 5 v 1 in and the tilde on kc indicates that vṽ
is replaced by in the definition (2.3). Upon substi-ṽ
tution of p̂ 5 p exp( ) this equation transforms to˜2ik xc

the inhomogeneous Helmholtz equation

i ˜2 2ik xc(] ] 1 ] ] 1 ã )p̂(x, y, v) 5 F(x, y, v)e , (2.6)x x y y ṽ

where the tilde on a again indicates that v is replaced
by in the defintion (2.4). The Helmholtz equation hasṽ
been studied extensively (e.g., Morse and Feshbach
1953), especially its Green’s functions.

3. Green’s function

The solution of the potential vorticity equation (2.1)
can be written as a convolution integral

p(x, y, v)

5 dx9 dy9G(x 2 x9, y 2 y9, v)F(x9, y9, v)E E
(3.1)

with the Green’s function

1 ˜(2) ik xcG(x, y, v) 5 H (ã R)e (3.2)0 24ṽ

where is a Hankel function of the second kind of(2)H0

zeroth order, R 5 (x2 1 y2)1/2, and ã2 is the root with
the negative imaginary part. This particular root and
Hankel function are chosen so that the Green’s function
decays asymptotically. For zvz , vmax, this requires the
inclusion of friction. The response to a point source F(x,
y, v) 5 d(x 2 x0)d(y 2 y0) is p(x, y, v) 5 G(x 2 x0,
y 2 y0, v). In the following we drop the parametric
dependence on v.

For a meridional channel, as used for example by
Brink (1989), we can Fourier transform to meridional
wavenumber space and obtain

p(x, l) 5 2p dx9G(x 2 x9, l)F(x9, l) (3.3)E
with Green’s function

˜ik xa1 1 e for x . 0
G(x, l) 5 2 (3.4)˜ik x5 b2p 2ṽm̃ e for x , 0,2

where

˜ ˜k (l) 5 k 2 m̃ (3.5a)a c 2

˜ ˜k (l) 5 k 1 m̃ (3.5b)b c 2

and
2 2 2m̃ (l) 5 ã 2 l . (3.6)

The minus subscript again indicates that the root with
the negative imaginary part is chosen. This choice again
assures that the Green’s function decays asymptotically

in both directions. The functions ka, b(l) are also shown
in Fig. 1 for a case where zvz , vmax. For zlz # a the
wavenumbers ka,b(l) lie on the dispersion circle and are
thus resonance wavenumbers that satisfy the dispersion
relation.

In an unbounded ocean Fourier transformation in both
coordinates leads to

p(k, l) 5 (2p)2G(k, l)F(k, l) (3.7)

with Green’s function

G(k, l) (3.8)
1 2i

5 .
2 2 2 22(2p) (k 1 l 1 R )(ṽ 2 V(k, l))0

The Green’s function G(k, l) shows the typical resonance
behavior ( 2 V(k, l))21. It would lead to singularitiesṽ
on the dispersion circle if friction were not included.
Equation (3.7) is the most compact form of the solution
for an infinite ocean. The Fourier coefficients of the
response and forcing are simply proportional with the
factor of proportionality given by the Green’s function.

The Fourier components p(x, l) and p(k, l) cannot be
inferred from single point ocean measurements. The so-
lutions (3.3) and (3.7) can therefore not be tested di-
rectly. However, these solutions lead to different rep-
resentations of the solution in physical space; namely,

ilyp(x, y) 5 2p dx9 dlG(x 2 x9, l)F(x9, l)e (3.9)E E
and

2 i(kx1ly)p(x, y) 5 (2p) dk dlG(k, l)F(k, l)e . (3.10)E E
The different representations (3.1), (3.9), and (3.10)
show how the forcing at different locations or wave-
numbers contribute to the response at position (x, y).
The different contributions interfere either construc-
tively or destructively.

