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ABSTRACT

Although ocean fronts are often baroclinic, existing models of double-diffusive interleaving have ignored such
baroclinic effects as velocity shear and horizontal density gradients. To determine the importance of these effects,
the authors have formulated a linear instability analysis applicable to baroclinic fronts. Two limiting cases are
considered: one for fronts with strong vertical and/or horizontal shear, the other for fronts with weak shear.

In both limits, double-diffusive interleaving can be enhanced or suppressed by baroclinicity. Interleaving
motion is enhanced if isopycnals rise toward the fresh side of the front. Conversely, interleaving is suppressed
if isopycnals slope downward across the front. A significant result is that the salinity gradient along isopycnals
is not a good indicator of interleaving strength.

As an example, the model is applied to a Mediterranean salt lens. The effect of baroclinicity is significant:
the predicted growth rates are increased by 35%–90%. The large-scale velocity and hydrographic fields indicate
that Meddy Sharon lies somewhere between the high- and low-shear limits. Nevertheless, the model predictions
agree reasonably well with the observed interleaving characteristics.

1. Introduction

Inversions are often observed in vertical profiles of
temperature and salinity obtained near ocean fronts. The
inversions typically have vertical scales of 10 to 100 m.
In the presence of horizontal temperature and salinity
gradients, they are usually attributed to cross-front ‘‘in-
terleaving’’ motions. Theoretical and laboratory studies
suggest that interleaving can arise from either of two
mechanisms:

R In barotropic thermohaline fronts, unequal mixing of
heat and salt can drive double-diffusive interleaving
(Stern 1967; Ruddick and Turner 1979).

R In baroclinic fronts, unequal mixing of mass and mo-
mentum can drive viscous/diffusive interleaving
(McIntyre 1970; Calman 1977).

Ocean observations have provided evidence for double-
diffusive interleaving (Horne 1978; Joyce et al. 1978;
Ruddick 1992). No conclusive evidence for viscous/
diffusive interleaving has been observed to date.

Many ocean fronts are both thermohaline and baro-
clinic, so they may have both types of interleaving (Rud-
dick 1992). However, existing theories of double-dif-
fusive interleaving may be inadequate for these fronts
because the theories include neither horizontal density
gradients nor vertical shear. On the other hand, existing
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models of viscous/diffusive interleaving may also be
invalid because they lack double-diffusive effects. In
this paper we address the first of these deficiencies; we
develop a new model of double-diffusive interleaving
for fronts that are both thermohaline and baroclinic.

First, we review the dynamics and existing theories
of double-diffusive interleaving (section 2). Then, we
formulate an instability analysis of infinitely wide, bar-
oclinic, thermohaline fronts (section 3). In section 4, we
present a new criterion for interleaving and examine its
dependence on the isohaline and isopycnal slopes. Then
we investigate properties of the fastest-growing modes,
separating the analysis into the high- and low-shear
cases (section 5). To put the predictions into an ocean-
ographic context, we apply them to a Mediterranean salt
lens (section 6). We conclude with a summary of our
results and some new questions about the nature of dou-
ble-diffusive interleaving in ocean fronts (section 7).

2. Dynamics of double-diffusive interleaving

a. Basic mechanism

Double-diffusive interleaving is thought to develop
as an instability of thermohaline fronts. In the presence
of horizontal gradients, vertically alternating lateral mo-
tions cause inversions in the profiles of temperature and
salinity (Fig. 1). These fluctuations lead to regions of
enhanced double diffusion: salt fingering under warm,
salty layers and diffusive convection under layers that
are relatively cold and fresh (Turner 1973).

Both forms of double diffusion generate an upgra-
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FIG. 1. Side-view illustration of double-diffusive interleaving. The
shaded arrows indicate lateral interleaving motions driven by the
depth-varying double-diffusive density flux (black vertical arrows).
If salt fingering is the dominant form of double diffusion (as shown),
warm salty water rises as it crosses the front.

FIG. 2. In this baroclinic front, the isopycnal slope increases the
density gradient along the interleaving layers and thus opposes the
interleaving motions.

dient (downward) density flux. The convergence of this
density flux drives interleaving motions. If the density
flux of salt fingering exceeds that of diffusive convec-
tion, water in the warm, salty layers becomes less dense
and, therefore, rises as it crosses the front. If diffusive
convection dominates, water in the cold, fresh layers
should rise across the front.

b. Theoretical models of interleaving

Because our work is an extension of existing inter-
leaving models, we start with a brief review of the rel-
evant models. Stern (1967) developed the first model
of interleaving, an instability analysis that predicted the
initial growth of interleaving. The background front in
Stern’s model was infinitely wide with constant tem-
perature and salinity gradients throughout. The insta-
bilities predicted were driven by salt fingering; there-
fore, the layers sloped with warm salty water rising
across the front.

A number of models have followed Stern’s (1967)
approach, making refinements along the way. Toole and
Georgi (1981) added friction to Stern’s model and pre-
dicted an optimum vertical wavelength for the inter-
leaving layers. Niino (1986) extended the model to
fronts of arbitrary width. His model matched Toole and
Georgi’s predictions for wide fronts, but also agreed
with the energy-based model of Ruddick and Turner
(1979) for narrow fronts.

In Stern’s model, salt fingering was assumed to be
the only form of double diffusion and a constant dif-
fusivity was used to prescribe the vertical fluxes. Other
parameterizations have been considered also. McDou-
gall (1985a) assumed the double-diffusive fluxes to be
proportional to the salinity contrast between adjacent
layers, rather than the gradient. More recently, Walsh
and Ruddick (1995) included a nonconstant diffusivity.
In addition, they mapped the analysis to the case driven
by diffusive convection, rather than salt fingering. In a

model of steady-state interleaving, McDougall (1985b)
included both forms of double diffusion.

