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ABSTRACT

This paper reconsiders the classic problem of bottom Ekman pumping below a steady geostrophic flow by
relaxing the assumption of a constant eddy viscosity. It is assumed instead that the eddy viscosity depends on
the magnitude of the bottom stress, which itself is a function of the geostrophic flow. Results show that the
vertical Ekman pumping is no longer directly proportional to the relative vorticity of the geostrophic flow, but
is a far more complicated function of the geostrophic flow. Specific examples are discussed, which show that
the Ekman pumping rate may be 50% or 100% larger than that predicted by the traditional theory.

1. Introduction

It has long been established that the role of vertical
friction in the deep ocean is relegated to relatively
thin layers, called Ekman layers. One of these is the
bottom Ekman layer, which exists to bring the hori-
zontal velocity components from their finite values in
the lower water column to zero at the bottom. The
combination of Coriolis and frictional forces in the
Ekman layer creates a substantial veering, and there
exists in the layer a flow component transverse to the
current aloft. Thus, although that current may be in
geostrophic balance and almost nondivergent, the
transverse flow in the Ekman layer is divergent or
convergent. Continuity of fluid demands a compen-
sating vertical velocity, which extends through the
water column. This is called Ekman pumping.

Ekman pumping is important for several reasons.
First, it plays a significant dynamical role by stretch-
ing or squeezing the ocean’s interior flow; this, in turn,
affects the vorticity of the ocean circulation. Second,
slow but persistent vertical velocities are essential in
transporting chemicals, contaminants (such as radio-
active wastes), and nutrients through the water col-
umn, and in controlling their residency time.

According to the traditional theory, which relies on
the assumption of a uniform eddy viscosity (see, e.g.,
Pedlosky 1987, chapter 4; Cushman-Roisin 1994,
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chapter 5), there is a direct proportionality between
the transverse velocity component in the Ekman layer
and the overlying geostrophic velocity, and it is found
that the Ekman pumping rate is proportional to the
relative vorticity of the geostrophic flow. Thus, for
example, a cyclonic gyre in the ocean’s interior is
associated with convergent flow in the bottom Ekman
layer and an upward vertical velocity proportional to
the gyre’s local relative vorticity. It is well known,
however, that the turbulent state of the ocean’s bottom
boundary layer is such that the eddy viscosity is not
vertically uniform but varies significantly with dis-
tance above the bottom (Weatherly and Martin 1978).
The magnitude of the eddy viscosity also varies hor-
izontally with the local bottom stress. While the ver-
tical profile of the eddy viscosity controls the structure
of the current distribution through the Ekman layer,
its magnitude controls characteristics such as the
thickness of the layer. The magnitude of the transverse
transport depends on the overlying geostrophic flow
speed and on the thickness of the layer, which varies
with the eddy viscosity, the bottom stress, and thus
the geostrophic flow speed itself. In sum, the trans-
verse transport is more than proportional to the over-
lying geostrophic current, and the Ekman-pumping
velocity cannot be simply proportional to the vorticity
of the geostrophic flow but must depend on it in some
more complicated, nonlinear way. Our objective here
is to determine this relationship between Ekman
pumping and geostrophic flow when a more realistic
eddy viscosity parameterization than a constant is
adopted.
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A classic parameterization of the eddy viscosity in a
sheared boundary layer1 is (Ellison 1956)

n 5 ku*z, (1)

where n is the eddy viscosity, k 5 0.40 the von Kármán
constant of turbulence, u* the so-called friction velocity,
and z the distance from the boundary. The friction ve-
locity is defined from the boundary stress tb according to

tb 5 r ,2u* (2)

where r is the fluid’s density. The virtues of this rela-
tively simple parameterization are its increase with dis-
tance from the boundary and its increase with the
amount of shear stress, according to results of laboratory
experiments and geophysical observations. It has been
used in numerous studies of homogeneous rotating
flows: among others, Ellison (1956) in a study of tur-
bulence in the atmospheric boundary layer, Madsen
(1977) in a study of the ocean’s wind-driven surface
Ekman layer, and Nihoul (1977), Lavelle and Mofjeld
(1983), Ostendorf (1984), and Soulsby (1990) in studies
of tidal currents in shallow well-mixed waters. The so-
lution is in terms of Kelvin–Thomson functions (a va-
riety of Bessel functions because of the proportionality
of n to z) and is well known. In all these studies, how-
ever, the dependency of the eddy viscosity on the friction
velocity is treated parameterically, and no one to our
knowledge has yet investigated its effect on Ekman
pumping in the deep ocean. To fill this gap, we inves-
tigate here how parameterization (1)–(2) for the eddy
viscosity modifies the expression for the Ekman pump-
ing generated by bottom friction in the deep ocean.