4. Response to single wave

The Green’s function describes the response to a point
source. Here we calculate the response to a distributed
source in order to understand which forcing locations
contribute to the response at a single point. Specifically,
we calculate the response to a single Fourier component
F(x, y) 5 exp[i(k0x 1 l0y)] or F(k, l) 5 d(k 2 k0)d(l 2
l0). The representation (3.10) immediately gives the re-
sponse

2 i(k x1l y)0 0p(x, y) 5 (2p) G(k , l )e . (4.1)0 0

However, if we want to know how different locations
contribute to this response at (x, y), we have to use
representation (3.1), which yields
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FIG. 2. Contributions from different radii for frequencies larger than the maximal Rossby wave
frequency. The figure shows the function Ã(x) 5 xK0(x)J0(K0x/b) for K0/b 5 0.1 (solid), K0/b 5
1 (long dash), and K0/b 5 10 (short dash).

p(x, y)

i(k x1l y) i(k x91l y9)0 0 0 05 e dx9 dy9G(2x9, 2y9)e . (4.2)E E
In the limit n → 0 we find

p(x 5 0, y 5 0)
` 2p 1

(2) iK Rcos(w2u )0 05 dRR dw H (ã R)e , (4.3)E E 0 24v0 0

where (k0 2 kc) 5 K0cosu0 and l0 5 K0sinu0. Thus, K0

and u0 are the magnitude and direction of the wave-
number vector (k0, l0) in a frame shifted by kc (see Fig.
1). The contributions from different radii are given by

2p1
(2) iK Rcos(w2u )0 0A(R) 5 RH (ã R) dwe (4.4a)0 2 E4v 0

1
(2)5 RH (ã R)2pJ (K R), (4.4b)0 2 0 04v

where J0 is a Bessel function of the first kind of zeroth
order. For zvz . vmax we have ã2 → 2ib for n → 0
where b 5 ( 2 )1/2, and we find22 2R ko c

i ˜A(R) 5 RK (bR)J (K R), (4.5)0 0 0v

where K̃0 is the modified Bessel function of the second
kind of zeroth order and where we made use of the
identity

2i
(2) ˜H (2ix) 5 K (x).0 0p

The tilde has been added to the standard symbol for the
modified Bessel function in order to distinguish it from
the magnitude K0 of the wavenumber vector. The mod-
ified Bessel function K̃0(x) decreases exponentially to
zero. The function

K0˜ ˜A(R) 5 xK (x)J x0 01 2b

is displayed in Fig. 2 for three different values of K0/
b. The figure shows that the major contributions at a
point (x, y) come from within a circle of radius O(2b).

For zvz , vmax we have ã2 → a for n → 0, where a
is the radius of the dispersion circle. In this case the
function A(R) does not decay to zero for R → ` but
has the asymptotic behavior

1 1
i(K 2a)R 2i(K 1a)R0 0A(R) ; [e 1 ie ]. (4.6)

v ÏK a0

The contributions to the response at a point (x, y) thus
come from all values of R. Since A(R) is an oscillating
function, most of the contributions interfere destruc-
tively and cancel, unless K0 5 a, that is, unless the ocean
is forced in resonance. In this case

A(R) ; 1 1 i exp(22iK0R) (4.7)

and A(R) contains a constant contribution.
The contributions from different directions are given by

` 1
(2) iK Rcos(w2u )0 0B(w) 5 dRR H (ã R)e . (4.8)E 0 24v0

Upon substitution of the integral representation
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FIG. 3. Contributions from different angles for frequencies larger
than the maximal Rossby wave frequency. The figure shows the real
part (solid) and imaginary part (dash) of B̃ as a function of f 2 u0

for three different values of K0/b.

`2i
(2) 2ixcoshuH (x) 5 due , (4.9)0 Ep 0

one can carry out the integration over R and obtain

`1 2i 1 1
B(w) 5 2 du , (4.10)E2 24v p ã ( p̃ 2 coshu)2 0

where

K0p̃ 5 cos(w 2 u ).0ã2

The integration over u gives
` 1

B̃(w) 5 E 2( p̃ 2 coshu)0

1 p̃
5 1 2

21 21 2 p̃ Ïp̃ 2 1
21 2 p̃ 2 Ïp̃ 2 1

3 ln . (4.11)221 2 p̃ 1 Ïp̃ 1 1

Figure 3 shows the function B̃(w) in the limit ã2 →
2ib for three different values of K0/b. For K0/b → 0
we find Re [B̃(w)] → 1 and Im[B̃(w)] → 0. An observer
will thus see ‘‘light’’ coming in from all directions. As
K0/b becomes larger the response becomes more and
more concentrated at the points (w 2 u0) 5 6p/2, that
is, at the points where p̃ vanishes. ‘‘Light’’ only comes
in from directions perpendicular to u0. Figure 4 shows
the analogous results for ã2 → a. For small K0/b the
distribution is again broad. For K0/a 5 1, that is, for
forcing at a resonant wavenumber, the distribution is
sharply centered at (w 2 u0) 5 0 where it becomes
infinite. Since the group velocity of Rossby waves
points toward the center of the dispersion circle, the
signal thus comes toward the observer from a direction
opposite to that of the group velocity vector, consistent
with physical expectations. For K0/a larger than one,
B̃(w) becomes concentrated at the two directions (w 2
u0) 5 6cos21(a/K0) where p̃ 5 1. These are the di-
rections toward the points where straight lines through
(k0, l0) become tangent to the dispersion circle. Actu-
ally, B̃(w) is a generalized function or distribution in
this case, arising from the fact that for