These models apply to purely thermohaline fronts,
that is, fronts with horizontal temperature and salinity
gradients, but no horizontal gradients of density. There-
fore, the models may not apply to baroclinic fronts,
which have nonzero horizontal density gradients as well
as vertical shear. One model, by Kuzmina and Rodionov
(1992), considered the evolution of interleaving in bar-
oclinic fronts. The model included shear-dependent tur-
bulent mixing in addition to double diffusion and pre-
dicted that interleaving strength should decrease with
increasing background shear. Unfortunately, the model
neglected advection of the background velocity field,
which could be important in some fronts. Also neglected
was vertical advection of the background salinity field.
This approximation is only valid when the density ratio
Rr is very high, a situation in which double diffusion
is unlikely in the first place. These assumptions are not
made in the new model presented below.

3. Instability model

a. Introduction

In this paper, we consider two effects of baroclinicity
that have not previously been investigated.

R In baroclinic fronts, background shear may distort the
interleaving layers. For example, twisting by vertical
shear will alter the slope of the layers. Since the slope
is dynamically important, shear can be expected to
affect the interleaving growth.

R The horizontal density gradient in baroclinic fronts
alters the effect of the stratification on interleaving
motions. For example, if the isopycnal slope opposes
the slope of the interleaving layers, the density gra-
dient along the layers is increased. Therefore, one
would expect the interleaving growth to be diminished
(Fig. 2).

In the model below, we include vertical shear and a
horizontal density gradient. We also include horizontal
shear, so the model applies not only to baroclinic fronts
but also to sheared barotropic fronts.
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We purposefully limit consideration to simple (i.e.,
geostrophic) fronts in which the gradients of tempera-
ture, salinity, and velocity are constant. Ocean fronts
are generally more complex. Nevertheless, it is our hope
that the results of this model will apply, with the ap-
propriate choice of base-state gradients, to fronts in
which the gradients are nonconstant.

b. Base state

The relevant physical quantities are the velocity com-
ponents (u, y, and w), pressure p, temperature T, salinity
S, and density r. We use a linear equation of state

1
r 5 1 1 b(S 2 S ) 2 a(T 2 T ), (1)o oro

where a is the thermal expansion coefficient, b is the
contraction coefficient for salinity, and ro is the density
at reference temperature To and salinity So. Following
Stern (1967), we separate each of the variables into
base-state (overbar) and perturbation (primed) compo-
nents; for example,

u(x, y, z, t) 5 ū(x, z) 1 u9(x, y, z, t). (2)

The base state is a steady front and the perturbations
are instabilities of the front.

The base state we consider is an infinitely wide front
with constant temperature and salinity gradients. The x
axis is aligned across the front so that

¯ ¯ ¯T(x, z) 5 T 1 T x 1 T z (3)o x z

¯ ¯ ¯S(x, z) 5 S 1 S x 1 S z. (4)o x z

In our study, the horizontal gradients of temperature and
salinity are not assumed to be density compensating,
that is, a nonzero horizontal density gradient 5 ro(bS̄xr̄x

2 aT̄x) is allowed. The background stratification is as-
sumed to be appropriate for salt fingering (0 , bS̄z ,
aT̄z); analogy to the diffusive case (bS̄z , aT̄z , 0) is
straightforward. The fluid is stably stratified, so 5r̄z

ro(bS̄z 2 aT̄z) , 0.
The base state is geostrophic with

ū 5 0 (5)

ȳ 5 y 1 ȳ x 1 ȳ z (6)o x z

w̄ 5 0, (7)

where the horizontal shear x and vertical shear z areȳ ȳ
assumed to be constant. The vertical shear is related to
the horizontal density gradient by the thermal wind re-
lationship

g
f ȳ 5 2 r̄ . (8)z xro

The horizontal shear is barotropic and, therefore, is in-
dependent of the stratification. Note that with constant
shear, ¹2 5 0, so friction does not play a role in theȳ
base-state dynamics.

c. Perturbation equations of motion

To model the initial growth of interleaving, we con-
sider the evolution of perturbations to the base state.
The governing equations for the perturbations are lin-
earized and the fluid is assumed to be Boussinesq, so
that

2]u9 ]u9 1 ]p9 ] u9
1 ȳ 2 fy9 1 2 A 5 0 (9)

2]t ]y r ]x ]zo

]y9 ]y9
1 ȳ 1 u9ȳ 1 w9ȳx z]t ]y

21 ]p9 ] y9
1 fu9 1 2 A 5 0 (10)

2r ]y ]zo

2]w9 ]w9 g 1 ]p9 ] w9
1 ȳ 1 r9 1 2 A 5 0 (11)

2]t ]y r r ]z ]zo o

]u9 ]y9 ]w9
1 1 5 0 (12)

]x ]y ]z

]r9 ]r9
1 ȳ 1 u9r̄x]t ]y

2] S9
1 w9r̄ 2 (1 2 g )r bK 5 0 (13)z f o s 2]z

2]S9 ]S9 ] S9¯ ¯1 ȳ 1 u9S 1 w9S 2 K 5 0. (14)x z s 2]t ]y ]z

The underlined terms arise from the background veloc-
ity field and horizontal density gradient. These terms
have not been included in earlier theories.

An effective viscosity A (typically 1025 to 1023 m2

s21) is used to parameterize the momentum fluxes. As-
suming salt fingering to be the dominant form of double
diffusion, a diffusivity Ks (typically 1026 to 1024 m2 s21)
is assumed for the vertical salinity flux Fs. The density
flux Fr is then prescribed by

Fr 5 (1 2 gf)robFs, (15)

where gf is a nondimensional flux ratio appropriate for
salt fingering (typically 0.5 to 0.9). In practice, the vis-
cosity, diffusivity, and flux ratio are likely to be de-
pendent on parameters such as the density ratio Rr (Kel-
ley 1990; Kunze 1994). However, in order to focus on
the effects of baroclinicity, we assume these parameters
are constant.

