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ABSTRACT

This paper presents a model for determining the size and shape of a steady-state latent heat coastal polynya
in terms of the following free parameters: 1) the frazil ice production rate (F); 2) the wind stress (t); 3) the
surface ocean velocity field (u); 4) the offshore consolidated thin ice transport (T); 5) the coastline shape; and
6) the intersection of the polynya ice edge with the coastline, all of which must be prescribed. Frazil ice trajectories
are determined via the free-drift ice momentum balance. Analytical solutions for the polynya shape are derived
for a straight coastline in the special case when u, T, and t are uniform in the alongshore direction and the
rotation of the earth is neglected. When the latter constraint is relaxed, an expression for the asymptotic uniform
polynya width is obtained. An expression for the alongshore adjustment length scale of the polynya associated
with alongshore variations in the coastline shape, u, T, and t is derived, with rotation of the earth included. By
considering a wedge-shaped ocean domain in which the ocean velocity is nondivergent and irrotational it is
demonstrated that (i) a polynya solution does not always exist and (ii) a point (S, say) can exist where the frazil
ice and thin ice transports are equal. When S exists, all possible polynya ice edge curves will pass through this
point. The model is applied to simulate the wind-driven polynya that sometimes forms off the northern Greenland
coast during winter and early spring between the Henrik Krøyer Islands and the Ob Bank. Because of fundamental
couplings between the free parameters listed above, one should be cautious in drawing inferences on the physical
behavior of the polynya. However, the model is useful in revealing the sensitivity of the polynya to variations
in the prescribed forcing fields.

1. Introduction

A latent heat coastal polynya is a region of nearly
ice-free water located between the coast (or land fast
ice) and the sea ice pack. The polynya is the result of
the offshore advection of ice by winds and/or oceanic
currents. The size of the polynya is governed by the
balance between the export of new ice away from the
coast and the production of frazil ice inside the polynya.
Ice is created over the entire area of the polynya, and
it is often observed to be organized in streamers along
convergence lines associated with Langmuir circulation
(Martin and Kauffman 1981). Coastal polynyas play an
important role in controlling the local heat exchange
between the atmosphere and the ocean, they largely con-
tribute to the formation of intermediate and deep waters
(through brine rejection when sea ice forms), and they
are sites of high biological activity (Smith et al. 1990).
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From the simple, but nevertheless perceptive, models
of Lebedev (1968) and Pease (1987) for the maintenance
of a latent heat coastal polynya, a number of process
models have been developed that study the influence of
oceanic sensible heat (Mysak and Huang 1992; Darby
et al. 1994, hereafter referred to as DWM), coastline
orientation (DWM; Darby et al. 1995, hereafter referred
to as DWS), and the direction of drift of frazil ice (DWM
and DWS) on a polynya. The purpose of this paper is
to present a theory for the maintenance of a steady-state
latent heat coastal polynya that explicitly incorporates
the effects of winds and upper-ocean circulation on the
frazil ice motion.

Steady-state models for the maintenance of a latent
heat coastal polynya are useful because the Pease (1987)
adjustment timescale over which a steady state is
reached is of the order of 1 to 2 days, which is short
compared with the timescale of low-period atmospheric
storms (Ou 1988). Latent heat coastal polynyas are
found, for instance, in the northern Bering Sea, along
the East Greenland coast, over the Siberian shelf, and
in a large number of sites around Antarctica (e.g., Smith
et al. 1990; Gordon and Comiso 1988). In some coastal
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polynyas, vertical mixing or upwelling of deeper warm
water produce an oceanic sensible heat flux, which can
play a role in the maintenance of the polynya. Allowing
for the effects of sensible heat associated with coastal
upwelling introduces an upwelling timescale (Mysak
and Huang 1992), of typically one to two weeks. There-
fore, the utility of steady-state models for a combined
latent and sensible heat polynya is debatable. An ex-
ample of latent and sensible heat polynya is the ‘‘North
Water’’ (NOW) polynya in northern Baffin Bay (Mysak
and Huang 1992; DWM). However, the relative contri-
bution of latent versus sensible heat in the maintenance
of the NOW is still uncertain due to a lack of information
about the seasonal circulation in the Baffin Bay.

DWM and DWS show that to simulate the shape of
a coastal polynya it is important to take into account
the frazil ice trajectories and, under certain circumstanc-
es, to include an accurate coastline. A consequence of
this is that the modeled polynya ice edge does not nec-
essarily follow the coastline, unlike the Pease (1987)
and Ou (1988) models. A criterion is developed by DWS
for determining whether a coastal feature will influence
the steady-state shape of a coastal polynya. The authors
derive an alongshore polynya adjustment length scale
(L(c)) in terms of the ‘‘Lebedev–Pease width’’ and the
directions of drift of the frazil ice and the offshore con-
solidated thin ice. Coastline features with an alongshore
length scale much smaller than L(c) will not be repro-
duced in the polynya ice edge.

However, a deficiency of the DWM and DWS studies
is that frazil ice moves with prescribed constant velocity.
This can be a serious shortcoming because in a large
polynya, winds and oceanic currents are likely to have
appreciable spatial variations. An immediate conse-
quence of this is that the divergence of the frazil ice
velocity field will be nonzero and, accordingly, the dis-
tribution of frazil ice inside the polynya will have a
complicated structure. For example, if Langmuir cells
are the dominant circulation within the polynya, the ice
motion will have both along- and cross-wind compo-
nents and the frazil ice will be approximately distributed
in alternate bands of relatively high and low concen-
tration (Martin and Kauffman 1981). In practice, the
frazil ice in a polynya will be in approximately free-
drift motion. Information about the wind stress and the
upper-ocean circulation in the polynya is required to
determine the frazil ice trajectories and, in combination
with the production rate, the frazil ice distribution. This
study presents a steady-state latent heat coastal polynya
model in which the frazil ice trajectories are determined
from the free-drift ice momentum balance, and the frazil
ice depth is calculated from the balance between ice
transport and ice production. Thus, the frazil ice distri-
bution is in this model a fully prognostic variable, in
contrast with DWM and DWS.

For simplicity, the consolidated thin ice transport is
prescribed and it is assumed that the ice growth rate,
the wind stress, and ocean circulation within the polynya

are known. The model then determines the polynya ice
edge. We focus here on the modeled size and shape of
a latent heat coastal polynya for fixed forcing fields and
analyze the sensitivity of the polynya ice edge to per-
turbations in those fields. Of course, the forcing fields
are to a large extent coupled, and caution must be ex-
ercised when setting their distributions to ensure that
they are not incompatible. For example, in the simu-
lation of the Northeast Water polynya (NEW) presented
in this paper we appeal to climatological information to
define the forcing fields. Ideally, they could be derived
from in situ observations or from the output of a coupled
atmosphere–pack ice–ocean model. Alternatively, the
polynya model could be embedded in a larger model
including atmospheric, sea ice, and oceanic components
in order to account for the interaction of the polynya
with the local weather. We are developing a coupled
model of this type.

The remainder of the paper is arranged as follows.
Section 2 develops the model equations and the method
used to solve them. The influence of wind and ocean
currents on a polynya adjacent to an idealized straight
coastline is discussed in section 3, for which analytical
progress is possible. For a given coastline, wind stress,
and ocean velocity field there is no guarantee that a
closed coastal polynya will exist. Further, the choice of
wind stress and ocean velocity field determines whether
the polynya ice edge will exhibit a cusp. In section 3
both of these ideas are examined in the context of a
wedge-shaped domain. In section 4 the model is used
to simulate the early spring shape of the NEW polynya
located between the Henrik Krøyer Islands (close to the
mouth of Ingolfs Fjord) and the Ob Bank (a landfast
ice shelf). This region is protected against ice import
and is favorable for the formation of a wind-generated
polynya in winter and early spring (Smith et al. 1990;
Schneider and Budéus 1995; Minnett 1995). Finally,
section 5 summarizes the key results.