a a
21 21w 2 u ∈ 2cos , cos0 [ ]K K0 0

there is always a u value for which the integrand in
(4.10) becomes singular in the limit ã2 → a. It is im-
portant for our argument later on that the functions A(R)
and B(w) do not change their form if the geostrophic
velocity components u 5 2]y p and y 5 ]x p are con-
sidered instead of the pressure p. The functions are only
multiplied by a factor 2il0 or ik0.

The above results can more explicitly be shown for
the case l0 5 0, that is, for forcing that is independent
of the meridional coordinate. In this case we find from
(3.9)
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FIG. 4. As in Fig. 3 but for frequencies smaller than the maximal
Rossby wave frequency.

x1 ˜ ˜ik x i(k 2k )x9a 0 ap(x, y) 5 2 e dx9eE[2ṽã2 2`

`
˜ ˜ik x i(k 2k )x9b 0 b1 e dx9e . (4.12)E ]

x

The first term represents the contributions from the west,
the second term the contributions from the east. For
forcing at resonant wavenumber k0 5 ka, which gen-
erates short Rossby waves with an eastward group ve-
locity, the contributions from the west interfere con-
structively, whereas the contributions from the east in-
terfere destructively and cancel to a large extent. For
forcing at resonant wavenumber k0 5 kb, which gen-
erates long Rossby waves with a westward group ve-
locity, the situation is reversed.

5. Coherence maps

We now assume that the forcing function F(x, y, t)
is a random function; especially, we assume that it is
a zero-mean, statistically stationary, and homogeneous
process. Since we consider an unbounded ocean and
include friction, the oceanic response p(x, y, t) is also
a zero-mean, statistically stationary, and homogeneous
process (e.g., Müller 1996). For such processes the
Fourier amplitudes F(k, l, v) and p(k, l, v) at different
wavenumbers and frequencies are uncorrelated. The
forcing and response will be described by their spec-
trum in frequency space and by their spectrum in wave-
number space or their autocovariance function in sep-
aration space. Spectrum and covariance function are
related by a Fourier transformation. The cross-spec-
trum between response and forcing is defined by

S (k, l, v)d(k 2 k9)d(l 2 l9)d(v 2 v9)pF

5 ^p*(k, l, v)F(k9, l9, v9)&, (5.1)

where angle brackets denote the ensemble average. The
cross-spectrum is given for our simple model by

SpF(k, l, v) 5 (2p)2G*(k, l, v)SFF(k, l, v) (5.2)

as an immediate consequence of the direct proportion-
ality between p(k, l, v) and F(k, l, v) [see (3.7)]. This
direct proportionality implies that the coherence squared

2zS (k, l, v)zpF2g (k, l, v) 5 (5.3)pF S (k, l, v)S (k, l, v)pp FF

is identical to one for our model. If observational es-
timates S̃pF(k, l, v), S̃pp(k, l, v), and S̃FF(k, l) were used,
the coherence would generally be less than one and this
would indicate the presence of noise (or nonlinearities
or other forcing fields).

As discussed in the introduction, oceanographers
working with data from a single mooring can only con-
sider the cross-covariance function between the re-

sponse at the mooring position (x, y) and the forcing at
positions (x 1 Dx, y 1 Dy), which is defined by

C (Dx, Dy, v)d(v 2 v9)pF

5 ^p*(x, y, v)F(x 1 Dx, y 1 Dy, v9)& (5.4)

and is given for our simple model by



SEPTEMBER 1997 1933M Ü L L E R

C (Dx, Dy, v)pF

5 dx9 dy9G*(x 2 x9, y 2 y9, v)E E
3 C (x 1 Dx 2 x9, y 1 Dy 2 y9, v). (5.5)FF

Now the situation is different. The response at a point
is due to forcing at many different locations, and the
coherence squared

2zC (Dx, Dy, v)zpF2g (Dx, Dy, v) 5 (5.6)pF V (v)V (v)pp FF

can be less than one, as a consequence of the Cauchy–
Schwarz inequality. The reason for this is not that the
relation between p(x, y, v) and F(x 1 Dx, y 1 Dy, v)
is contaminated by noise or nonlinearities. The coher-
ence between the response at (x, y) and the forcing at
(x 1 Dx, y 1 Dy) is degraded by forcing at other lo-
cations (x9, y9). In (5.6), V..(v) denotes the variance
C..(Dx 5 0, Dy 5 0, v).