Following Stern (1967), we assume that the solution
can be expressed as a sum of time-dependent, spatially
harmonic modes. This permits the governing differential
equations to be reduced to simpler algebraic equations.
The assumed waveform is

u9 5 û exp[i(kx 1 ly 1 mz) 1 lt], (16)

where û is the (complex) amplitude and k, l, and m are
the (real) cross-front, alongfront, and vertical waven-
umbers, respectively. The growth rate l may be real or
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complex, corresponding to stationary or traveling-wave
solutions. We will often describe the interleaving layers
in terms of their vertical wavenumber (m), cross-front
slope (2k/m), and alongfront slope (2l/m).

d. Effect of background shear

In baroclinic fronts and sheared barotropic fronts, ad-
vection by the background flow (e.g., ]u9/]y) can dis-ȳ
tort the interleaving layers. For the flow given by (5)–
(7), the WKB equations describing this distortion (i.e.,
the evolution of the wavenumbers in time) are

dk
5 2lȳ (17)xdt

dm
5 2lȳ (18)zdt

(Kunze 1990). If the alongfront wavenumber l is non-
zero, the cross-front and vertical wavenumbers will
grow in time, ultimately to infinity.

We concentrate on two limiting cases:

R High-shear limit. If the rate of vertical or horizontal
shear is large compared to the growth rate l, the in-
terleaving layers will be tilted out of their unstable
range before significant growth can occur, unless the
alongfront wavenumber is zero. Therefore, the high-
shear modes are derived by setting l 5 0.

R Low-shear limit. If the shear rate is small compared
to the growth rate, growth to finite-amplitude can oc-
cur before significant tilting takes place. In this case,
a nonzero alongfront wavenumber is allowed.

Accordingly, we split the analysis into the high- and
low-shear cases. The high-shear limit applies to fronts

with strong baroclinic and/or barotropic shear. The low-
shear limit applies to fronts in which the shears (and
therefore the horizontal density gradient) are weak. Note
that the criterion for applying the high- and low-shear
limits depends on characteristics of the solution (i.e.,
the growth rate l).

e. High-shear limit

The high-shear limit is obtained by setting the along-
front wavenumber to zero. This implies that the inter-
leaving layers do not slope along the front. Using (16)
with l 5 0, the governing equations (9)–(14) become

k
2lû 2 f ŷ 1 i p̂ 1 Am û 5 0 (19)

ro

gr̄x 2lŷ 1 ( f 1 ȳ )û 2 ŵ 1 Am ŷ 5 0 (20)x fro

g m
2lŵ 1 r̂ 1 i p̂ 1 Am ŵ 5 0 (21)

r ro o

ikû 1 imŵ 5 0 (22)
2 ˆlr̂ 1 r̄ û 1 r̄ ŵ 1 (1 2 g )r bK m S 5 0 (23)x z f o s

2ˆ ¯ ¯ ˆlS 1 S û 1 S ŵ 1 K m S 5 0, (24)x z s

where (8) was used to substitute z 5 /(fro). Noteȳ 2gr̄x

that (22) gives ŵ/û 5 2k/m, so the cross-front inter-
leaving flow is along the layers. Additionally, there is
nonzero perturbation velocity along the front ( ), givenŷ
by (20).

Eliminating the perturbation amplitudes (û, , ŵ, p̂,ŷ
, and Ŝ) from (19)–(24) yields a single equation forr̂

the growth rate as a function of the cross-front and
vertical wavenumbers. This is

2 2 2k k k g k g k k
4 2 3 4 21 1 l 1 1 1 (2A 1 K )m l 1 1 1 (A 1 2K )Am 1 f ( f 1 ȳ ) 1 r̄ 1 r̄ 2 r̄ ls s x x x z2 2 21 2 1 2 1 2 1 2[ ]m m m r m r m mo o

2k g k g k k k k
2 4 2¯ ¯1 1 1 A m 1 f ( f 1 ȳ ) 1 r̄ 1 (1 1 A /K ) r̄ 2 r̄ 2 (1 2 g )gb S 2 S K m lx x s x z f x z s21 2 1 2 1 2[ ]m r m r m m m mo o

g k k k k
4¯ ¯1 r̄ 2 r̄ 2 (1 2 g )gb S 2 S AK m 5 0. (25)x z f x z s1 2 1 2[ ]r m m m mo

The terms are the¯ ¯r̄ 2 (k/m)r̄ and S 2 (k/m)Sx z x z

cross-front gradients of density and salinity along the
interleaving layers; they arise from advection of the
base-state fields by the perturbation flow. The combi-
nation f ( f 1 x) 1 ( arises from planetaryȳ g/r )(k/m)r̄o x

rotation and background shear.

For any set of input parameters, the growth-rate poly-
nomial has four roots, each representing an eigenvalue
of the dynamical system. The sign of the real part of
the growth rate indicates whether the associated solution
is growing (positive), decaying (negative), or neutrally
stable (zero).
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f. Low-shear limit
Before continuing, we derive the corresponding poly-

nomial for the low-shear limit. We assume a priori that
the rate of shear deformation is small. Therefore, we
allow a nonzero alongfront wavenumber, or equivalently
a nonzero alongfront layer slope. When applying the
model, care must be taken to ensure that the shear rate
is actually small compared to the predicted growth rate.