2. The polynya model

Pease (1987) distinguishes three regions in the de-
scription of a latent heat coastal polynya. Proceeding
from the coast offshore, these regions are (i) the region
of open water with frazil ice, which is surrounded by
(ii) the new to young ice region, which is in turn sur-
rounded by (iii) the first-year ice region. Frazil ice is
produced in region (i) and herded away from the coast
by winds and oceanic currents, thus keeping the area
open. The ocean circulation in this region frequently
consists of Langmuir cells aligned with the wind or
oriented at a certain angle to the right (in the Northern
Hemisphere) of it. This angle can be of the order of 138
(Leibovich 1983). In practice, tidal motion, wind-driv-
en, and buoyancy-driven currents will also exist within
coastal polynyas. We are unaware of any published stud-
ies on the influence of these types of circulation on the
development and maintenance of polynyas. The bound-
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FIG. 1. Schematic diagram illustrating the polynya model. Any point P on the polynya ice edge C is determined
so that the fluxes of frazil ice and consolidated ice balance across C. t, u, ui, and U denote the wind stress, the
surface velocity of the ocean, the frazil ice velocity, and the consolidated thin ice velocity respectively. In general,
all these fields depend on position. Also shown is the angle a between the initial point of a frazil ice trajectory and
the x axis and the angle u between the consolidated thin ice flux and the x axis.

ary between regions (i) and (ii) constitutes the polynya
ice edge. In region (ii) the frazil ice consolidates into
ice floes becoming thin new ice. The separation between
regions (ii) and (iii) is the proper outer limit of the
polynya. Pease (1987) assumes that the new ice in re-
gion (ii) and the first-year ice in region (iii) move away
from the coast with the same velocity. This allows Pease
(1987) to formulate a one-dimensional model for de-
termining how the width of the polynya [i.e., region (i)]
evolves in time.

Coastal polynyas are typically less than 100 km in
width, which allows the use of a Cartesian coordinate
frame (Fig. 1). The position vector of any point with
respect to such frame is given by r. We wish to deter-
mine the polynya ice edge C of a steady-state coastal
polynya given the frazil ice production rate F(r) (in units
of m s21), the wind stress t, the surface velocity field
of the ocean u(r), the velocity U(r) of the consolidated
thin ice and its thickness at the polynya ice edge H(r),
and the coastline shape. We must also specify one point
on C, typically where the polynya ice edge intersects
the coastline. In applications of the model to a particular
polynya, the geometry of the coastline together with the
direction of travel of the ice pack suggest the location
of this point. As already mentioned, the surface oceanic
velocity u(r) can have a complicated structure resulting
from the interaction between wind, haline, and tidally
driven flow. To investigate the combined effect of wind,

haline, and tidally driven flow on the maintenance of a
polynya, it would be appropriate to couple the polynya
model to a numerical shelf circulation model (Blumberg
and Mellor 1987). When applying the model to simulate
a particular polynya, complicated behavior can result.
To facilitate understanding of this behavior we analyt-
ically derive solutions of the model in an idealized case
of a straight coastline with an alongshore current and a
uniform wind stress that has both alongshore and off-
shore components.

We also note that it is not strictly necessary to have
separate information about U(r) and H(r) since our for-
mulation only involves the variable T(r) 5 H(r)U(r),
the consolidated thin ice transport. As pointed out by
Pease (1987), the process of consolidation of frazil ice
into ice floes at the polynya ice edge probably depends
on the wind velocity and fetch, but its physics is not
well known. In DWS the frazil ice trajectories were
specified and U and H were assumed to be constant, in
contrast with this study.

Following Pease (1987), the steady-state polynya ice
edge is determined by requiring that there is a balance
of fluxes of frazil and the consolidated thin ice across C.
Referring to Fig. 1, the flux of frazil ice per unit length
FP across the polynya ice edge at point P is given by

FP 5 Dui ·nP, (1)

where D(rP) is the frazil ice depth, ui(rP) 5 (ui(rP),
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yi(rP)) is the frazil ice velocity, rP is the position vector
of P, and nP is a unit normal to C at P. In contrast with
DWS, ui now depends on position. The consolidated
thin ice transports a flux of ice per unit length IP across
C which at point P is given by

IP 5 HU ·nP. (2)

The curve C is located where the fluxes (1) and (2) are
equal, yielding a differential equation for the polynya
ice edge that is given by

dx HU 2 Dui5 (3)
dy HV 2 Dy .i

It is worth stressing at this point that D, ui, H, and
U are functions of position, but in the special case when
the frazil velocity and the consolidated thin ice depth
and velocity are uniform, (3) reduces to the differential
equation discussed in DWS. At this stage, (3) cannot
be solved because D and ui are unknown.

In a steady-state polynya, conservation of frazil ice
requires that

= · (uiD) 5 F, (4a)

which upon expanding becomes

]D ]D
u + y 5 F 2 D= ·u . (4b)i i i]x ]y

Equation (4b) is readily solved for D using the method
of characteristics. The characteristic curves are given by

dx dy
5 u , 5 y , (5a)i idt dt

and along these curves

dD
5 F 2 D= ·u , (5b)idt

where t is a parameter (with units of time) along a char-
acteristic.

Within the polynya the frazil ice trajectories are de-
termined from the free-drift ice momentum balance

rif k 3 Dui 5 tia 2 twi, (6)

where ri denotes the ice density, k is a unit vector along
the z axis (defined in such a way that the Cartesian
reference frame is a right-handed one), and tia and twi

denote the shear stress at the top and bottom of the ice
respectively. Following Darby and Willmott (1993), the
parameterization twi 5 ricwi|ui 2 u|(ui 2 u) is adopted,
where cwi is a constant water–ice drag coefficient. In
this study, we prescribe tia, and for notational conve-
nience it will hereafter be denoted by t. From (6) it is
possible to analytically determine ui in terms of u, t,
and D, the details of which are given in appendix A.
The system (3), (4b), and (6) can be solved for ui, D,
and the polynya ice edge C provided that we know one
point on C and using the condition that D 5 0 on the
coast.

Frazil ice is typically less than a few centimeters
thick, and therefore the Coriolis term is normally much
smaller than the shear stress terms in (6). For example,
for wind velocities of ;10 m s21, typical of the values
reported by Pease (1987) for the St. Lawrence Island
polynya in February, and oceanic currents of ;0.1 m
s21, the magnitude of the Coriolis term is less than 10%
of the shear stresses for ice thinner than ;0.4 m. This
is true irrespective of the relative direction of the cur-
rents with respect to the wind. However, for complete-
ness, the Coriolis term is retained in our formulation
because, if regions exist where the frazil ice is conver-
gent, D could be large enough [see (5b)] for this term
to become significant. Of course, the assumption of uni-
form ice production is likely to be invalid where D
exceeds, say, 0.3 m.

Given u, U, t, and F, Eqs. (3), (4b), and (6) are solved
in the following manner. Suppose the solution procedure
has determined the points ( , ) on C for i 5 1, . . . ,(i) (i)x yp p

N 2 1 and we wish to calculate ( , ). In appendix(N) (N)x yp p

A it is shown how ui, and hence = ·ui, can be obtained
in terms of t, u, and D. To advance C to ( , ) a(N) (N)x yp p

fourth-order Runge–Kutta scheme is used to integrate
(3), but in order to do this we need D at intermediate
points. Wherever D is required, an estimated value is
first chosen (based on the closest known value) and
system (5) is integrated along a frazil ice trajectory until
the coastline is intersected where, in general, D will be
nonzero. The initial estimate for D is refined and the
procedure is repeated until a solution is obtained that
differs from zero on the coastline by less than a specified
tolerance.

3. Polynya solutions with idealized coastlines

In this section, analytical results for the polynya width
are derived when the coastline is straight, provided that
t, u, and F are uniform in the alongshore direction. We
next analyze the polynya shape as a function of the
prescribed uniform wind stress and consolidated ice
transport in a wedge-shaped domain in which the ocean
velocity field is nondivergent and irrotational. The
wedge problem exhibits a number of interesting features
that can occur in real-world applications of the model.
In both examples, we assume that the consolidated ice
transport HU is spatially uniform. These examples will
help us to understand in simple terms how the structure
of the frazil ice trajectories influences both the size and
shape of the polynya, and to interpret the results ob-
tained in the application of the model to the NEW po-
lynya in section 4.

a. Straight coastline

Consider the case when the coastline coincides with
the y axis and the ocean occupies the region x . 0.
Although t, u, and F are assumed to be uniform in the
alongshore direction, no restriction is placed on the off-
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shore spatial dependence of these fields. Clearly ui and
D only depend on x and (4a) reduces to

d(u D)i 5 F. (7)
dx

Suppose the polynya intersects the coastline. In practice,
the intersection point is determined from the shape of
the coast and the pack ice drift. Where the polynya
intersects the coastline in this example could be viewed
as the limit of a fast ice barrier. Integrating (3) from
this point will yield a curve C that asymptotes along
the line x 5 L(p), where

(p)L

HU 5 F dx 5 (u D)| , (8)(p)E i x5L

0

upon integrating (7). Thus, the asymptotic polynya
width L(p) depends only on the offshore flux of consol-
idated thin ice, which is trying to open the polynya, and
the total frazil ice production rate per unit length in the
alongshore direction, which is trying to close the po-
lynya: L(p) does not depend explicitly upon the detailed
structure of the frazil ice trajectories, although it does,
in general, depend on the frazil ice depth via F. How-
ever, since the frazil ice concentration and depth within
the polynya are relatively low, F can be regarded as
being approximately independent of the frazil ice dis-
tribution. Pease (1987) suggests that the steady-state
polynya width is not controlled by the wind because to
a good approximation U and F vary near linearly with
|t|. Equation (8) shows that this is still the case in two
dimensions. If the frazil ice production is constant with-
in the polynya, (8) leads to L(p) 5 (HU)/F, which is the
Lebedev–Pease steady-state width.