The study of Weatherly and Martin (1978), based on
a turbulence-closure model, reveals that the eddy vis-
cosity in the ocean’s benthic layer behaves according to
(1) near the bottom but reaches a maximum at some
height and decreases nearly exponentially with farther
distance from the bottom. An improved parameteriza-
tion with exponential attenuation has been proposed
(Long 1981), but the intractability of the ensuing math-
ematical problem demands numerical solution. Adopt-
ing such refined parameterization in our study would
preclude the derivation of an analytical formula for the
Ekman pumping rate, and we decided not to go beyond
(1)–(2). It is also expected that the difference would be
minor since values of the eddy viscosity significantly
away from the bottom where the velocity shear is small
are nearly irrelevant, and the structure of the boundary
layer is essentially governed by the behavior of the eddy
viscosity near the bottom where the velocity shear is
greatest. This assertion is verified a posteriori.

Our work is structured in the following way. Section
2 briefly reviews the solution of the Ekman-layer equa-

1 The turbulent Ekman layer is none other than a sheared boundary
layer in the presence of rotation.

tions with eddy viscosity parameterized by (1)–(2) and
recapitulates its advantages over that with constant eddy
viscosity. Section 3 then derives from this solution a
new formula giving the vertical Ekman-pumping ve-
locity in the ocean’s interior in terms of its geostrophic
velocity. Several particular cases are considered and dis-
cussed. The concluding section 4 highlights the differ-
ences with the predictions of the traditional theory based
on constant eddy viscosity. At the end of the paper is
a short appendix defining two particular functions de-
rived from the Kelvin–Thomson functions that facilitate
the analytical developments.

2. Bottom Ekman layer

a. Equations and boundary conditions

Traditional Ekman dynamics include a balance between
the Coriolis, pressure gradient, and vertical-friction forces.
Time derivatives and nonlinear advective terms can also
be incorporated (Soulsby 1990; Hart 1995), but we shall
not to do so in order to restrict the attention to the effect
of a varying eddy viscosity on Ekman pumping. Also, our
new parameterization of Ekman pumping would be most
useful in general circulation studies, when geostrophy is
an excellent approximation.

Above the Ekman layer, the frictional force vanishes
and the balance of forces reduces to geostrophy; by virtue
of the homogeneity of the fluid and of the hydrostatic
balance, which we also assume, the horizontal pressure
gradient is depth independent, and we write

] ]u
2 f (y 2 ȳ) 5 ku z (3a)1 * 2]z ]z

] ]y
1 f (u 2 ū) 5 ku z , (3b)1 * 2]z ]z

where f is the Coriolis parameter (assumed constant and
positive), u and y the horizontal velocity components with-
in the layer (0 # z), ū and the geostrophic flow aloft (zȳ
→ `), and ku*z the variable eddy viscosity presented
earlier. We employ partial derivatives with respect to the
vertical coordinate z because we consider the geostrophic
flow (ū, ) to be varying horizontally (in x and y directions)ȳ
and to induce horizontal variability in u, y, and u*. Bound-
ary conditions are

Top of Ekman layer:

u → ū, y → ȳ, as z → ` (4)

Bottom of Ekman layer:

u 5 0, y 5 0, at z 5 z . (5)0

In the bottom boundary conditions, it is necessary to dis-
tinguish the level z 5 z0, where z0 is the roughness height,
from the average bottom level z 5 0, because of the sin-
gularity of the anticipated logarithmic velocity profile in
the near-bottom zone (e.g., Lavelle and Mofjeld 1983).
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Governing equations (3a,b) form a fourth-order prob-
lem, which together with the four boundary conditions in
(4)–(5) can be solved uniquely. In that solution, however,
the friction velocity u* will appear parameterically, and it
will be necessary to close the problem by relating this
parameter to the magnitude of the bottom stress via (2);
that is,

r 5 tb 5 1 ,2 2 2u t tÏ x y* (6)

where tx and ty are the bottom stress components. Since
these implicate the velocity components as well as the
friction velocity, it is at this stage that a nonlinearity will
be introduced in the mathematical formalism.