McDougall (1985a) showed that the alongfront layer
slope allows the fastest-growing modes to reach a bal-
ance with no alongfront interleaving flow. Setting y9 5
0 and dropping the shear terms (e.g., ]u9/]y), the equa-ȳ
tions of motion (9)–(14) become

k
2lû 1 i p̂ 1 Am û 5 0 (26)

ro

gr̄ lx( f 1 ȳ )û 2 ŵ 1 i p̂ 5 0 (27)x fr ro o

g m
2lŵ 1 r̂ 1 i p̂ 1 Am ŵ 5 0 (28)

r ro o

ikû 1 imŵ 5 0 (29)

2 ˆlr̂ 1 r̄ û 1 r̄ ŵ 1 (1 2 g )r bK m S 5 0 (30)x z f o s

2ˆ ¯ ¯ ˆlS 1 S û 1 S ŵ 1 K m S 5 0. (31)x z s

Again, ŵ/û 5 2k/m, so the perturbation flow is along
the interleaving layers.

Manipulation of (26) and (28)–(31) yields

2 2 2k k k g k k
3 2 2 41 1 l 1 1 1 (A 1 K )m l 1 1 1 AK m 1 r̄ 2 r̄ ls s x z2 2 21 2 1 2 1 2 1 2[ ]m m m r m mo

g k k k k
2¯ ¯1 r̄ 2 r̄ 2 (1 2 g )gb S 2 S K m 5 0. (32)x z f x z s1 2 1 2[ ]r m m m mo

In this case, the interleaving dynamics are independent
of the y-momentum equation, so the growth-rate poly-
nomial is a cubic. With 5 0, (32) reduces to ther̄x

model of Toole and Georgi (1981). Our low-shear limit
is an extension of their model to baroclinic fronts.

Equation (27) prescribes the alongfront slope required
to maintain y9 5 0. Combining (26)–(27) and (29), we
find that the slope is

l k gr̄ k/mx5 f 1 ȳ 1 . (33)x 21 2m m fr l 1 Amo

The predicted alongfront slope can be much larger than
the cross-front slope, indicating that the interleaving
motions are strongly affected by rotation.

The WKB equations (17)–(18) show that the layers
will be distorted by background shear if they slope along
the front. The low-shear polynomial (32) is only valid
if the rate of this distortion is small compared to the
growth rate (l).

R The rate at which the wave vector will be rotated by
horizontal (i.e., barotropic) shear is z xz. Therefore,ȳ
application of the low-shear limit requires

z xz K l.ȳ (34)

R The rate of distortion by vertical (i.e., baroclinic) shear
is z(l/m) zz. Application of the low-shear limit requiresȳ

l l gr̄xȳ 5 K l. (35)z) ) ) )m m fro

Both requirements depend on the solutions (i.e., l/m and
l), so they must be checked after solving the growth-
rate polynomial. In section 5, we investigate fastest-
growing modes and give some guidelines as to when
the low-shear limit applies.

4. Criterion for growth of double-diffusive
interleaving

a. Modes of instability

To expose instabilities of the front, we consider only
solutions with positive l. As Stern (1967) noted, we are
guaranteed at least one positive root if the term inde-
pendent of l in the growth-rate polynomial [(25) or (32)]
is negative. This is the criterion for double-diffusive
interleaving.

In baroclinic fronts, there are additional possibilities
for growth. If the l coefficient is negative, there are
generally two roots of the growth-rate polynomial with
positive real parts. These roots correspond to the vis-
cous/diffusive instability predicted by McIntyre (1970).
A third instability, ‘‘slant-wise convection’’ (Emanuel
1994), can occur if the l2 coefficient is negative. This
form of instability cannot occur unless a modified Rich-
ardson number (N 2/ )(1 1 x/f) is less than one.2ȳ ȳz

b. Criterion for double-diffusive interleaving

The focus of our investigation is double-diffusive in-
terleaving. Dividing (25) by gAKsm4 and (32) by gKsm2,
we see that the term independent of l is negative when
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FIG. 3. Range of interleaving slopes (shaded) when the isopycnals
are flat (i.e., 5 0).r̄x

FIG. 4. Range of interleaving slopes (shaded) when the isopycnal
and isohaline slopes are of opposite sign [i.e., ( /(S̄x/S̄z) , 0]: (a)r̄ /r̄ )x z

small isopycnal slope and (b) large isopycnal slope.

1 k k k k¯ ¯r̄ 2 r̄ 2 (1 2 g )b S 2 S , 0.x z f x z1 2 1 2r m m m mo

(36)

This is the criterion for double-diffusive interleaving. It
holds in both the high- and low-shear limits.

The first term in (36) is negative if k/m ∈ (0, ),r̄ /r̄x z

that is, if the layer slope (2k/m) lies between zero and
the isopycnal slope ( ). This range of slopes de-2r̄ /r̄x z

fines the baroclinic wedge of instability; when the layer
slope is in this range, baroclinicity enhances the inter-
leaving motion. With S̄z . 0, the second term in (36)
is negative if k/m ∈ (0, S̄x/S̄z), that is, if the layer slope
(2k/m) lies between zero and the isohaline slope (2S̄x/
S̄z). We refer to this range of slopes as the double-dif-
fusive wedge of instability; in this range, double dif-
fusion provides the driving mechanism for interleaving
motions.

The instability criterion (36) depends on both the den-
sity and salinity distributions. It is satisfied if

¯k (1 2 g )bS 2 r̄ /rf x x o∈ 0, . (37)¯1 2m (1 2 g )bS 2 r̄ /rf z z o

In this range, the combined effects of density advection
and diffusion are destabilizing. The maximum unstable
interleaving slope is the cross-front slope along which
the ratio of the density and salinity gradients (Dr/ro)/
(bDS) equals the flux ratio (1 2 gf).