The cross-spectrum SpF(k, l, v) is the Fourier trans-
form of the cross-covariance function CpF(Dx, Dy, v).
Both functions can thus be estimated from a single point
ocean measurement and wind field maps. The reason
that one uses CpF(Dx, Dy, v) and (Dx, Dy, v) rather2gpF

than SpF(k, l, v) and (k, l, v) is that Vpp(v) in the2gpF

denominator of (Dx, Dy, v) can be estimated from2gpF

single point ocean measurements, whereas Spp(k, l, v)
in (k, l, v) cannot be estimated.2gpF

In quasigeostrophic theory the horizontal velocity
components are given by u 5 2]yp and y 5 ]xp, except
for a constant factor, and their Green’s function by Gu(k,
l) 5 2ilG(k, l) and Gy(k, l) 5 ikG(k, l). The cross-
covariance functions between the velocity components
and the forcing are therefore given by

]
C (Dx, Dy) 5 C (Dx, Dy) (5.7a)uF pF]Dy

]
C (Dx, Dy) 5 2 C (Dx, Dy, v) (5.7b)yF pF]Dx

and are simply the meridional and zonal gradients of the
cross-covariance function between pressure and forcing.

Brink (1989), Samelson (1990), and Lippert and
Müller (1995) used formulas (5.5) and (5.6) and ide-
alized wind covariance functions to calculate coherence
maps. These calculated maps show decaying periodic

structures with the principal maximum either at the
mooring location or away from it, depending on the
frequency and oceanic variable. Lippert and Müller
(1995) asserted that the location of the maxima does
not represent the location of the forcing, but that the
maps represent interference patterns. Specifically, the
different locations of the maxima in maps for pF, uF,
and yF reflect the geostrophic relations (5.7) and not
the fact that pressure and velocity signals are generated
in different locations. In the resonance case, the maxima
are located in the half plane such that the group velocity
points toward the observer. In the next section we give
simple examples to support these points.

6. Examples

If we express the cross-covariance function (5.5) in
terms of the forcing spectrum

2C (Dx, Dy, v) 5 (2p) dk dlG*(k, l, v)pF E E
i(kDx1lDy)3 S (k, l, v)e , (6.1)FF

we see that cross-covariance maps represent the inter-
ference patterns of elementary ‘‘waves’’ exp[i(kDx 1
lDy)] with amplitude G*(k, l, v)SFF(k, l, v). Coherence
maps represent the normalized ‘‘intensity’’ pattern.
These interference and intensity patterns reflect the
scales of G*(k, l, v) and SFF(k, l, v). The parametric
dependence on v will again be dropped.

For forcing at a single wavenumber, SFF(k, l) 5 S1d(k
2 k1)d(l 2 l1), we find

1 2 i(k Dx1l Dy)1 1C (Dx, Dy) 5 (2p) G*(k , l )e S (6.2a)pF 1 1 1

1 4V 5 (2p) G*(k , l )G(k , l )S , (6.2b)pp 1 1 1 1 1

and 5 S1. Therefore ( (Dx, Dy))2 [ 1. The co-1 1V gFF pF

herences are identical to one for forcing at a single
wavenumber.

For forcing at two wavenumbers, SFF(k, l) 5 S1d(k 2
k1)d(l 2 l1) 1 S2d(k 2 k2)d(l 2 l2), we find

112 2 i(k Dx1l Dy)1 1C (Dx, Dy) 5 (2p) (G*S epF 1 1

i(k Dx1l Dy)2 21 G*S e ) (6.3a)2 2

112 4V 5 (2p) (G*G S 1 G*G S ), (6.3b)pp 1 1 1 2 2 2

and 5 S1 1 S2 where Gi 5 G(ki, li). The coherence112VFF

squared thus becomes

2 2 i(k 2k )Dx i(l 2l )Dy1 2 1 2G*G S 1 G*G S 1 S S (G*G e e 1 c.c.)1 1 1 2 2 2 1 2 1 2112 2(g (Dx, Dy)) 5 (6.4)pF (G*G S 1 G*G S )(S 1 S )1 1 1 2 2 2 1 2

and is generally less than one due to the interference of
the two ‘‘waves.’’ Consider specifically the case S1 5