b. Solution

Using the functions a(z) and b(z) derived in the ap-
pendix from the decaying Kelvin–Thomson functions, the
solution of (3a,b) that meets the upper boundary conditions
(4) is

fz fz
u 5 ū 1 Aa 1 Bb (7a)1 2 1 2ku ku* *

fz fz
y 5 ȳ 2 Ba 1 Ab , (7b)1 2 1 2ku ku* *

where A and B are two constants of integration. These
constants are to be determined by applying the remaining
two boundary conditions, namely (5). Since the level z 5
z0 is very close to the average bottom level z 5 0 (usually
less than a millimeter; Soulsby 1990), it can be assumed
that the dimensionless quantity fz0/ku* is much smaller
than unity, and the asymptotic behaviors of a and b near
the origin can be used [see (A6a) and (A7a)]. It follows
that

1 fz p00 5 ū 1 A 2 ln 2 g 2 B (8a)[ ]2 ku 4*

1 fz p00 5 ȳ 2 B 2 ln 2 g 2 A, (8b)[ ]2 ku 4*

where g 5 0.57722 is the Euler constant. The solution is
immediate;

4
A 5 (ȳ 2 lū) (9a)

2p(1 1 l )

4
B 5 (ū 1 lȳ), (9b)

2p(1 1 l )

where the coefficient l, defined by

4 1 ku*l 5 ln 2 g , (10)1 2p 2 fz0

has been introduced for convenience. Note that, because

the logarithm is a weak function of its argument, the co-
efficient l is a weak function of the friction velocity u*.

With u* remaining as a parameter, the solution is

4 fz
u 5 ū 1 (ȳ 2 lū)a

2 1 2p(1 1 l ) ku*

4 fz
1 (ū 1 lȳ)b (11a)

2 1 2p(1 1 l ) ku*

4 fz
y 5 ȳ 2 (ū 1 lȳ)a

2 1 2p(1 1 l ) ku*

4 fz
1 (ȳ 2 lū)b . (11b)

2 1 2p(1 1 l ) ku*
Collecting separately the terms proportional to ū and ,ȳ
we can write the same solution in the form

4(b 2 la) 4(a 1 lb)
u 5 1 1 ū 1 ȳ (12a)

2 2[ ]p(1 1 l ) p(1 1 l )

4(b 2 la) 4(a 1 lb)
y 5 1 1 ȳ 2 ū, (12b)

2 2[ ]p(1 1 l ) p(1 1 l )
which reveals the components of the flow that are parallel
and transverse to the geostrophic current. We note that the
transverse component, equal in magnitude to the absolute
value of 4(a 1 lb)/p(1 1 l2) times the speed of the
geostrophic current, is not proportional to the latter; in-
deed, the parameter l includes a dependency on the fric-
tion velocity, which will shortly be related to the geo-
strophic current speed.

c. Friction velocity
We now close the problem and determine the friction

velocity u* by relating it to the actual bottom stress.
First, the bottom-stress components are calculated:

]u
t 5 lim 2rku zx 1 * 2]zz→0

4rku da*5 2 (ȳ 2 lū) lim z
2 1 2[p(1 1 l ) dzz→0

db
1 (ū 1 lȳ) lim z (13a)1 2]dzz→0

]y
t 5 lim 2rku zy 1 * 2]zz→0

4rku da*5 1 (ū 1 lȳ) lim z
2 1 2[p(1 1 l ) dzz→0

db
2 (ȳ 2 lū) lim z , (13b)1 2]dzz→0
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FIG. 1. Variation of the friction velocity u
*

(thin line) and drag co-
efficient CD (thick line) with the geostrophic current speed zūz.

FIG. 2. Ekman spirals for various values of the dimensionless ratio
zūz/fz0, where zūz is the speed of the geostrophic current above the
Ekman layer, f the Coriolis parameter, and z0 is the roughness height.
The uppermost and thickest line corresponds to zūz/fz0 5 104, and
every successively thinner line to a value 10 times larger, with the
lowest and thinnest line corresponding to zūz/fz0 5 108. The point
where the spirals curl represents the geostrophic flow aloft, while the
origin is crossed at level z0. The branches in the third quadrant, beyond
the origin, exist because of the logarithmic nature of the velocity
profiles but are physically meaningless.

where z is fz/ku*. The limits (A7b,c) established in the
appendix yield

2rku*t 5 1 (ȳ 2 lū) (14a)x 2p(1 1 l )

2rku*t 5 2 (ū 1 lȳ). (14b)y 2p(1 1 l )

The friction velocity u* can then be derived from (6) as

2rku
2 2 2*ru 5 Ï(ȳ 2 lū) 1 (ū 1 lȳ) ,

2* p(1 1 l )

which can be reduced to

2 22k ū 1 ȳ 2kzūz
u 5 5 . (15)