Introducing the nondimensional quantity ez [ 2(1 2
gf)bS̄z/( /ro) 5 (1 2 gf)/(Rr 2 1) (Toole and Georgir̄z

1981), we rewrite (37) as

¯ ¯k e S /S 1 r̄ /r̄z x z x z∈ 0, . (38)1 2m e 1 1z

This shows that the maximum layer slope is a weighted
average of the isohaline and isopycnal slopes. In the
ocean, they are typically 1024 to 1022, so the interleaving
slopes are roughly this size. The weight ez is positive
under the assumption S̄z . 0 and is typically in the range
0.2 to 1.

c. Flat isopycnals

When the isopycnals are flat (i.e., 5 0), interpre-r̄x

tation of (38) is straightforward. The maximum inter-
leaving slope always lies between zero and the isohaline
slope, so the interleaving layers slope upward into fresh-
er water (Fig. 3). Due to the stratification, the limit for
growth is less than the isohaline slope by the factor ez/(ez

1 1).

d. Opposing isopycnal and isohaline slopes

If the isopycnal slope opposes the isohaline slope [i.e.,
( / )/(S̄x/S̄z) , 0], the double-diffusive and baroclinicr̄ r̄x z

wedges of instability do not overlap (Fig. 4). The range
of interleaving slopes depends on the relative magni-
tudes of and S̄x.r̄x

R If the horizontal salinity gradient dominates [i.e., (1
2 gf)bzS̄xz . z z/ro], the maximum interleaving sloper̄x

lies between zero and the isohaline slope (Fig. 4a).
Therefore, the instabilities lie in the double-diffusive
wedge of instability.

R If, on the other hand, the density gradient dominates
[i.e., z z/ro . (1 2 gf)bzS̄xz], the maximum interleav-r̄x

ing slope lies between zero and the isopycnal slope
(Fig. 4b). The instabilities lie in the baroclinic wedge
of instability.

The second case is a form of baroclinic instability that
has not been predicted before. Unlike McIntyre’s (1970)
viscous instability, the instability criterion does not de-
pend on the relative rates of viscosity and diffusion.
Instead, it depends on the inability of double-diffusive
fluxes to completely remove fluctuations in the density
field.
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FIG. 5. Range of interleaving slopes (shaded) when the isopycnal
and isohaline slopes have the same sign [i.e., ( /(S̄x/S̄z) . 0]: (a)r̄ /r̄ )x z

small isopycnal slope and (b) large isopycnal slope.

FIG. 6. Contour plot of the high-shear growth rate [l in (25)] as
a function of the cross-front layer slope (2k/m) and vertical wave-
number (m). The input parameters were taken from Table 1. The
isopycnal slope ( ), isohaline slope (2S̄x/S̄z), and maximum un-2r̄ /r̄x z

stable slope [given by (37)] are indicated. The shaded area illustrates
the range in which l is greater than 90% of its maximum value (e-
folding period of 11 days).

e. Isopycnal and isohaline slopes of same sign

If the isopycnal and isohaline slopes have the same
sign [i.e., ( )/(S̄x/S̄z) . 0], the double-diffusive andr̄ /r̄x z

baroclinic wedges of instability overlap (Fig. 5). Again,
the range of interleaving slopes depends on the relative
magnitudes of and S̄x.r̄x

R If the isohaline slope exceeds the isopycnal slope (i.e.,
zS̄x/S̄z z . z z); the limit for growing instabilitiesr̄ /r̄x z

extends beyond the slope of the isopycnals (Fig. 5a).
R If, on the other hand, the isohalines slope less steeply

than the isopycnals (i.e., zS̄x/S̄zz , z ), the limit forr̄ /r̄ zx z

growing instabilities extends beyond the isohaline
slope (Fig. 5b).

Depending on the slope of the interleaving layers rel-
ative to the isopycnal and isohaline surfaces, interleav-
ing motions may be driven by double diffusion, baro-
clinicity, or both.

5. Fastest-growing modes

a. High-shear limit

In the high-shear limit, (25) is used to calculate the
growth rate (l). For a given base state and flux param-
eterization, the growth rate is a function of the cross-
front slope (2k/m) and vertical wavenumber (m) (Fig.
6). It is positive within the range of slopes prescribed
by (37) for all values of vertical wavenumber.

The values of k and m that maximize l are of par-
ticular interest. These are the properties one might ex-
pect to find when a set of random initial perturbations
has grown to finite amplitude. In the high-shear limit,
the cross-front slope of the fastest-growing mode is
roughly half the maximum unstable slope. The vertical

wavelength of the fastest-growing mode is roughly the
Ekman scale 2p(A/z f z)1/2.

To illustrate the effect of baroclinicity on the fastest-
growing solutions, the optimum cross-front slope, ver-
tical wavenumber, and growth rate have been plotted as
functions of isopycnal slope (Fig. 7). The cross-front
slope increases linearly with isopycnal slope and the
growth rate has a quadratic dependence. Interleaving is
enhanced if the isopycnal slope is positive (i.e., if the
isopycnals rise toward the fresh side of the front). Note
that the slope and growth rate of the fastest-growing
mode go to zero when (1 2 gf)bS̄x 5 /ro. The optimumr̄x

vertical wavelength is affected little by baroclinicity.
Numerical maximization of the growth rate in (25) is

straightforward. However, we must make a number of
approximations in the growth-rate polynomial to obtain
analytical expressions for the fastest-growing mode.

R In the ocean, the isohaline and isopycnal slopes are
usually much smaller than one, so the layer slopes are
also very small. We can approximate 1 1 k2/m2 ø 1.

R When the slope of the interleaving layers is small
compared to the frequency ratio f/N, the polynomial
can be simplified even further. We will show that l
K Ksm2 and l K Am2 in this case.

Because these approximations depend on characteristics
of the solutions, it is necessary to verify a posteriori
that they hold.

With 1 1 k2/m2 ø 1, l K Ksm2, and l K Am2, (25)
reduces to the much simpler relation
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FIG. 7. Optimum cross-front slope (2k/m), vertical wavenumber
(m), and growth rate (l) for the high-shear limit vs isopycnal slope.
The input parameters were taken from Table 1. The observed iso-
pycnal slope is indicated. To illustrate dependence on the Prandtl
number (A/Ks), the calculations were performed with A 5 Ks (solid
lines) and A 5 10Ks (dashed lines), holding Ks constant. The dotted
lines indicate approximate solutions given by (40)–(42). The vertical
wavenumber axis was scaled to take into account the theoretical
Prandtl-number dependence.