Contrary to L(p), the alongshore length scale L(c) over
which the polynya adjusts toward its asymptotic width
does depend upon the frazil ice trajectories. In DWS the
definition of L(c) exploited the fact that the frazil ice
trajectories were a family of parallel straight lines,
which is not, in general, the case here. We therefore
consider an alternative definition for L(c), which reduces
to that in DWS under the assumptions made by these
authors. The tangent to C at a point P 5 (xP, yP) inter-
sects the line x 5 L(p) at the point Q 5 (L(p), yQ), where
yQ 5 s(L(p) 2 xP) 1 yP and s 5 (dy/dx)| . Now define(x ,y )P P

(c) (p)L 5 lim |s(L 2 x )|. (9)P
(p)x →LP

If the polynya width at P is sufficiently close to L(p),
the length of the interval parallel to y within which a
linear approximation to C is valid is |s(L(p) 2 xp)|. Unlike
L(p), the length scale L(c) depends on u and t via the
slope s of the polynya ice edge.

To make analytical progress beyond this point and to
facilitate understanding about L(p) and L(c) it is necessary
to introduce further simplifying assumptions. For ex-
ample, we can eliminate the Coriolis term in the ice
momentum balance (6) on the basis that the depth of

frazil ice is generally small enough to make this term
negligible compared with the shear stress terms. The
frazil ice velocity field is then independent of the frazil
ice depth and it is given by

ui 5 u 1 t (ricwi|t |)21/2. (10)

In this case, it is straightforward to derive the following
expression for the slope of the polynya ice edge, namely,

x

HU 2 F(x9) dx9E
0dx

5 . (11)
xdy y iHV 2 F(x9) dx9Eui 0

Notice that the right-hand side of (10) is a function of
x alone so that (11) can, in principle, be integrated to
obtain C. As an illustration, consider the case when u
is an alongshore current with offshore shear and t and
F are spatially uniform. Let the oceanic velocity be
given by

u 5 0, y 5 y0 1 mx, (12)

where m is a constant. Integrating (11), the polynya ice
edge passing through the origin is given by

(p) (p) 21y 5 L {tanu 2 tana 1 L m(|u | cosa) }i0

x
(p) 213 ln 1 2 2 {tana 2 L m(|u | cosa) }xi0(p)1 2L

1
21 21 m(|u | cosa) x , (13)i02

where ui0 is the velocity of the frazil ice at the coast
and the angles a and u define the directions of ui0 and
U, respectively, and increase in the clockwise direction
from the x axis. The length scale L(c) in this case becomes

(c) (p) (p) 21L 5 L |tana 2 tanu 2 L m(|u | cosa) |. (14)i0

Expressions (13) and (14) reduce to (8) and (9) in DWS
when m 5 0. If either the coastal frazil ice or the con-
solidated thin ice travel almost parallel to the coastline,
the alongshore adjustment scale (14) will be large. On
the other hand, if the coastal frazil ice and the consol-
idated thin ice travel in similar directions, L(c) can still
be large if L(p)m|ui0| is large. Alongshore spatial varia-
tions in the coastline or in the atmospheric and oceanic
forcing fields that are much smaller than L(c) will have
negligible effect on the shape of the polynya ice edge.

Figure 2 shows plots of the polynya ice edge (13) for
three values of m when t and F are fixed. In Fig. 2 t
5 0.025(cos(268), sin(268)) N m22, |HU| 5 0.015 m2

s21, u 5 258, F 5 0.04 m d21, and y 5 0.1 1 mx m
s21. Note that while the asymptotic polynya width (;28
km) is unaffected by the offshore shear of the oceanic
velocity field, as implied by (8), the frazil ice trajectories
and transport are sensitive to this quantity. Therefore,
in the region where the polynya adjusts to its asymptotic
width the shape of C is sensitive to the value of m. The
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FIG. 2. The polynya solution (16), with the origin shifted 160 km
along the x axis, for m 5 0 (a); m 5 0.33 3 1025 s21 (b); and m 5
20.33 3 1025 s21 (c). The bold arrow on the y axis indicates the
direction of the wind stress. The arrows within the polynya correspond
to the direction and relative magnitude of the oceanic currents. The
length and direction of the heavy arrows on the consolidated thin ice
denote the Lebedev–Pease width L (L 5 H |U|/F) and the direction
of motion of the consolidated ice, respectively. The dotted lines cross-
ing the polynya correspond to selected frazil ice trajectories. The
heavy continuous line indicates the location of the polynya ice edge.

FIG. 3. Numerical polynya ice edge solutions for a nonuniform
alongshore oceanic current with ua 5 528 (a), ua 5 268 (b), and ua

5 08 (c); HU and F are as in Fig. 2.

alongshore extent of this region is approximately given
by L(c) in (14). In Figs. 2a, 2b, and 2c the alongshore
length scale is L(c) 5 92, 130, and 9 km, respectively.
Since the coastline expands indefinitely to the left, the
polynya can always attain its asymptotic width. Of
course, in reality the coastline is finite and its length is
approximately an upper bound to the alongshore extent
of the polynya. If the coast is 50 km long, say, the actual
polynya will never reach its asymptotic width when L(c)

is significantly larger than 50 km. The importance of
the alongshore adjustment length L(c) is also demon-
strated in Fig. 3, in which F is the same as in Fig. 2
and f 5 0. Again u is parallel to the coast, but it is now
piecewise uniform in the alongshore direction with

y , y # y , y # y1 l ry(y) 5 5y , y # y # y .2 l r

The polynya ice edge C is numerically determined when
the wind stress has fixed magnitude but varying offshore
direction. Figures 3a–c show solutions of this problem
for t 5 0.025(cos(ua), sin(ua)) N m22, with an along-
shore oceanic current given by y 5 0.1 m s21, except
in the region 70 km # y # 80 km, indicated by a bold,
double headed arrow, where y 5 0.05 m s21. From (14)
it is clear that varying the direction of t leads to a change
in L(c) through the angle a and |ui0| cosa. As t rotates
from an alongshore (see Fig. 3a) to an offshore direction
(see Fig. 3c), L(c) decreases. In Fig. 3a the polynya ice
edge shows little change in the region yl # y # yr

because L(c) 5 92 km k yr 2 yl 5 10 km. However,
in Fig. 3c the polynya ice edge changes orientation sig-
nificantly in (yl, yr) because L(c) 5 28 km. The along-
shore length scale in Fig. 3b is 47 km. There is an
analogy between the results in Fig. 3 and those in DWS
for the influence of a bay or headland on a polynya ice
edge, where the alongshore length scale of the coastal
feature plays the role of the length scale yr 2 yl. Per-
turbations in the wind field, the production rate of frazil
ice and the consolidated thin ice transport will also lead
to modifications in the polynya shape depending on
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whether the size of the region where the perturbation
takes place is large or small compared with L(c).

With the reintroduction of the Coriolis term in the ice
momentum balance, the solutions in Figs. 2 and 3 show
imperceptible changes, and this is consistent with the
fact that the frazil ice depths remain shallow within the
polynya region.

b. Wedge-shaped domain

In this example the ocean is contained within the
wedge-shaped domain bounded by the straight lines y
5 px (line R1) and x 5 py (line R2) where the constant
p satisfies |p| # 1. This case illustrates the generic be-
havior of the polynya in an embayment. We suppose
that t, F, and HU are uniform and that the ocean velocity
field is given by

u 5 k 3 =C, (15a)

where the streamfunction C is given by

C 5 C(y 2 px)(x 2 py), (15b)

where C is an arbitrary positive constant. Clearly, u is
irrotational and nondivergent and, although |u| grows
without bound as r → `, the behavior of the model in
the neighborhood of the origin exhibits many interesting
features that could be reproduced when simulating a
polynya.