2* 2!p 1 1 l pÏ1 1 l

Since the parameter l, defined in (10), includes u*,
formula (15) is an implicit2 equation for the friction
velocity, in terms of the magnitude of the geostrophic
flow zūz 5 , the roughness height z0, the Cor-2 2ū 1 ȳÏ
iolis parameter f, and dimensionless constants. The thin
curve in Fig. 1 traces the value of u*/zūz versus zūz/fz0.
Credit for relationship (15) between the friction velocity
and the geostrophic speed goes to Ellison [1956, his Eq.
(15) and his Table 2].

d. Bottom stress and drag coefficient

Expressions (14a,b) show that the bottom stress con-
sists of a component antiparallel to the geostrophic cur-

2 This implicit relation can, however, be inverted, and zūz/fz0 can
be expressed as an explicit function of u

*
/zūz. In the process, a square

root must be taken; physics dictate that the root corresponding to the
lower velocity values be selected.

rent (acting as a retarding force) and a transverse com-
ponent. The ratio of these components is l21, which
yields the angle of deflection between the geostrophic
current and its associated bottom stress.

From the magnitude of the bottom stress, we can
derive a drag coefficient by writing

2 2 2t 5 Ït 1 t 5 C rzūz , (16)b x y D

with
24k

C 5 . (17)D 2 2p (1 1 l )

Since l contains a weak dependency upon u* according
to (10), with u* itself depending upon the speed of the
geostrophic flow zūz according to (15), this drag coef-
ficient is not constant but a function of the dimension-
less, Rossby-like number zūz/fz0. [In the atmospheric
boundary layer literature, this number is occasionally
called the surface Rossby number (e.g., Garratt 1992,
p. 44)]. The variation is shown by the thick line in Fig.
1. Expression (17) is not new but was first derived by
Ellison (1956) and again by Lavelle and Mofjeld (1983).
These last authors also compared its predictions with a
variety of estimated values derived from measurements
taken in the ocean’s benthic boundary layer and found
good agreement (see their Fig. 9). This agreement spurs
us on to derive later an expression for the Ekman pump-
ing under the present choice of eddy-viscosity param-
eterization.

e. Veering angle and thickness of Ekman layer

Figure 2 shows velocity hodographs according to so-
lution (11a,b), in which the parameter l and the friction
velocity u* are related to the geostrophic speed zūz, the
roughness height z0, and the Coriolis parameter f by (10)
and (15). Since this solution contains the free dimen-
sionless number zūz/fz0, there is a family of hodographs,
all Ekman spirals but of various widths. Regardless of
the value of zūz/fz0, the transverse flow (to the left in
the Northern Hemisphere, to the right in the Southern
Hemisphere) hardly exceeds 10% of the geostrophic
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flow, unlike in the traditional solution according to
which it reaches 32%.3

If the veering angle a is defined as the angle between
the current as z approaches zero and the geostrophic
current aloft, Eqs. (12a–b) yield

24(a 1 lb) 1
tana 5 lim 5 . (18)

2p(1 1 l ) 1 4(b 2 la) lz→0

Table 1 lists selected values for a wide range of Rossby-
like numbers. As we can readily note, all values are
significantly lower than the traditional value of 458. In
numerical simulations of the oceanic bottom boundary
layer with a turbulence-closure model, Ezer and Weath-
erly (1990) found a values of 108 6 28 with f 5 9.47
3 1025 s21 (latitude 40.58 N), z0 5 1.6 3 1024 m, and
a geostrophic velocity above the Ekman layer of 10 cm
s21. For the same parameter values, the present model
yields an angle of 8.68.

A question that arises naturally is: How thick is the
Ekman layer? Taking the top of the layer as the level
above which the vector velocity does not differ from
the geostrophic current by more than 5%, we write

2 2(u 2 ū) 1 (y 2 ȳ)
5 «

2 2! ū 1 ȳ

at z 5 d, where « 5 0.05 and d is the nominal layer
thickness. Use of solution (11a,b) yields an implicit
equation for d:

2 2fd fd p (1 1 l )
2 2 2a 1 b 5 « . (19)1 2 1 2ku ku 16* *

Table 1 lists solutions for five different values of the
Rossby-like number zūz/fz0.

Before closing this section, we return to our choice
of parameterization of eddy viscosity and show that the
ever-increasing value of n with z (while a more realistic
parameterization would have a saturating or even de-
caying value far above the bottom) has no perceptible
impact on the solution. There are several ways to prove
this assertion. The first one is to remark that all prop-
erties derived from the present solution (friction veloc-
ity, drag coefficient, veering angle, layer thickness, and,
later, Ekman pumping) depend solely on the properties
(A7a,b,c) and (A8a,b) of the building-block functions
a(z) and b(z). While the behavior near the origin
(A7a,b,c) is directly controlled by the logarithmic sin-
gularity, which would remain unchanged as long as
n(z) behaves like z near the origin, the integral properties
(A8a,b) too do not depend on the detailed structure of
z but only on the requirement that the functions vanish
at infinity and again on the behavior near the origin.