S2 and k2 5 k1 and l2 5 2l1, which implies G1 5 G2.
In this case
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1
112 2(g (Dx, Dy)) 5 (1 1 cos(DlDy)) (6.5)pF 2

with Dl 5 l2 2 l1. The coherence squared is a periodic
function of y with a maximum at the origin Dy 5 0 and
a periodicity given by the separation Dl of the forcing in
wavenumber space. If (k, l) are chosen to be resonant
wavenumbers, the response consists of two Rossby waves:
one with a southward group velocity and all its signal
coming from the north, and one with a northward group
velocity and all its signal coming from the south. The
location of the coherence maxima does not indicate the
location of the forcing. This point becomes even more
evident when we consider the coherence between the ve-
locity components and the forcing. For our specific ex-
ample, we find

112 112g (Dx, Dy) 5 g (Dx, Dy) (6.6a)yF pF

1
112 2(g (Dx, Dy)) 5 (1 2 cos(DlDy)). (6.6b)uF 2

The coherence between p and F and between y and F
has a maximum at the origin Dy 5 0, whereas the co-
herence between u and F has a minimum at the origin,
although the signals for u, y, and p all come from the
same direction, as discussed in section 4.

The direction of the group velocity enters when we
consider forcing in a small wavenumber band around a
resonant wavenumber. Consider a coordinate system (k9,
l9) such that the x axis coincides with the direction of
the group velocity at ( , ). In this coordinate system,k9 l90 0

expansion of the resonance denominator about the res-
onant wavenumber ( , ) yieldsk9 l90 0

ṽ* 2 V(k9, l9) 5 ṽ* 2 V(k9, l9)0 0

2 V(k9 2 k9) 1 · · · . (6.7a)0

in
. 2V k9 2 k9 1 , (6.7b)01 2V

where V 5 V( , ) is the magnitude of the group velocity.k9 l90 0

The cross-covariance function then takes the form
C (Dx9, Dy9)pF

1 1 S (k9, l9)FF5 2 dk9 dl9E E 2 2 22V in k9 1 l9 1 Rok9 2 k9 10 V
i(k9Dx91l9Dy9)3 e . (6.8)

In the limit n → 0 we can substitute the integral rep-
resentation

`1
iszlim 5 2i dse (6.9)Ez 1 iee→0 0

for the resonance denominator. For a Gaussian forcing
spectrum,

S (k9, l9)FF

1
2 2 225 (k9 1 l9 1 R )o 2pDk9Dl9

2 2(k9 2 k9) (l9 2 l9)0 03 exp 2 2 , (6.10)
2 25 62Dk9 2Dl9

the integration over l9, k9 and then over s can be carried
out and results in

C (Dx9, Dy9)pF

1 19 9i(k Dx91l Dy9) 2 20 05 2 e exp 2 Dy9 Dl95 6V 2

Ïp Dx9Dk9
223 Ï2Dk9 erfc , (6.11)1 22 Ï2

where erfc(x) is the complementary error function with
erfc(2`) 5 2, erfc(0) 5 1, and erfc(`) 5 0. For Dk9
→ 0 the cross-covariance function is unequal from zero
only in the half-plane with the group velocity vector
pointing toward the observer, consistent with the finding
in section 4 about the origin of the signal.

A less trivial example is given by meridionally uni-
form forcing with spectrum

1
S (k, l) 5 d(l) (6.12)FF 2 2k 1 k0

or covariance function

p
2k zDxz0C (Dx, Dy) 5 e . (6.13)FF k0

The cross-covariance function then takes the form

C (Dx, Dy)pF

˜*21 21 2k Dx 21 21 ik Dx˜ ˜ ˜ ˜0 b1 1 p [(ik* 1 k ) 2 (ik* 1 k ) ]e 1 [(ik* 1 k ) 2 (ik* 2 k ) ]e for Dx . 0a 0 b 0 b 0 b 05 2 (6.14)˜*21 21 k Dx 21 21 ik Dx5 ˜ ˜ ˜ ˜0 aṽ* ã* k [(ik* 2 k ) 2 (ik* 2 k ) ]e 1 [(ik* 1 k ) 2 (ik* 2 k ) ]e for Dx , 0.2 0 a 0 b 0 a 0 a 0
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For zvz , vmax

n
k̃ 5 k 1 i (6.15)a,b a,b Va,b

to lowest order in n/v, where

va
V 5 . 0 (6.16a)a k ka c

va
V 5 2 , 0 (6.16b)b k kb c

are the group velocities at the resonant wavenumbers ka

and kb. The cross-covariance map thus contains the de-
cay scale arising from the bandwidth of the forcing21k0

spectrum and the periodicity scales and frictional21ka,b

decay scales Va,b/n arising from the Green’s function.