For analytical progress we again assume that the Cor-
iolis term in (6) is negligible, and in this case it is
straightforward to show that the upstream (downstream)
asymptotic frazil ice velocity is oriented parallel to R1

(R2) and that at any point P 5 (x, y) the component of
ui normal to R1 (R2) is solely a function of the distance
from P to R1 (R2). Upon integration of (10), the para-
metric form of the frazil ice trajectories is given by

1
2 x yx 5 ((1 1 p )t 2 2pt )

2 2 1/2C(1 2 p ) (r c |t |)i wi

2 2C(12p )t 2C(12p )t1 pA e 1 A e (16a)1 2

1
x 2 yy 5 (2pt 2 (1 1 p )t )

2 2 1/2C(1 2 p ) (r c |t |)i wi

2 2C(12p )t 2C(12p )t1 A e 1 pA e , (16b)1 2

where the constants A1 and A2 determine the starting
point of the trajectory and t 5 (tx, ty), and t is time
along a trajectory. Elimination of t between (16a) and
(16b) shows that the frazil ice trajectories are the family
of hyperbolas

x ypt 2 t
(px 2 y) 1

2 2 1/25 6C(1 2 p ) (r c |t |)i wi

y xpt 2 t
3 (py 2 x) 2

2 2 1/25 6C(1 2 p ) (r c |t |)i wi

2 25 (1 2 p ) A A . (17)1 2

The asymptotes of (17) are a pair of straight lines par-
allel to R1 and R2. Let Q1 and Q2 denote these asymp-
totes, with Qj parallel to Rj (j 5 1, 2). Then Qj intersect
at the point (q1, q2), where

2 x y(1 1 p )t 2 2pt
q 51 2 3 1/2C(1 2 p ) (r c |t |)i wi

x 2 y2pt 2 (1 1 p )t
q 5 . (18)2 2 3 1/2C(1 2 p ) (r c |t |)i wi

Three physically distinct regimes can now be identified
based on the location of (q1, q2) and are illustrated for
the case of a quarter plane where p 5 0.

Case A: 2tx 1 pty . 0, ptx 2 ty , 0. (19)

In this case, Q1 and Q2 are outside the oceanic domain
and the frazil ice trajectories can only emanate from the
boundary R1. Physically this occurs because the normal
component of wind stress on R2 is out of the ocean
domain [first inequality (19)], while the normal com-
ponent of wind stress on R1 is into the domain [second
inequality (19)]. On R1 the oceanic flow is directed along
the boundary, and we therefore require the normal com-
ponent of wind stress on this boundary to be directed
into the domain if frazil ice trajectories are to leave R1.
Figure 4a shows a plot of the frazil ice trajectories to-
gether with two polynya solutions corresponding to two
distinct starting points on R1. In the numerical com-
putation of these solutions (and of the others presented
in this section) the Coriolis term in (6) has been retained,
and the oceanic currents (not shown) have been derived
from (15) with C 5 7.4 3 1027 s21, and HU and F the
same as in Fig. 2. Therefore, the frazil ice trajectories
shown here approximately coincide with those given in
(17) when the Coriolis term in (6) is small (i.e., suffi-
ciently close to the wedge angle). Note that the polynya
solutions asymptote to a uniform width despite that the
magnitude of the ocean velocity field increases without
bound with increasing distance from the corner along
R1. For completeness we analyze the asymptotic behav-
ior of the polynya far from the corner in appendix B.

Case B: 2tx 1 pty , 0, ptx 2 ty . 0. (20)

Both Q1 and Q2 traverse the ocean domain with the
normal component of wind stress on R2 now directed
into the domain, while that on R1 is out of the domain.
It can be shown using (20) that (q1, q2) lies inside the
ocean domain in this case. Frazil ice trajectories can
only emanate from R2. An example of the frazil ice
trajectories for this case is shown in Fig. 4b. The as-
ymptotes Q1 and Q2 are shown as bold dotted lines. As
the length of a trajectory increases so, too, does the
frazil ice depth and velocity, and the Coriolis term be-
comes significant in (6). Thus, the trajectories deflect
to the right in the sense of the motion and do not as-
ymptote along the line Q2. They do, however, asymptote
to a line that forms an acute angle with the x axis.

A singular point (S, say) in the ocean domain exists
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FIG. 4. Numerical solutions of the polynya ice edge problem in a
quarter-plane domain for t 5 0.025(cos(ua), sin(ua)) N m22 with ua

5 1168 (a), ua 5 2268 (b), and ua 5 268 (c); HU and F are as in
Fig. 1. Numerically determined frazil ice trajectories have been plot-
ted as light dotted lines starting in the coastlines y 5 0 (R1) and/or
x 5 0 (R2). The light arrows at the beginning of the trajectories
indicate the direction and relative velocity of the frazil ice at that
point. The heavy dotted lines correspond to the asymptotes Q1 and
Q2. Two polynya solutions (heavy continuous line) are shown in each
case.

where the frazil ice transport and the consolidated ice
transport are equal. At S both the numerator and the
denominator of the right-hand side of (3) vanish and all
polynya ice edge curves pass through this point. Figure
4b shows the polynya ice edge starting at the origin and
terminating at S. Two further polynya ice edge curves
starting on R2 are also plotted in Fig. 4b. The resulting
closed coastal polynya has a cusp at S. This feature is
most probably of minor physical importance but it
shows that the polynya ice edge can exhibit disconti-
nuities in its slope that are not linked with either the
geometry of the coast or with abrupt spatial changes in
the forcing fields.

Case C: 2tx 1 pty , 0, ptx 2 ty , 0. (21)

Only Q2 traverses the ocean domain and the normal
component of wind stress on both R1 and R2 is into the
domain, which can be seen immediately from (21). Fra-
zil ice trajectories can start at any point on R1 or R2.
Figure 4c shows plots of this type of solution with the
asymptote Q2 shown as a bold dotted line. As in Fig.
4b the influence of rotation leads to the trajectories
asymptoting to a straight line that is tilted with respect
to Q2. Two polynya solutions are also shown in Fig. 4c.
A ‘‘single branch’’ polynya will occur provided that a
point on R1 is chosen as the initial condition. When (3)
is integrated from any point on R2, a ‘‘double branch’’
polynya results. Far from the corner the single and dou-
ble branch solutions asymptote to uniform widths (dis-
tinct for each branch) despite that the alongshore ocean
velocity field is nonuniform. This property is also ex-
hibited in Fig. 4a.

If the normal components of wind stress on R1 and
R2 are directed away from the ocean domain [corre-
sponding to reversing the inequalities (21)], no polynya
is possible since the frazil ice will be flowing from the
domain interior toward the coastal boundaries.

4. Application to the Northeast Water polynya

The Northeast Water polynya (NEW) occurs over the
continental shelf off the northeast coast of Greenland.
Schneider and Budéus (1995) conclude that the NEW
is formed due to the interaction of a fast ice barrier
extending perpendicular from the coast and a northward
flowing coastal current. The region downstream of the
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FIG. 5. The control solution for the NEW polynya (experiment 1).
The point (0 km, 100 km) approximately corresponds to (82.18N,
218W). Also plotted is the coastline together with idealized landfast
ice boundaries (bold dashed lines). Selected frazil ice trajectories are
denoted by dotted lines within the polynya. The thin dashed line is
the contour of a polynya observed on 6 May 1991 (redrawn from
Norske Meteorologiske Institutt 1991).

barrier is protected from ice import while current-driven
ice export continues. However, the authors point out that
the area between the Henrik Krøyer Islands and the Ob
Bank is favorable for wind-generated polynyas through-
out the winter because these coastal features prevent
direct ice import into the region. Minnett (1995) also
supports this observation. Infrared and satellite images
reveal that in the winter, open water frequently occurs
close to the coast at the northern part of the polynya,
which is associated with northwesterly winds blowing
the ice from the coast (Minnett 1995).

We apply the model to the NEW region to simulate
the wind-driven coastal polynya that occurs in winter
and early spring. In addition, the sensitivity of the po-
lynya shape to the oceanic circulation, wind stress, ice
production rate, and consolidated ice flux are examined.

The digital coastline data was provided by M. John-
son (1995, personal communication) and is plotted in
Fig. 5. The bold broken lines represent the boundary of
landfast ice present during winter and early spring
(Schneider and Budéus 1995). Over the East Greenland
Sea shelf an anticyclonic circulation exists (Budéus and
Schneider 1995; Johnson and Niebauer 1995). To model
this circulation a velocity streamfunction CI, (x, y) is
defined for the interior flow, away from the coastline,
in terms of which the interior ocean velocity field is
given by

uI 5 k 3 =CI. (22)

The form of CI is given by

2x cosl 2 y sinl 2 â12C 5I 1 2a2

2ˆx sinl 1 y cosl 2 b11 , (23a)1 2b2

where

ˆâ 5 a cosl 2 b sinl, b 5 a sinl 1 b cosl1 1 1 1 1 1

(23b)
and a1, b1, and l are constants. Streamlines are a family
of confocal ellipses centered at (â1, b̂1) with major and
minor axes of length proportional to 2a2 and 2b2 re-
spectively. When l 5 0, the major and minor axes co-
incide with the x axis and y axis respectively.