3 This percentage is the maximum value of e2zsinz, the ratio of the
transverse velocity to the geostrophic speed in the traditional Ekman-
layer theory (obtained for z 5 p/4).

Therefore, values of n away from the origin are incon-
sequential.

Another way of arriving at the same conclusion is to
consider numerical values. Since the decay of velocity
deficit (velocity minus geostrophic flow) at the top of
the boundary layer is exponential, the 5% departure
criterion truly captures most of the extent of the bound-
ary layer. The values listed in Table 1 can then be used
to estimate the ‘‘final’’ values of n(z) that matter, and
with d 5 (0.235–0.663)u*/f, we find successively ntop

5 ku*d 5 (0.094–0.265) /f 5 (9.12 1025–1.77 1023)2u*zūz2/f. With a large zūz value of about 10 cm s21 and f
5 1024 s21, the range is 91.2–1770 cm2 s21, all in the
realm of inferred values for the ocean bottom. [For ex-
ample, in the Celtic Sea with u* ø 2 cm s21, Soulsby
(1990) estimated eddy viscosity values as large as 1100
cm2 s21 where the parameterization n(z) 5 ku*z still
holds.]

3. Ekman pumping

The volumetric transport carried by the velocity def-
icit in the boundary layer has components given by

`

U 5 (u 2 ū) dzE
0

`4ku*5 (ȳ 2 lū) a(z) dzE2 [p(1 1 l ) f 0

`

1 (ū 1 lȳ) b(z) dz (20a)E ]
0

`

V 5 (y 2 ȳ) dzE
0

`4ku*5 (ȳ 2 lū) b(z) dzE2 [p(1 1 l ) f 0

`

2 (ū 1 lȳ) a(z) dz . (20b)E ]
0

Integral relations (A8a,b) yield

2ku (ū 1 lȳ)*U 5 2 ,
2p(1 1 l ) f

2ku (ȳ 2 lū)*V 5 2 . (21a,b)
2p(1 1 l ) f

This Ekman layer transport is perpendicular to the bot-
tom stress vector given by (14a,b) and is at an angle p
2 tan21l to the left of the geostrophic current (in the
Northern Hemisphere, since we chose f to be positive).
More importantly, it is not a linear but a nearly quadratic
function of the geostrophic current.

The Ekman-pumping vertical velocity in the geo-
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TABLE 1. Veering angle and thickness of the Ekman layer for var-
ious values of the geostrophic current speed and roughness height.

Surface
Rossby
number

zūz
fz0

Veering
angle

a
Ekman-layer thickness

d

104 18.78 0.663 5 5.42 1022 5 5.42 102z0

u zūz
*
f f

105 13.48 0.489 5 2.88 1022 5 2.88 103z0

u zūz
*
f f

106 10.38 0.374 5 1.70 1022 5 1.70 104z0

u zūz
*
f f

107 8.318 0.294 5 1.09 1022 5 1.09 105z0

u zūz
*
f f

108 6.958 0.235 5 7.32 1023 5 7.32 105z0

u zūz
*
f f

strophic interior is obtained from a vertical integration
of the three-dimensional continuity equation:

]U ]V
w̄ 5 2 11 2]x ]y

2k ] u (ū 1 lȳ) ] u (ȳ 2 lū)* *5 1 , (22)
2 21 2 1 2[ ]p f ]x 1 1 l ]y 1 1 l

where the intermediate variables u* and l are nonlin-
early related to the geostrophic flow (ū, ) via Eqs. (10)ȳ
and (15). Formula (22) for the Ekman-pumping rate is
the main result of this paper. It differs from the tradi-

tional expression for the Ekman pumping (e.g., Ped-
losky 1987, sections 4–5; Cushman-Roisin 1994, sec-
tions 5–3):

n ]ȳ ]ū
w̄ 5 2 , (23)1 2!2 f ]x ]y

where n is the eddy viscosity, then assumed to be a
constant.