7. Multiple coherence

From an observational point of view, one only has
the cross-covariance function CpF(Dx, Dy) and the au-
tocovariance function CFF(Dx, Dy) of the wind forcing.
If one postulates a linear relationship between the re-
sponse at the mooring location and the forcing at other

locations via a Green’s function, as in (3.1), then one
can perform a linear multiple regression analysis in or-
der to estimate the Green’s function. The best estimate
G̃(x, y) for the Green’s function, in a least squares sense,
is then given by

˜C (Dx, Dy) 5 dx9 dy9G*(x 2 x9, y 2 y9)pF E E
3 C (x 1 Dx 2 x9, y 1 Dy 2 y9), (7.1)FF

which is identical to (5.5) except that the formula now
contains G̃, which is to be estimated. The actual inver-
sion or deconvolution of (7.1) in order to obtain G̃(x,
y) might be a complicated matter. However, (7.1) allows
us to estimate how well the postulated linear relationship
between forcing and response is supported by the ob-
servations. For this consider the difference

e 5 p(x, y) 2 dx9 dy9E E
˜3 G(x 2 x9, y 2 y9)F(x9, y9) (7.2)

between the observed pressure signal p(x, y) and its best
estimate from the linear multiple regression analysis.
The variance of this difference is given by

˜^e*e& 5 ^p*(x, y)p(x, y)& 2 dx9 dy9G*(x 2 x9, y 2 y9)^p(x, y)F*(x9, y9)&E E
˜2 dx9 dy9G(x 2 x9, y 2 y9)^p*(x, y)F(x9, y9)&E E

˜ ˜1 dx9 dy9 dx0 dy0G*(x 2 x9, y 2 y9)G(x 2 x0, y 2 y0)^F*(x9, y9)F(x0, y0)& (7.3a)E E E E
˜5 V (x, y) 2 dx9 dy9G*(x 2 x9, y 2 y9)C* (x9 2 x, y9 2 y), (7.3b)pp E E pF

since the third and fourth terms in (7.3a) cancel because
of (7.1). The variance of the difference can also be
written

^e*e& 5 Vpp(1 2 g2), (7.4)

where

˜dx9 dy9G*(x 2 x9, y 2 y9)C* (x9 2 x, y9 2 y)E E pF

2g 5
Vpp

(7.5)

is called multiple coherence by Bendat and Piersol
(1971). The multiple coherence is a number and mea-
sures to what extent the postulated linear relationship

between response and forcing is contaminated by noise,
nonlinearities, or other forcing fields.

8. Summary and conclusions

We have analyzed the information contained in cross-
covariance or coherence maps. These maps display the
cross covariance or coherence between the oceanic re-
sponse at a single observation point and the forcing field
at other points. We specifically considered the barotropic
quasigeostrophic response to wind forcing calculated
from a simple model, although the results can obviously
be generalized to other systems. Coherence maps must
be used when ocean measurements are only available
at a single (or a few) mooring locations. Then one cannot
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correlate the complete response field with the complete
forcing field. Our major results are the following.

R The coherence maps show values less than one. This
is not an indication that the relation between forcing
and response is contaminated by noise or nonlinear-
ities, which is not true for our simple model, but sim-
ply a consequence of forcing at other locations.

R The coherence maps show patterns with local maxima
at the mooring location or nonlocal maxima away
from it. For our statistically homogeneous forcing
model these maxima do not indicate the location of
the forcing but the maps represent interference pat-
terns, which in turn reflect the scales of the forcing
spectrum and of the Green’s function. If we had as-
sumed a bounded ocean, another scale would enter
the problem, namely the width of the ocean basin.

R The primary information contained in the cross-co-
variance maps is the Green’s function. The Green’s
function can be estimated from observed cross-co-
variance maps and the observed wind field by multiple
regression analysis. So far, oceanographers have test-
ed physically motivated Green’s functions by calcu-
lating cross-covariance maps with them and compar-
ing these calculated maps to observed maps.

R The presence of noise or nonlinearities in the relation
between response and forcing can be inferred from
the multiple coherence, which is a single number.
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