Clearly, uI calculated from (22) and (23) does not
satisfy the boundary conditions of no-normal flow and
no slip at the coastline. A streamfunction C(x, y) can
be calculated that satisfies the former boundary con-
dition and takes the form of (23) in the ocean interior
by demanding that C satisfies the boundary value prob-
lem

r¹2C 1 Cx 5 CIx, (24)

with C 5 0 on all rigid boundaries of the domain. In
(24), r is a constant that can be thought of as a bottom
friction parameter. The computational domain of (24) is

contained within a rectangle of dimensions 2000 km 3
600 km centered at (79.38N, 138W). The boundaries for
the integration of (24) consist of the Greenland coastline
contained within the rectangle together with those por-
tions of the rectangle’s sides that are contiguous to oce-
anic points. The width of the frictional coastal boundary
layer is O(r) and is chosen to be 2.5 km, and the method
of successive overrelaxation is used to solve (24).

The ocean velocity field u is calculated using (22)
with CI replaced by C. Finally, to ensure that the mag-
nitude of the velocity field is realistic, |u| is normalized
to a value of 0.125 m s21 (Johnson and Niebauer 1995).
Parameter values used for the standard run are listed in
Table 1. To the best of our knowledge, no complete
climatology of the atmospheric and oceanic conditions
in the region of the NEW polynya is available. To define
realistic values for the winter surface wind stress and
frazil ice production in the NEW we have used a month-
ly mean climatology of surface air temperatures, dew-
point, sea level pressure, surface winds, and cloud cover
from which bulk surface heat and momentum fluxes
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TABLE 1. List of parameters for the standard run.

Parameter Description Value

a1

b1

a2

b2

l
|t|

Interior streamfunction parameter
Interior streamfunction parameter
Interior streamfunction parameter
Interior streamfunction parameter
Interior streamfunction parameter
Magnitude of the wind stress

2440 3 103 m
200 3 103 m

6 m
3 m

2108
0.09 N m22

ua

|u|
|HU|

uci

F
cwi

Wind stress directiona

Magnitude of the oceanic currentsb

Magnitude of the consolidated ice
transportc

Consolidated ice transport directiona

Frazil ice production
Ice–ocean drag coefficient

0
0.125 m s21

0.02 m2 s21

0
0.04 m day21

5.5 3 1023

a Angles are given with respect to the x axis and increase in the
clockwise direction.
b |u| linearly decays to 0 in the region 0 # y # 200 km (see Fig. 5).
c |HU| quadratically decays to 0 in the region 0 km # y # 200
km (see Fig. 5).

TABLE 2. Estimated surface fluxes at (79.58N, 12.58W).*

Variable Unit Apr May

Incoming shortwave radiation
Incoming longwave radiation
Outgoing longwave radiation
Sensible heat
Latent heat
Net heat flux
Frazil ice production
Wind stress magnitude
Wind stress direction

W m22

W m22

W m22

W m22

W m22

W m22

m day21

N m22

8N

106
176
301

2240
284.0

2344
0.1
0.1

178

187
238
301

237
229

59
20.02

0.08
2179

* Surface air temperature is 2208C in April and 2108C in May.
Sea surface temperature is 22.88C.

have been computed at the geographical location
(79.58N, 12.58W), which is the closest point to the NEW
in the data, slightly to the south of the observed polynya.
Both the climatology and the bulk formulae employed
in the derivation of the surfaces fluxes are documented
in Fichefet and Morales Maqueda (1997). Table 2 lists
the radiative, sensible, and latent heat and mechanical
surface fluxes obtained for April (late winter) and May
(early spring) at this location. The frazil ice production
F is simply the net surface heat flux divided by the
latent heat of fusion of ice. In Table 1 the values of F
and t represent the average of the April and May es-
timates.

Note that the consolidated thin ice transport T is a
free parameter in this formulation of the model. The
value chosen for T in the control run has been derived
by assuming a consolidated thin ice thickness of 0.2 m
and a southward ice drift of 0.1 m s21 (Emery et al.
1991). A more realistic simulation could be obtained by
calculating T as a function of the wind stress and oce-
anic currents. However, to do so would require the use
of a model for the motion (and possibly the growth) of
consolidated thin ice. Ideally, the pack ice momentum
balance equation should include an explicit represen-
tation of the internal ice stresses, which are likely to be
large in this region. Alternatively, it would be possible
to employ the linear relationship between ice motion
and wind and oceanic currents derived by Thorndike
and Colony (1982) for ice motion in the central Arctic.
However, as these authors acknowledge, this empirical
law works poorly in the northern Greenland Sea ice
pack.

Table 3 lists the sensitivity experiments discussed be-
low and, with the exception of experiments 5, 6, and
10, includes the value of the single parameter that has
been varied from the control run. Of course, varying
one parameter or field while leaving the others unchan-
ged is unphysical because most, if not all of them, are

interrelated. However, this is in the spirit of all sensi-
tivity studies. In the control experiment we have used
a realistic scenario of meteorological and oceanic con-
ditions from which to compute the polynya solution.
Nevertheless, our choice of forcing fields is certainly
not unique. We believe that the forcing fields imposed
in the sensitivity experiments are equally plausible for
the NEW region as those defined in the control exper-
iment. In all the experiments, the polynya ice edge has
been integrated from the initial point (81.38N, 128W)
on the eastern tip of Cape Nordostrundingen, where the
polynya is usually observed to intersect the coast (e.g.,
Schneider and Budéus 1995). However, the precise co-
ordinates of the starting point are to some extent arbi-
trary in the sense that closed polynya solutions can be
obtained starting from points on this cape either to the
east or to the west of the chosen starting point. We return
to this point in experiment 10.

Experiment 1: Standard run. Figure 5 shows the
coastal polynya for a equatorward wind stress. The
ocean and ice velocity vectors are plotted. In the western
part of the domain, the oceanic currents flow against
the wind, and we therefore expect that the magnitude
of the consolidated thin ice transport to decrease upon
approaching the coast, as indicated by our choice of U.
The maximum polynya width is approximately 30 km
[which agrees well with the estimate given by (8)], and
its area is approximately 4200 km2 (Table 4 lists the
area occupied by the polynya solutions in the sensitivity
experiments). Within the polynya the dotted lines rep-
resent the frazil ice trajectories. The maximum frazil ice
depths (;0.15 m) occur at the ice edge roughly in the
central part of the polynya. In this region, the north-
eastward oceanic currents slow down the advance of the
frazil toward the polynya ice edge leading to a large
residence time of frazil ice in open water (around 3.5
days). Also included in Fig. 5 is the approximate lo-
cation of a polynya ice edge observed in the NEW re-
gion on 6 May 1991 (Norske Meteorologiske Institutt
1991). The northeastern boundary of the polynya is
formed by fast ice on Ob Bank (not shown). The ob-
served and simulated polynyas have similar alongshore
and offshore extents. Detailed comparison, however, is
inappropriate because we cannot be sure whether the
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TABLE 3. A summary of the sensitivity experiments.

Experi-
ment Description Parameter change

1 Standard run See Table 1
2
a
b
c
d

Varying the wind stress magnitude
|t| 5 0.125 N m22

|t| 5 0.075 N m22

|t| 5 0.050 N m22

|t| 5 0.025 N m22

3
a
b
c
d

Varying the wind stress direction*
ua 5 1158
ua 5 2158
ua 5 2308
ua 5 2458

4
a
b
c
d

Varying the magnitude and direction of the consolidated ice flux*
|HU| 5 0.03 m2 s21

|HU| 5 0.01 m2 s21

uci 5 2108
uci 5 1108

5
a
b
c
d

Varying the frazil ice production
F 5 0.06 m day21

F 5 0.05 m day21

F 5 0.03 m day21

F 5 0.02 m day21

6
a
b
c

Varying the frazil ice production given by (25)
Ta 5 2228 C (F (0) 5 0.04 m day21)
Ta 5 2328 C (F (0) 5 0.06 m day21)
Ta 5 2128 C (F (0) 5 0.02 m day21)

7 Varying the ice–ocean drag coefficient 0.0045 # cwi # 0.0065
8 Influence of land fast ice
9
a
b
c

Varying the ocean circulation
2108 # l # 108
a2/b2 5 1.5
|u| 5 0

10 Varying the starting point of the polynya
11

a
b

Consolidated thin ice flux depending on wind and currents
T calculated as in Thorndike and Colony (1982)
T calculated via the free-drift momentum balance

* Angles are given with respect to the x axis and increase in the clockwise direction.

prevailing meteorological conditions at the moment of
observation are comparable to those used in deriving
our forcing fields.