FIG. 8. As in Fig. 6 but for the low-shear limit [l given by (32)].
The input parameters were taken from Table 1, except the horizontal
density gradient, which was reduced by 50% to ensure satisfaction
of (35) near the maximum. The e-folding period of the fastest-growing
mode is roughly 3 days.

g k k
2 4[A m 1 f ( f 1 ȳ )]l 1 r̄ 2 r̄x x z1 2[r m mo

k k
2¯ ¯2 (1 2 g )gb S 2 S Am 5 0. (39)f x z1 2]m m

Maximizing l with respect to k and m gives

¯k g (1 2 g )bS 2 r̄ /rf x x o5 (40)
2m 2N (1 1 e )z

z f z
2 1/2m 5 (1 1 ȳ / f ) (41)xA

2 2¯g [(1 2 g )bS 2 r̄ /r ]f x x ol 5 , (42)
2 1/28z f zN (1 1 e )(1 1 ȳ / f )z x

where N2 5 /ro and «z 5 2(1 2 gf)bS̄z/( /ro) 52gr̄ r̄z z

(1 2 gf)/(Rr 2 1).
It is easily shown that l K Ksm2 and l K Am2,

provided k2/m2 K f 2/N2 and k2/m2 K (A/Ks)f 2/N2. In the
example, f/N ø 0.03, so these approximations are valid
over most of the illustrated range (Fig. 7). The approx-

imate solutions (40)–(42) are quite close to the numer-
ical results.

b. Low-shear limit

In the low-shear limit, the growth of interleaving is
prescribed by (32). As in the high-shear limit, the rate
of growth is positive within the range of cross-front
slopes specified by (37) (Fig. 8). Compared to the high-
shear case, the maximum is shifted to smaller cross-
front slope and vertical wavenumber. The optimum
growth rate is increased.

The dependence of the fastest-growing mode on the
isopycnal slope is illustrated in Fig. 9. At low Prandtl
number (A 5 Ks), the cross-front interleaving slope in-
creases with isopycnal slope and the vertical wavenum-
ber is roughly constant. The dependence at higher
Prandtl number (A 5 10Ks) is significantly different.
The cross-front slope is roughly constant and the vertical
wavenumber decreases as the isopycnal slope is in-
creased. In both cases, the growth rate increases with
increasing isopycnal slope. This implies that interleav-
ing is enhanced if the isopycnals slope upward toward
the fresh side of the front.

In Fig. 9, and we only plotted solutions that grow
faster than the rate of distortion by vertical shear [i.e.,
l . z(l/m) zz]. The figure shows that the low-shear limitȳ
is restricted to fronts with small isopycnal slope. The
observed isopycnal slope is near the upper bound for
application of the low-shear polynomial.

As in the high-shear limit, the growth-rate polynomial
(32) must be approximated to obtain analytical expres-
sions for the fastest-growing mode.
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FIG. 9. As in Fig. 7 but for the low-shear limit [l given by (32)].
The observed isopycnal slope is indicated. Only solutions satisfying
the low-shear criterion (35) are plotted. Fastest-growing modes were
calculated with A 5 Ks (solid lines) and A 5 10Ks (dashed lines),
holding Ks constant. The dotted lines indicate approximate solutions
given by (44)–(46).

TABLE 1. Base-state properties for Meddy Sharon.

Quantity Value

g 9.8 m s22

f 7.7 3 1025 s21

b 7.5 3 1024 psu21

S̄x 22.9(60.4) 3 1025 psu m21

S̄z 1.23(60.03) 3 1023 psu m21

ro 1032 kg m23

xr̄ 2.3(61.0) 3 1026 kg m24

zr̄ 27.52(60.07) 3 1024 kg m24

Ks 1.2 to 7.5 (31025 m2 s21)
A 0.3 to 4.0 (31024 m2 s21)
gf 0.7(60.1)
z 0.6(60.2) 3 1025 s21)
h 1.1(60.4) 3 1025 s21

R Assuming the isohaline and isopycnal slopes to be
much smaller than one, we set 1 1 k2/m2 ø 1.

R Following Toole and Georgi (1981) and McDougall
(1985a), we consider a limit in which the Prandtl num-
ber is large (i.e., A/Ks k 1). We will show that l K
Am2 in this case.

The Prandtl number is not necessarily large in the ocean
(A/Ks ø 4 in Table 1). Nevertheless, the second ap-
proximation is useful in that it allows us to derive an-
alytical solutions and to compare these solutions with
earlier theories.

With 1 1 k2/m2 ø 1 and l K Am2, the low-shear
polynomial (32) becomes

g k k
2 2 4Am l 1 AK m 2 r̄ 2 r̄ ls x z1 2[ ]r m mo

g k k k k
2¯ ¯1 r̄ 2 r̄ 2 (1 2 g )gb S 2 S K mx z f x z s1 2 1 2[ ]r m m m mo

5 0. (43)

Despite these simplifications, maximization of (43) re-
mains a challenge. Keeping in mind that the low-shear
limit is applicable at small isopycnal slopes, we tackle
the problem as a perturbation analysis, using the ratio
( /ro)/(bS̄x) as an ordering parameter. The zeroth-orderr̄x

solution ( 5 0) matches existing theories, which dor̄x

not include baroclinicity (Toole and Georgi 1981; Mc-
Dougall 1985a).