Because the logarithmic function in (10) prevents us
from solving (10)–(15) explicitly for u* and l, it is
difficult to quantify precisely the difference between the
predictions of (22) and (23). However, because the log-
arithm is a weak function of its argument, the parameter
l given by (10) may be approximated to a constant.
With this approximation the friction velocity u* be-
comes simply proportional to the geostrophic speed zūz,
according to (15). (Note that the variation of the ratio
u*/zūz shown in Fig. 1 is displayed on a logarithmic–
linear scale; thus, for a fixed value of the roughness
height z0, variations of the geostrophic speed within an
order of magnitude imply minor variations of the ratio
u*/zūz.) The corresponding expression for the Ekman-
pumping rate is

24k ]
w̄ 5 3zūz(ū 1 lȳ)4

2 2 3/2 [p (1 1 l ) f ]x

]
1 3zūz(ȳ 2 lū)4 . (24)]]y

Then, taking the derivatives of the individual factors
and recalling that a geostrophic flow is nondivergent on
the f plane (i.e., ]ū /]x 1 ] /]y 5 0), we obtainȳ

24k lzūz ]ȳ ]ū
w̄ 5 2

2 2 3/2 1 2p (1 1 l ) f ]x ]y

24k ]ū ]ȳ ]ū ]ȳ
1 (ū 1 lȳ) ū 1 ȳ 1 (ȳ 2 lū) ū 1 ȳ . (25)

2 2 3/2 1 2 1 2[ ]p (1 1 l ) f zūz ]x ]x ]y ]y

The first term of (25), that on the upper line, is pro-
portional to the vorticity of the geostrophic flow and
can be readily identified with the single term of the
traditional expression (23). Identification of the respec-
tive coefficients yields the resulting bulk eddy viscosity:

2 2 28k l u*n 5 , (26)bulk 2 2 2p (1 1 l ) f

which can be interpreted as the product of the von Kármán

constant k, the friction velocity u*, and an effective height
proportional to u*/f. This comes as no surprise since the
ratio u*/f is known to provide the depth scale of the tur-
bulent Ekman layer (Csanady and Shaw 1980) and that
scaling was already apparent in the dimensionless argu-
ment of the functions a and b in (11a, b) above.

Of much greater interest is the second term of (25),
that on the lower line. This term has the same order of
magnitude as the first one and is by no account negli-
gible. Yet, it has no counterpart in the classic theory.
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In order to highlight some of the differences, we explore
four particular cases, namely, those of a unidirectional
sheared current, a solid-body rotation, a zero-vorticity
circular flow, and a more complex vortex flow.

For a unidirectional shear flow ū 5 0, 5 (x), weȳ ȳ
readily obtain

24k lzȳ z dȳ dȳ
w̄ 5 1 , (27)

2 2 3/2 1 2p (1 1 l ) f dx dx

where the first and second terms correspond respectively
to the first and second terms of (25). Therefore, in the
case of a unidirectional shear flow, the new expression
for the Ekman-pumping rate predicts a value twice as
large as that predicted by the traditional theory. Phys-
ically, the faster the geostrophic flow, the greater the
transverse velocity and also the greater the bottom
stress, the more energetic the turbulence, and the thicker
the Ekman layer (thickness proportional to the local
geostrophic velocity, and not constant as the traditional
theory would have it). Thus, the transverse volumetric
transport is not linearly but quadratically depending on
the geostrophic current. This quadraticity accounts for
the factor 2.

In their numerical simulations of an oceanic bottom
boundary layer, Ezer and Weatherly (1990) discussed
Ekman pumping under a lateral velocity gradient of 3.3
cm s21 over a distance of 10 km (i.e., d /dx 5 3.3 3ȳ
1026 s21) when the turbulent eddy viscosity reached val-
ues of about 70 cm2 s21 (at 40.58 N, where f 5 9.47 3
1025 s21). While the traditional theory would have pre-
dicted, according to (23) a vertical Ekman-pumping ve-
locity of 1.73 m/day, Ezer and Weatherly found a value
of 3.5 m/day, that is, almost exactly double, in perfect
agreement with our result.

For a solid-body rotation, we take ū 5 2Vy, 5ȳ
1Vx, zūz 5 zVzr, where V is a constant (positive for a
cyclone, negative for an anticyclone in the Northern
Hemisphere), and r is the radical distance x2 1 y2.Ï
Straightforward calculations yield

24k lzVzr
w̄ 5 (2V 1 V), (28)

2 2 3/2p (1 1 l ) f

where again the first and second terms map those of
(25). In this case, we note that the present theory pre-
dicts an Ekman-pumping rate 50% greater than that pre-
dicted by the traditional theory.