Experiment 2: Varying the wind stress magnitude.
The polynya shape is insensitive to the magnitude of
the northerly wind stress, which is consistent with the
results in section 3a, where it is shown that for fairly
uniform alongshore conditions the polynya width de-
pends only on the consolidated ice transport and frazil
ice production. Note that the frazil ice trajectories be-
come more aligned with the oceanic coastal flow as |t|
decreases, which is seen by comparing Figs. 6a to 6d.
Since in Fig. 6d the length of the trajectories increases
and the frazil ice velocity decreases, the frazil ice depth
at the polynya ice edge increases. Maximum depths in
experiment 2d are ;0.4 m east of Ingolfs Fjord, cor-
responding to a residence time of about 10 days. How-
ever, the component of ui perpendicular to the edge
decreases, and the final result is a normal frazil ice trans-
port that changes little from case to case.

Experiment 3: Varying the wind stress direction. Ro-

tating t to be offshore has minimal impact on the po-
lynya shape for the reason already noted in experiment
2. However, as the wind changes from north-northeast-
erly to northwesterly (Figs. 7a to 7b), the offshore com-
ponent of the frazil ice drift increases leading to a de-
crease in both the residence time (from 4 days to about
2.5 days) and maximum thickness (from 0.2 to 0.1 m)
of frazil ice. As t becomes aligned alongshore (Fig. 7a)
a point is reached were no closed polynya is possible.
The solution breaks down when no frazil ice trajectory
emanating from the coast can reach the polynya ice edge
at a given location, a situation shown to be possible in
section 3b. South of a point close to the entrance of
Ingolfs Fjord (where the polynya does not close in Fig.
7a) the frazil ice trajectories are directed from the do-
main interior toward the coast. Although there is nothing
unphysical in this situation, it is impossible to achieve
an ice flux balance. Including a coupling between the
wind stress and the oceanic currents could restore, in
many cases, a closed solution.

Experiment 4: Varying the magnitude and direction
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TABLE 4. Area of the polynya A in each sensitivity experiments

Experi-
ment Description A (in km2)

Change in A
(%) Figure

1 Standard run 4170 0 5
2
a
b
c
d

Varying the wind stress magnitude
4181
4170
4151
4186

0
0
0
0

6a
6b
6c
6d

3
a
b
c
d

Varying the wind stress direction
3666
4144
3951
3941

212
21
25
25

7a
7b
7c
7d

4
a
b
c
d

Varying the magnitude and direction of the consolidated ice flux
6250
1924
4811
3409

150
254
154
218

8a
8b
8c
8d

5
a
b
c
d

Varying the frazil ice production
2478
3390
5548
8159

241
219
133
196

9a
9b
9c
9d

6
a
b
c

Varying the frazil ice production given by (25)
4837
3241

—

116
222
—

10a
10b
—

7 Varying the ice–ocean drag coefficient 4126 # A # 4188 #1 —
8 Influence of land fast ice 4396* 5 11
9
a
b
c

Varying the ocean circulation
4133 # A # 4231

4206
4143

#1
1
1

—
—
12

11
a
b

Consolidated thin ice flux depending on wind and currents
2297
6886

245
165

14a
14b

* Excluding the area of Ingolfs Fjord.

of the consolidated ice flux. As the magnitude of the
consolidated ice flux is increased, while keeping the
west-to-east shear constant, the flow of frazil ice across
the polynya ice edge must increase so that the ice mass
balance is maintained. As illustrated in Fig. 8a, this is
achieved by widening the polynya and, hence, enlarging
the residence time (;6 days) and increasing the max-
imum depth (;0.25 m) of frazil ice in the polynya. The
opposite response is observed when the consolidated
ice flux is decreased (Fig. 8b). As the consolidated ice
flux rotates to become more offshore (Fig. 8c) the po-
lynya widens because, again, a larger frazil ice outflow
through the polynya ice edge is required to balance the
increased consolidated ice flux. Continued rotation of
the consolidated ice flux toward a southeasterly direc-
tion leads to a situation where no closed polynya is
possible. The polynya width decreases as the consoli-
dated ice flux becomes aligned alongshore (Fig. 8d).

Experiments 5 and 6: Varying frazil ice production.
As F increases (decreases), the polynya width increases
(decreases) in such a way that the total ice production
within the polynya (AF) changes remarkably little from

one case to another (Fig. 9). Maximum frazil ice depths
at the polynya ice edge are fairly similar in all four
experiments (of the order of 0.15–0.20 m), whereas res-
idence times in the wider region of the polynya vary
from ;2 days in experiment 5a to ;10 days in exper-
iment 5d.

One can argue that for fixed atmospheric conditions
the frazil ice production F must depend on the frazil ice
depth and concentration, the latter variable not being
considered in this simple model. As D increases along
the frazil ice trajectories, the upper ocean becomes in-
creasingly thermally insulated from the atmosphere
leading to a decrease in F. On this basis we expect larger
polynyas will occur if F is allowed to vary with D. To
investigate this idea using the steady-state polynya mod-
el, the ice production rate is allowed to vary with D
according to

k kai iF(D) 5 (T 2 T ), (25)f a(k D 1 k )Lai i i

where kai 5 7 W m22 K21 is an air–ice exchange co-
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efficient, ki 5 2.0334 J m21 K21 is the heat conductivity
of ice, Li 5 300.33 3 106 J m23 is the volumetric latent
heat of fusion of ice, Tf [ 21.8 K is the freezing point
of seawater, and Ta is the prescribed surface air tem-
perature. To derive (25), the air–ice heat flux Qai is
balanced by the vertical heat conduction Qi through the
frazil ice in the manner discussed by Willmott and My-
sak (1989). We parameterize Qai 5 kai(Ta 2 Ts) where
Ts is the surface temperature of the frazil ice. Although
this is a crude parameterization for Qai, which in reality
depends not only on air and surface temperatures but
also on factors such as surface wind speed (via the sen-
sible and latent heat fluxes), it is justifiable because t
is constant. The value of kai is taken from Willmott and
Mysak (1989). Within the frazil ice a linear temperature
profile is adopted, in which case Qi 5 ki(Ts 2 Tf)/D. By
setting Ta 5 2228C we find that at the coast, where D
5 0, F(0) 5 0.04 m day21, which is the uniform value
used for the frazil ice production in the standard run.
Using this value of Ta in (25) leads to a slight widening
of the polynya (Fig. 10a) compared with Fig. 5. Max-
imum frazil ice depths at the polynya ice edge are similar
to those in the control run, while the corresponding
residence times are ;4 days (half a day larger than in
the control case). Upon reducing the air temperature to
Ta 5 2328C we find that F(0) 5 0.06 m day21 and we
obtain an overall increase in frazil ice production com-
pared to the control experiment and a corresponding
decrease (Fig. 10b) in the polynya width compared with
Fig. 5. Conversely, if Ta 5 2128C we obtain F(0) 5
0.02 m day21 and the polynya is too wide to close (not
plotted).

Experiment 7: Varying the ice–ocean drag coefficient.
For 0.0045 # cwi # 0.0065 the polynya shape varies
only slightly and therefore no solutions are shown. Since
there is uncertainty about the size of cwi it is reassuring
that the polynya shape is insensitive to this parameter
over a realistic range of values.

Experiment 8: Influence of land fast ice. Figure 11
shows the polynya solution when land fast ice in the
inlets and embayments is removed. Comparing Figs. 5
and 11 we see that trajectories within the ice-free bays
produce a significant perturbation in the shape of the
polynya ice edge.

Experiment 9: Varying the ocean circulation. Solu-
tions calculated for 2108 # l # 108 reveal only minor
changes in the polynya shape (not shown) because near
the coast the ocean circulation is insensitive to this pa-
rameter and because the frazil ice motion is in this ex-
periment basically wind driven. Similarly, decreasing
a2/b2 from 2 in the standard run to 1.5 leads to a minor
change in the polynya shape, and therefore the solution
is not plotted. When the oceanic currents are set to 0
(Fig. 12), the frazil ice trajectories are almost perfectly
aligned with the wind stress (the Coriolis term is insig-
nificant in this case). There is little change in the area
of the polynya compared with the control run, but its

shape is significantly modified, reproducing in almost
every detail the geometry of the coastline.

Experiment 10: Varying the starting point. Changes
in the effective geometry of the coast due to the advance
and retreat of fast ice, for example, or in the pack ice
motion can lead to variations in the location of the point
of intersection between the polynya ice edge and the
coastline. Figure 13 shows polynya solutions for dif-
ferent starting points along the southern coast of Nor-
dostrundingen. All contours ‘‘asymptote’’ to a common
polynya ice edge southwestward of the starting point.
In the case when the polynya starts close to the eastern
tip of Cape Nordostrundingen, the coastline extent is
greater than the alongshore adjustment length scale (14).
For the wind stress, oceanic currents, and consolidated
thin ice transport used here, polynyas starting at dif-
ferent coastal points in the vicinity of Ob Bank will
reach their maximum width (;30 km) some 60 km to
the southwest of the starting point, ;60 km.