To determine the first-order effect of baroclinicity, we
maximize l with respect to k and m, retaining terms of
order ( /ro)/(bS̄x). This yieldsr̄x

¯k g (1 2 g )bSf x5 (44)
2 1/2m 2N 1 1 e 1 (1 1 e )z z

¯g (1 2 g )bS r̄f x x2m 5 1 (45)
1/2 1/2) )2N(AK ) 1 1 e 1 (1 1 e ) rs z z o

1/2 ¯g K (1 2 g )bS r̄s f x xl 5 2 . (46)
1/21 2 ) )2N A 1 1 (1 1 e ) rz o

From these solutions, it is easy to show that l K Am2,
provided A/Ks k 1. Comparison of (44)–(46) with the
numerical results (at high Prandtl number) yields good
agreement (Fig. 9).

Using the approximate solutions (44)–(46) we can
derive rough guidelines for determining when the
low-shear limit should apply. From (34), the require-
ment for the horizontal (i.e., barotropic) shear is

1/2 ¯g K (1 2 g )bS r̄s f x xzȳ z K 2 . (47)x 1/21 2 ) )2N A 1 1 (1 1 e ) rz o

This condition should be satisfied in order to apply the
low-shear limit.

The required alongfront slope is given by (33) and is
roughly

1/2l z f z Ksø . (48)) ) 1 2m N A

Therefore, the requirement on the vertical (i.e., baro-
clinic) shear (35) becomes

¯r̄ 1 (1 2 g )bSx f xK . (49)
1/2) ) ) )r 2 1 1 (1 1 e )o z
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FIG. 10. Cross-front layer slope, vertical wavelength, and e-folding
period of the fastest-growing modes, for the high- and low-shear
limits. The calculations were made using the observed cross-front
density gradient ( ± 0) and, for comparison, setting the cross-frontr̄x

density gradient to zero ( 5 0). In the first two panels, the shadedr̄x

regions indicate the observed slope and wavelength. In the final panel,
the rate of distortion by background shear is shaded.

Application of the low-shear limit is restricted to weakly
baroclinic fronts, that is, fronts in which the horizontal
density gradient /ro is much smaller than the hori-r̄x

zontal salinity gradient bS̄x.

6. Application to Meddy Sharon

a. Overview

In order to establish an oceanographic context for our
model, we applied it to a previously studied front in
which double-diffusive interleaving has been observed.
Meddy Sharon, a lens of Mediterranean Water observed
in the eastern North Atlantic (Armi et al. 1989), is a
good test site for several reasons. During the period of
observation, its heat and salt characteristics were grad-
ually eroded away by lateral interleaving (Hebert et al.
1990). The doming of isopycnals associated with the
meddy indicates that it caused a density front as well
as a front in temperature and salinity. We should note
that the meddy example may not represent a typical
ocean regime because it was a region of particularly
high gradients and strong shears. However, it does make
a good test case for our theory.

b. Base state

The lower part of the meddy was stratified appropri-
ately for salt fingering and has been most intensively
studied, so we focus on that region. The quantities used
in this analysis are listed in Table 1.

The seven ‘‘tow-yo’’ profiles considered by Ruddick
(1992) were reanalyzed to estimate the horizontal and
vertical gradients of salinity and density. The salt dif-
fusivity Ks was calculated following Ruddick and Hebert
(1988), but the uncertainty in the observed vertical
wavelength was included in the calculation. We used
microstructure measurements (Oakey 1988) together
with the observed velocity field (Armi et al. 1989) to
estimate a vertical eddy viscosity appropriate to the
scales of interest (A ø «/ ). The value obtained, 0.32ȳz

to 4.0 (31024 m2 s21), is consistent with other estimates
of viscosity in double-diffusive systems (Schmitt et al.
1986; Padman 1994) and with Ruddick et al. (1989),
who suggested that the Prandtl number should be O(1).
Our estimate of the salt-finger flux ratio (gf) is taken
from McDougall and Ruddick (1992), who reviewed
published estimates and concluded that the most prob-
able range for oceanic salt fingering is 0.6 to 0.8.

Estimates of vorticity z and strain h were obtained
from Hebert (1988). Because the meddy was a circular
vortex, we cannot simply substitute a single value for

x in our equations. Where x appears in the form 1 1ȳ ȳ
x/f, the vorticity is the relevant quantity (i.e., we sub-ȳ

stitute 1 1 z/f ). In (34) and (47), however, the strain
dictates the rate of distortion, so we substitute x 5 h.ȳ

c. Model predictions

It is not clear a priori whether the high- or low-shear
limit applies to Meddy Sharon. Therefore, we estimate
the optimum cross-front slope (2k/m), vertical wave-
length (2p/m), and e-folding period (1/l) for both cases
(Fig. 10). To illustrate the effect of baroclinicity, the
calculations were performed using the observed hori-
zontal density gradient ( ± 0) and, for comparison,r̄x

setting the horizontal density gradient to zero ( 5 0).r̄x

In the high-shear limit, numerical maximization of
(25) gives a predicted cross-front slope of 4 3 1023,
vertical wavelength of 8 m, and e-folding period of 11
days (Fig. 10). The predicted layer slope roughly match-
es the observed isopycnal slope of 3(61) 3 1023. This
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suggests that the layers should slope upward relative to
geopotential surfaces, but should not necessarily slope
relative to the isopycnals. Including the horizontal den-
sity gradient increased the predictions of cross-front
slope and growth rate by 35% and 45%, respectively.
However, the predicted vertical wavelength was un-
changed.

In the low-shear limit, maximizing (32) gives a pre-
dicted cross-front slope of 2.5 3 1023, vertical wave-
length of 25 m, and growth rate of 2.5 days (Fig. 10).
The growth predicted in the low-shear limit is signifi-
cantly faster than the high-shear case. Including the hor-
izontal density gradient increased the predicted cross-
front slope and growth rate by 30% and 90% respec-
tively. The effect on the vertical wavelength was small-
er: an increase of roughly 15%.