In the case of a zero-vorticity circular flow, we take
ū 5 2Gy/r2, 5 1Gx/r2, zūz 5 zGz/r, and findȳ

24k lzGz G
w̄ 5 0 2 . (29)

2 2 3/2 21 2p (1 1 l ) fr r

Thus, while the traditional theory would have predicted
no Ekman pumping (except for an infinite value at the
center r 5 0, where a vorticity singularity exists), the
new theory predicts a nonzero Ekman pumping at all
distances (and an even stronger singularity at the center).

The sign is such that a cyclonic flow in the Northern
Hemisphere (G . 0) is accompanied by a downward
pumping at finite distances (and an infinite upward
pumping at the center). Physically, the absence of vor-
ticity leads to a transverse velocity in the Ekman layer
that is not divergent (hence zero pumping according to
classic theory), but as the geostrophic velocity decays
with radial distance, so does the Ekman-layer thickness.
So, unlike the velocity, the volumetric transport is di-
vergent. This divergence is responsible for the Ekman
pumping according to the new theory.

A combination of the previous two cases yields a
more realistic vortical flow with a nearly solid-body
rotation in the center and a zero-vorticity, potential flow
at large radial distances:

Gy Gx
ū 5 2 , ȳ 5 1 ,

2 2 2 2R 1 r R 1 r

zGzr
zūz 5 , (30)

2 2R 1 r

where G sets the polarity and strength of the vortex, and
R the distance over which the transition from solid-body
rotation turns into potential flow. Again, r is the radial
variable, equal to x2 1 y2. Calculations yieldÏ

24k lzGzr
w̄ 5

2 2 3/2 2 2p (1 1 l ) f (R 1 r )

2 2 22GR G(R 2 r )
3 1 , (31)

2 2 2 2 2 2[ ](R 1 r ) (R 1 r )

where again the first and second terms correspond to
those of (25). Figure 3 compares the prediction of the
present theory (sum of both terms) with that of the
traditional theory (first term only). Note the significant
change in amplitude in the inner part of the vortex and
the reversal along its rim.

In the general case of a circular flow with azimuthal
velocity V(r) of arbitrary radial profile, the Ekman-
pumping velocity is

24k lzV(r)z dV V dV
w̄ 5 1 1 , (32)

2 2 3/2 1 2[ ]p (1 1 l ) f dr r dr

where the term proportional to the relative vorticity dV/
dr 1 V/r would be the sole contribution of the traditional
theory. We note that the new theory predicts a larger
value (or smaller negative value) where V increases ra-
dially, a lower value (or greater negative value) where
V decreases radially, and an equal value where V reaches
an extremum. For a cyclonic vortex with azimuthal ve-
locity reaching a single maximum at finite distance R
from the center, the new theory predicts a stronger up-
ward pumping within the circle of radius R, an equal
pumping at R, and a weaker upward pumping or pos-
sibly a downward pumping beyond R. Similarly, for an
anticyclonic vortex with azimuthal velocity reaching a
single maximum at distance R from the center, the new



1974 VOLUME 27J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

FIG. 3. Radial distributions of the Ekman-pumping vertical velocity
for the vortex flow (31), according to the present theory (thick line)
and traditional theory (thin line). The present theory predicts an up-
ward velocity that is 41% greater and a weak downward velocity at
some distance away from the vortex center. (The vertical axis scale
is arbitrary, and only relative variations are significant.)

theory predicts a stronger downward pumping within
the circle of radius R, an equal pumping at R, and a
weaker downward pumping or possibly an upward
pumping beyond R.

4. Conclusions

Our study has revisited the theory of the bottom Ek-
man layer when the eddy viscosity is made dependent
on both the vertical distance from the bottom and the
flow magnitude (via the friction velocity); it then re-
capitulated earlier results and evaluated the resulting
Ekman-pumping vertical velocity. A major result is that,
because of the dependency of the eddy viscosity on the
flow itself, the Ekman-layer thickness increases nearly
linearly with the overlying geostrophic current speed,
and the volumetric flow carried by the velocity deficit
in the Ekman layer is more than proportional to the
geostrophic current. From the divergence/convergence
of this transverse flow, we derived a new expression for
the Ekman-pumping vertical velocity, which is no lon-
ger simply proportional to the relative vorticity of the
geostrophic current but is a more complicated function
of its components and their horizontal derivatives. The
full expression is given in (22) with u* and l to be
derived from (10) and (15). In practice, however, an
approximation can be made, and our new formulation
can be implemented as follows: Select a bottom rough-
ness height z0 (usually taken as 5%–10% of the actual
height of roughness elements), a value for the Coriolis
parameter, and a representative value (scale) of the fric-

tion velocity; use (10) to obtain a reference value of l;
then use (24) to obtain the Ekman-pumping rate.