Experiment 11: Consolidated thin ice flux depending
on wind and currents. In the previous experiments, the
consolidated thin ice transport is prescribed and it is
spatially constant. This is certainly undesirable, and a
more complete polynya model should include T as a
prognostic variable depending on the rate of accumu-
lation of frazil ice at the polynya ice edge, the vertical
growth of consolidated thin ice, and the consolidated
thin ice motion in response to winds and ocean currents.
To illustrate the effects of a spatially varying consoli-
dated ice flux on the shape and area of a polynya we
have conducted two sensitivity experiments in which
the consolidated ice thickness H is assumed to be 0.2
m everywhere, and the consolidated ice velocity U is
calculated as a function of H, t, and u. In experiment
11a, U is calculated in terms of the surface wind stress
and ocean currents following an empirical relationship
proposed by Thorndike and Colony (1982) for the sea
ice motion in the central Arctic:

U 5 ATC(cos(uTC)G 2 sin(uTC)k 3 G) 1 u, (26)

where ATC 5 0.008, uTC 5 58, k is an upward unit vector,
and G is the geostrophic wind, related to the surface
wind stress via

t 5 ca|G|(cos(uG)G 2 sin(uG)k 3 G), (27)

where ca 5 1023 N m24 s2 and uG 5 288 (Overland and
Colony 1994). Thus, a geostrophic wind of 10 m s21

leads to a surface wind stress of 0.1 N m22. In exper-
iment 11b, U is assumed to obey the free-drift momen-
tum balance (6).

The magnitude of T obtained by applying the for-
mulation of Thorndike and Colony (1982) tends to be
larger than the control value (0.02 m2 s21) in the eastern
half of the polynya ice edge (Fig. 14a). However, the
consolidated thin ice moves to the south-southwest (to
the right of the wind), and the ice transport across the
polynya ice edge becomes significantly smaller than in
experiment 1. In the western half of the polynya ice
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FIG. 6. NEW polynya solutions with varying wind stress magnitude (experiment 2): |t| 5
0.125 N m22 (a), 0.075 N m22 (b), 0.050 N m22 (c) and 0.025 N m22 (d).

FIG. 7. NEW polynya solutions with varying wind stress direction (experiment 3). ua 5
1158 (a), 2158 (b), 2308 (c), and 2458 (d).
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FIG. 8. NEW polynya solutions with varying magnitude or direction of the consolidated ice
flux (experiment 4): |HU| 5 0.03 m2 s21 (a), and 0.01 m2 s21 (b); uci 5 2108 (c), and 1108
(d).

FIG. 9. NEW polynya solution with varying frazil ice production (experiment 5): F 5 0.06
m day21 (a), 0.05 m day21 (b), 0.03 m day21 (c), and 0.02 m day21 (d).
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FIG. 10. NEW polynya solutions with frazil ice production varying with frazil ice depth
according to (25) (experiment 6): Ta 5 2228C (a) and 2328C (b).

FIG. 12. NEW polynya solution for a stagnant ocean (experiment
9c).

FIG. 11. NEW polynya solution when the three northernmost land
fast barriers have been removed (experiment 8). The Norske Ø ice
barrier has been retained.

edge, |T| is smaller than in experiment 1 because winds
and ocean currents travel in nearly opposite directions.
As a result, the steady-state polynya shrinks by about
50% with respect to the control case. In contrast, when
T is calculated using the free-drift momentum balance,
the size of the polynya increases considerably (Fig.
14b). In the eastern part of the polynya the consolidated
thin ice flux almost doubles that in experiment 1, and
it tends to be aligned with the ocean currents. Conse-

quently, the polynya ice edge advances away from the
coast and the polynya reaches a maximum width of 60
km. Figures 14a and 14b show the resultant steady-state
polynya in experiments 11a and 11b, respectively.

5. Summary and conclusions

A model is developed for determining the size and
shape of a steady-state latent heat coastal polynya given
the frazil ice production rate (F), wind stress (t), surface
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FIG. 13. NEW polynya solutions for a suite of different starting
points. The dashed line corresponds to the solution of the control
experiment.

FIG. 14. NEW polynya solutions with consolidated thin ice motion depending on winds and
ocean currents (experiment 11): Thorndike and Colony formulation (a) and free-drift balance
formulation (b). The vectors representing consolidated thin ice transport have been computed
along the line x 5 150 km.

ocean circulation (u), offshore consolidated ice transport
(T), the coastline shape, and a point of intersection of
the polynya with the coast. The study extends the
steady-state polynya model of DWS by allowing the
frazil ice trajectories to be determined via the free-drift
ice momentum balance, rather than being prescribed.

For a straight coastline it is shown that the polynya

asymptotes to a uniform width provided that u, t, and
T are uniform in the alongshore direction. The polynya
width is determined by the offshore component of T
balancing the frazil ice flux into the polynya ice edge
(Pease 1987). The latter flux is given by the integrated
frazil ice production rate across the polynya per unit
length in the alongshore direction. An expression is also
derived for the alongshore adjustment length scale (L(c)),
which reduces to that in DWS when the frazil ice tra-
jectories are a family of parallel straight lines. In this
study L(c) depends not only upon the coastline variations
in the alongshore direction (see DWS) but also upon
the alongshore variations of t, u, and T.

Closed polynya solutions do not always exist in a
coastal region. Furthermore, if a point exists on the po-
lynya ice edge where the frazil and consolidated ice
fluxes are parallel, the polynya ice edge is not smooth
(i.e., no well-defined normal to the edge exists) there.
It is shown that all polynya solutions will pass through
this critical point. These features are highlighted by cal-
culating the polynya (if it exists) in a wedge-shaped
domain with a nondivergent irrotational surface ocean
velocity field.

Solutions for the winter and early spring wind-driven
polynya in the NEW polynya region are studied using
this model. It is also shown how to model the variation
of the rate of frazil ice production with the frazil ice
depth. This is a potentially important process to consider
because in regions where the frazil ice depth builds up
we would expect F to decrease. In addition, we have
investigated the polynya response when the consoli-
dated thin ice flux at the polynya ice edge is determined
as a function of the wind stress and ocean currents. Not
surprisingly, the polynya is found to be very sensitive
to variations of this flux along the polynya edge. The
fact that the two different parameterizations of the con-
solidated thin ice motion studied here yield very dif-
ferent polynya shapes points to the necessity of using
realistic formulations for the consolidated thin ice mo-
mentum balance (possibly including internal ice stress-
es).
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We stress once more that a fundamental shortcoming
of the present study is that the forcing fields of the
polynya model (wind stress, ocean currents, frazil ice
production, and consolidated ice transport) are decou-
pled. Obviously, the physical behavior of the polynya
is bound to be affected by these couplings, and therefore
our senstivity results must be interpreted in the light of
this limitation.

A worthwhile extension of this model would be to
couple the wind stress field and the ocean circulation
in a manner similar to the DWM study of the NOW
polynya. Following the DWM approach for modeling
the coastal circulation will also allow the oceanic sen-
sible heat flux to be incorporated into the model. For
the NOW polynya it is likely that wind-driven upwelling
along the West Greenland coast will lead to a significant
oceanic sensible heat flux in late spring (DWM).

When an oceanic sensible heat flux associated with
coastal upwelling is incorporated into a polynya model
this introduces a slow (one to two weeks) adjustment
timescale over which the polynya will reach a steady
state. This suggests that an unsteady polynya model is
worth developing, in a manner similar to that described
by Ou (1988).