The alongfront slope required in the low-shear limit
is 2(61) 3 1022, calculated from (33). With this along-
front slope, the relative rate of deformation by hori-
zontal shear (i.e., z xz/l) is 2.5 6 1.5 from (34). Theȳ
rate of deformation by vertical shear [i.e., z(l/m) zz/l] isȳ
1.1 6 0.6 from (35). The shear rates and the predicted
growth rate are of similar magnitude (Fig. 10). There-
fore, it is not clear that the shear is either ‘‘high’’ or
‘‘low.’’ Perhaps the observed interleaving reflects an
intermediate case.

d. Observed values

Ruddick (1992) estimated the density and salinity gra-
dients along a number of interleaving layers. In the low-
er part of the meddy, he found the ratio of the along-
layer gradients to be Dr/DS 5 0.07(6 0.03) kg m23

psu21. The cross-front and alongfront slopes of the lay-
ers are related to the observed ratio by

Dr r̄ 2 [k/m 1 (l/m)tanf]r̄x z5 , (50)¯ ¯DS S 2 [k/m 1 (l/m)tanf]Sx z

where f is the angle of the ship’s path relative to the
front. Using (50), we estimate the slope of the layers
along the transect 2[k/m 1 (l/m)tanf] 5 5.1(61.5) 3
1023. If f were zero, one could easily obtain the cross-
front slope from this value. However, it is unlikely the
transect was oriented directly across the front, so care
must be taken while interpreting the observations.

In the high-shear limit, the interleaving layers do not
slope along the front. Therefore, to evaluate the high-
shear prediction, we set l/m 5 0, which gives 2k/m 5
5.1(61.5) 3 1023. Comparing this value with the high-
shear prediction yields good agreement (Fig. 10).

In the low-shear limit, the predicted alongfront slope
(2l/m) is roughly 8 times the cross-front slope (2k/m).
Taking this into account, and allowing a reasonable un-
certainty in the orientation of the transect (f 5 6108),
we are unable to estimate the cross-front slope or along-
front slope from the observed value.

From the spectrum shown in Ruddick and Hebert
(1988), we estimate the most likely range of observed

interleaving wavelengths to be 35(615) m. However,
there appears to be an additional peak in the range
15(65) m. This could be an interleaving mode, but it
might be an artifact of the processing (i.e., a harmonic
of the main peak). Taking a cautious approach, we ex-
tend our range to include this second maximum (Fig.
10). The low-shear prediction agrees well with the ob-
served wavelength. The high-shear prediction falls out-
side the observed range, but the uncertainties overlap.
This suggests that the high-shear limit may not apply,
but it is insufficient evidence to reject that limit outright.

From the analysis above, it is not clear which limit
applies best to Meddy Sharon. In fact, the observed
velocity fields suggest that the shear is intermediate,
rather than ‘‘high’’ or ‘‘low.’’ This may be consistent
with the rough overlap between observed values and
the predictions of each limiting case.

7. Discussion

In this paper, we have investigated the behavior of
double-diffusive interleaving in baroclinic fronts. An
important outcome of the study is the prediction that
interleaving layers will not slope in the alongfront di-
rection if the background vertical or horizontal shear is
strong. Comparing our high- and low-shear solutions,
we have shown that the growth rate is significantly
smaller in the high-shear case (Fig. 10). This suggests
that double-diffusive interleaving may be diminished in
fronts with strong baroclinic or barotropic shear.

In both the high- and low-shear limits, the strength
of interleaving (i.e., the growth rate) is a function of
the baroclinicity. Interleaving can be enhanced or sup-
pressed, depending on the sign of the isopycnal slope
(Figs. 7 and 9). Interleaving is enhanced if the isopyc-
nals rise toward the fresh side of the front. Conversely,
if the isopycnals slope downward across the front, the
growth of interleaving is suppressed.

Previous studies have suggested that the driving force
for double-diffusive interleaving is the cross-front gra-
dient of salinity along isopycnal surfaces (McDougall
1985a; Ruddick 1992). While this holds in the absence
of a horizontal density gradient, it is not true in baro-
clinic fronts. We have shown that interleaving is en-
hanced if the isopycnals rise toward the fresh side of
the front (Figs. 7 and 9). However, with S̄z . 0, the
cross-front gradient of salinity along isopycnals is di-
minished in this case. Therefore, we conclude that the
salinity gradient along isopycnals is not a good indicator
of expected interleaving strength.

The slope of interleaving layers relative to isopycnals
is of interest because it affects directly the amount of
diapycnal mixing generated by interleaving motions. It
is often assumed that warm, salty fluid should rise rel-
ative to isopycnals if salt fingering is the driving mech-
anism. We have shown that this is not the case (Figs.
5 and 6). It is the layer slope relative to geopotential
(i.e., horizontal) surfaces that determines the buoyancy
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force along a layer. If salt fingering is the driving mech-
anism, warm salty fluid rises relative to surfaces of con-
stant geopotential, but does not necessarily rise relative
to surfaces of constant density.

Our analysis of Meddy Sharon highlighted a geo-
metrical aspect of interleaving that must be taken into
account when surveying ocean fronts. Because inter-
leaving layers may slope to a much greater extent along
fronts than across them, it is insufficient to survey only
in the cross-front direction. Estimates of cross-front
slope can easily be contaminated by the alongfront slope
if the transect is not directly across the front. A mini-
mum of two transects (one across and one along the
front) are needed to adequately sample the three-di-
mensional structure of ocean interleaving.

In this study, we have investigated two limiting cases
of double-diffusive interleaving. One limit is appropri-
ate when the shear rate is high; the other when the
background shear is low. This raises the question of
how interleaving develops when the shear rate and the
growth rate are roughly equal (e.g., Meddy Sharon). Do
the interleaving layers simply remain unsloped along
the front? Or, do they develop with the optimum along-
front slope and then flatten over time, twisting in the
background shear? In the latter case, could shear provide
a limiting mechanism, choking the growth of interleav-
ing at finite amplitude?
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