In applying the approximate version of our new ex-
pression (i.e., by neglecting the weak variation of l with
the friction velocity), we noted that the Ekman-pumping
rate in a unidirectional shear flow is twice that predicted
by the traditional theory and is 50% greater in the case
of solid-body rotation. For a potential flow (zero relative
vorticity), our new expression yields a finite Ekman-
pumping rate instead of zero.

We explored how a variation in the formulation of
the frictional force impacts the magnitude of the Ek-
man-pumping vertical velocity. This is by no means
the sole modification that can be brought to the tra-
ditional bottom Ekman-layer theory. Recently, Hart
(1995) considered how the ageostrophic terms in the
horizontal-momentum equations modify the Ekman-
pumping rate, and he, too, obtained a new expression.
It remains now to combine the two modifications in a
unified theory, which would rely on neither the as-
sumption of geostrophy or the assumption of constant
eddy viscosity, and would be far superior to the tra-
ditional theory. Other theoretical generalizations
should consider sloping bottoms.

In a final remark, we ask to what extent the ideas
and results presented here apply in the presence of
vertical stratification and in the presence of convection.
In particular, one could explore their application to the
atmospheric boundary layer. Such a task falls beyond
the scope of the present article and is matter for future
work.
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APPENDIX

Kelvin-Thomson Functions

The purpose of this appendix is to derive from the
Kelvin–Thomson functions of zeroth order two partic-
ular functions that form the natural building blocks for
the solution of the problem at hand. Some useful prop-
erties of these functions are also briefly established.

The Kelvin functions of order zero are the real and
imaginary parts of the solutions w(h) to the following
complex differential equation:

d dw
h 5 ihw, (A1)1 2dh dh
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where h is real and nonnegative, and i is the imaginary
unit (Abramowitz and Stegun 1972, §9.9) [Kelvin
functions are occasionally called Thomson functions
(Nosova and Basu 1961); recall that William Thomson
was Lord Kelvin’s earlier name.] Since (A1) is a sec-
ond-order equation, it admits two independent complex
solutions; one solution grows exponentially and the
other vanishes for large values of h. The exponentially
growing solution finds no place in our boundary-layer
analysis and is discarded. Separating the decaying so-
lution into its real and imaginary parts, we write in
traditional notation:

w(h) 5 ker0(h) 1 i kei0(h), (A2)

and note the following differential relations obtained
from (A1):

d dker0h 5 2hkei (h) (A3a)01 2dh dh

d dkei0h 5 1hker (h). (A3b)01 2dh dh

Functions better suited to our present problem are ob-
tained with the change of variable z 5 h2/4;

a(z) 5 ker0(2 z), b(z) 5 kei0(2 z), (A4)Ï Ï
which obey the differential equations

d da
z 5 2b (A5a)1 2dz dz

d db
z 5 1a, (A5b)1 2dz dz

and vanish for large values of z. From the properties
of the Kelvin functions ker0(x) and kei0(x) (Abramow-
itz and Stegun 1972, §9.9.10 and §9.9.12; Nosova
1961, p. 6), we derive the following expansions near
the origin:

1 p
2 2a(z ) 5 2 lnz 2 g 1 z 1 0(z , z lnz ) (A6a)

2 4

1 p
2 3b(z ) 5 2 z lnz 2 1 (1 2 g)z 1 0(z , z lnz ), (A6b)

2 4

where g is the Euler constant (g 5 0.57722). Thus,
the function a has a logarithmic singularity at the or-
igin, while its companion function b does not. The
preceding expressions yield the following values at the
origin:

p da 1
b(z 5 0) 5 2 , lim z 5 2 ,

4 dz 2z→0

db
lim z 5 0. (A7a,b,c)

dzz→0

Integration of the differential equations (A5a, b) from
zero to infinity with the use of the limits (A7b, c) and
of the property that a and b vanish at infinity provides
integral values:

` ` 1
a(z ) dz 5 0, b(z ) dz 5 2 . (A8a,b)E E 20 0

Finally, we note that the functions a and b are linearly
independent. Indeed, if they were not, we could write
Aa 1 Bb 5 C, where A, B, and C are nonzero constants.
Application of the differential operator d(zd/dz)/dz
once and twice yields 2Ab 1 Ba 5 0 and Aa 1 Bb
5 0, respectively. Since a and b are not zero every-
where, it follows that this 2 3 2 system for A and B
must have a zero determinant. Since this determinant
is A2 1 B2, it follows that A 5 B 50, from which also
follows C 5 0. Thus, there is no linear relationship
between the two functions.
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