Between now and the end of the century it is likely
that a Canadian-led international program will study the
NOW polynya.1 With the unprecedented high quality
data that will become available from the International
NOW Study, it is timely to have a range of polynya
models that can address how a polynya is formed and
maintained. To answer this question for the NOW, the
relative contribution of latent and sensible heat pro-
cesses in maintaining the polynya must be determined.
With this in mind the authors are making this model
available to the research community and a FORTRAN
code will be supplied by the authors upon request.
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APPENDIX A

Determination of ui from the Free-Drift Ice
Momentum Balance

In terms of ur 5 ui 2 u, (6) becomes
2 2 1/22 fDy 1 s 1 c u (u 1 y ) 5 0 (A1a)r x wi r r r

2 2 1/2fDu 1 s 1 c y (u 1 y ) 5 0, (A1b)r y wi r r r

where sx 5 2fyD 2 tx/ri, sy 5 fuD 2 ty/ri, and t [
tai 5 (tx, ty). Forming (A1a) yr 2 (A1b) ur and (A1a)
ur, 1 (A1b) yr, respectively, yields

2fDR 1 k · (u 3 s) 5 0 (A2a)r

3c R 1 u · s 5 0, (A2b)wi r

where R2 5 1 and s 5 (sx, sy). In terms of the2 2u yr r

angle Q between s and ur, (A2) becomes

2 fDR 1 |s| sinQ 5 0 (A3a)
2c R 1 |s| cosQ 5 0. (A3b)wi

From (A3)
2c R fDRwicosQ 5 2 , 0, sinQ 5 . 0, (A4)

|s| |s|

and

fD
tanQ 5 2 . (A5)

Rcwi

Clearly, (A4) implies that Q lies in the second quadrant
(p/2 # Q # p). Using (A4) in the identity cos2 Q 1
sin2 Q 5 1 and solving for R2, we obtain

2 2 4 4 2 2 1/22 f D 1 [ f D 1 4|s| c ]wi2R 5 . (A6)
22cwi

Let g denote the angle between s and the positive x axis,
where

sy
g 5 arctan . (A7)

sx

Then

u 5 |u | cos(Q 1 g) 5 R cos(Q 1 g) (A8a)r r

y 5 |u | sin(Q 1 g) 5 R sin(Q 1 g), (A8b)r r

and finally

ui 5 u 1 ur (A9)

provides an expression for ui in terms of u, D, and t
via (A5), (A6), (A7), and (A8).

APPENDIX B

Asymptotic Polynya Width in a Wedge-Shaped
Domain

In Figs. 4a and 4c the polynya solutions for the
wedge-shaped domain case are observed to asymptote
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to a uniform width far from the corner, despite that the
alongshore ocean velocity is nonuniform. To understand
this behavior we shall first determine an expression for
C when f 5 0. Since ui is nondivergent [from (10)] in
the absence of rotation, (5b) can be integrated to give
D 5 Ft, assuming that on the coastal boundary D 5 0
when t 5 0. It is then straightforward to solve (16) for
D, and if the initial point of the trajectory is on R1, then

F
D 5

2C(1 2 p )

y 2 px
2 1/23 ln 1 1 C(1 2 p )(r c |t |) , (B1a)i wi y x1 2t 2 pt

while if the initial point of the trajectory is on R2, then

F
D 5 2

2C(1 2 p )

x 2 py
2 1/23 ln 1 2 C(1 2 p )(r c |t |) . (B1b)i wi x y1 2t 2 pt

Clearly, at any point P, D depends only upon the dis-
tance from P to the boundary from which the trajectory
started. This distance is (y 2 px)/(1 1 p2)1/2 from P to
R1 and (x 2 py)/(1 1 p2)1/2 from P to R2. It follows that
the frazil ice flux through any straight line parallel to
either R1 or R2 is uniform.

An explicit expression for the frazil ice transport (Dui,
Dyi) can now be obtained using (10) and (B1), which
allows the polynya ice edge slope to be determined from
(3). Suppose V 2 pU $ 0 and U 2 pV $ 0, which
ensure that on R1 and R2 the normal component of the
consolidated ice transport is directed into the ocean do-
main. Let denote the asymptotic uniform polynya(p)L1

width far from the corner measured from R1. Using (3)
it can be shown that satisfies the transcendental equa-(p)L1

tion

2 1/2 (p) 2 1/2 (p)(1 1 p ) L (1 1 p ) L1 11 1 ln 1 11 2 1 2T T1 1

H(V 2 pU)
5 , (B2a)

FT1

where

T1 5 (ty 2 ptx)/(C(1 2 p2)(ric wi|t|)1/2). (B2b)

Similarly, the asymptotic polynya width far from(p)L2

the corner measured from R2 satisfies the equation

2 1/2 (p) 2 1/2 (p)(1 1 p ) L (1 1 p ) L2 22 1 1 ln 1 21 2 1 2T T2 2

H(U 2 pV)
5 , (B3a)

FT2

where

T2 5 (tx 2 pty)/(C(1 2 p2)(ricwi|t|)1/2). (B3b)

In the limit p → 21, corresponding to the case when
the coastline becomes straight, (B2) and (B3) reduce to
the solution 5 5 H(U 1 V)/( 2F). In general,(p) (p)L L Ï1 2

and depend on u and t as well as U and F.(p) (p)L L1 2

However, if the magnitude of ty 2 ptx, the offshore
component of wind stress to R1, is sufficiently large or
the magnitude of the ocean velocity field is small in the
sense that C → 0, then → H(V 2 pU)/[(1 1 p2)1/2(p)L1

F]. A similar result holds for . Conversely, if the(p)L2

wind stress tends to be parallel to the coast or the oceanic
currents are very strong, the asymptotic polynya width
shrinks.

It is also possible to derive expressions for the along-
shore adjustment length scales appropriate to R1 and R2.
Unfortunately, due to their complexity it is difficult to
learn a great deal from them, except to say that their
asymptotic limit far from the corner along R1 and R2 is
infinite, which says that the sensitivity of the polynya
ice edge to alongshore variations in the coastline or in
the forcing fields will be insignificant in this limit.

Figures 4a and 4b show that with rotation an asymp-
totic uniform polynya width far from the corner is a
robust feature. This a somewhat surprising result be-
cause sufficiently far from the origin, the Coriolis term
will not remain small, since |u| increases without bound
and hence so will |ui|. In a rotating environment, the
asymptotic balance between the frazil and the consol-
idated ice fluxes is achieved in the following way. Let
us assume for the sake of the argument that p 5 0
(quarter-plane domain). If an asymptotic polynya width
is reached along, say, the x axis, then the asymptotic
frazil ice flux through the polynya ice edge is given by

(p)lim Dy | 5 HV . 0. (B4)i y5L 1
x→`

On y 5 , far from the corner, the ice momentum(p)L1

equations (6) become
xt

2 2 1/22 fHV 2 1 c u (u 1 y ) 5 0 (B5a)wi r r rri

yt
2 2 1/2fDu 2 1 c y (u 1 y ) 5 0, (B5b)i wi r r rri

upon using (B4), where ur 5 ui 2 u. Since the first and
second terms of (B5a) are bounded, cwiur( 1 )1/2 must2 2u yr r

also be bounded on y 5 as x → `, which implies(p)L1

that ur is bounded as x → `. Since u 5 2Cx, we deduce
that ui 5 O(x) as x → `.

If we now suppose that yi is bounded as x → ` on y
5 , then the second and third terms of (B5b) are(p)L1

bounded (recall that y 5 on the polynya ice edge)(p)CL1

and hence |Dui| , ` as x → ` on y 5 , which(p)L1

contradicts (B4). We therefore deduce that yi is un-
bounded as x → ` on y 5 , and hence (B4) requires(p)L1

that D → 0 as x → ` on the polynya ice edge.
Using (B5) it is straightforward to establish the as-

ymptotic behavior of ui as x → ` on y 5 . We find(p)L1

that
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FIG. B1. Plot of cwi (HV)2(fD3x)21(a) and 2x21ui (b) on the polynya
ice edge in Fig. 4c for a polynya starting at the origin. The asymptote
for curves (a) and (b) corresponds to the constant value C 5 7.4 3
1027.

2HV c (HV)wiD → 0, y → , u → 2 5 O(x)i i 3D f D

(p)as x → ` on y 5 L . (B6)1

The behavior of D, ui, and yi in (B6) contrasts markedly
with the nonrotating case in which the asymptotic bal-
ance at the polynya ice edge, far from the corner, is
achieved with uniform values of D and yi. With rotation,
as the alongshore component of the frazil ice velocity
ui increases with x, the offshore component of the Cor-
iolis force increases, leading to a concomitant increase
in yi. Further, as x → ` the length of the frazil ice
trajectories increases without bound and they become
more aligned with the x axis because from (B6) it is
clear that yi/ui → 0 as x → `. The transit time along
the trajectories from the coast (x axis) to the polynya
ice edge must also decrease as x → ` thereby leading
to D → 0 as x → ` on y 5 . From (B6) we see that(p)L1

the alongshore frazil ice transport Dui → 2cwi (HV)2/
(fD2) 5 O(x2/3) as x → `.

To confirm the asymptotic behavior (B6), Fig. B1
shows a plot of cwi(HV)2(fD3x)21 and x21ui as functions
of x along the polynya ice edge shown in Fig. 4c. As
x → `, cwi(HV)2(fD3x)21 and x21ui both asymptote to the
constant value C.

Although it does not appear to be easy to derive an
analytical expression for the asymptotic polynya width
for this problem with rotation, numerical solutions re-
veal that the width is bounded above by the nonrotating
value. We would expect this upper bound to hold be-
cause with rotation the offshore component of frazil ice
transport is larger than in the nonrotating case.
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