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ABSTRACT

The response of the global ocean to the surface pressure signal associated with the well-known 5-day Rossby–
Haurwitz atmospheric mode is explored using analytical and numerical tools. Solutions of the Laplace tidal
equations for a flat-bottom, globe-covering ocean, point to a depth-independent nonequilibrium response related
to the near-resonant excitation of the barotropic oceanic mode. Numerical experiments with a shallow-water
model illustrate the effects of realistic continental boundaries, topography, and dissipation on the solutions. The
character of the oceanic adjustment and the structure of resonances changes substantially, but a nonequilibrium
response occurs in all cases studied. Besides the excitation of large-scale vorticity modes or waves, which
becomes less important when topography and strong dissipation are present, basin-scale nonequilibrium signals
are associated with gravity wave dynamics and the process of interbasin mass adjustment in the presence of
global-scale forcing and continents that require interbasin mass fluxes to occur through the Southern Ocean.
Solutions with forcing most representative of the observed atmospheric wave agree qualitatively with the results
of analyses of Pacific and Atlantic tide gauge records by Luther and Woodworth et al. The observed nonequi-
librium signals thus seem related to the Rossby–Haurwitz forcing mode.

1. Introduction

A number of recent theoretical, numerical, and ob-
servational studies (e.g., Ponte 1992, 1993; Fu and Pihos
1994; Gaspar and Ponte 1997; Wunsch and Stammer
1997; and references therein) have indicated that at pe-
riods longer than a couple of days, most of the pressure-
driven sea level variability is isostatic in nature, in
agreement with a simple equilibrium or inverted barom-
eter (IB) response in which

1
ibz 5 (p 2 p ). (1)a arg

Here, r is surface density, g is the acceleration of grav-
ity, and pa is local atmospheric pressure and pa the spa-
tial average of pa over the global ocean. A remarkable
exception to the tendency for static response is ob-
served, however, for periods around 5 days. The singular
character of the relation between sea level (z) and pa at
these periods was apparently first documented by
Groves and Hannan (1968) using tide gauge records in
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the western Pacific, but its large-scale nature was only
realized later by Luther (1982). The extensive array of
tide gauges across the Pacific Ocean analyzed by Luther
revealed gains of z on pa for the 4–6 day band system-
atically different than 1 cm/mbar—the value expected
for an IB response. The z signals were spatially coherent
over the basin, with phases suggesting more or less
uniform westward propagation. In addition, sea level
was significantly coherent with pa in general, but not
with local winds.

Luther realized that the apparent dynamic response
to pa at 4–6 days could be related to the existence of a
large-scale global oscillation in barometric pressure,
which had been described in detail by Madden and Jul-
ian (1972), among others. The observed oscillation
closely resembles the Rossby–Haurwitz wave solution
of the Laplace tidal equations (LTE) (e.g., see Holton
1975), albeit shifted in frequency. It has a period of 5
days, zonal wavenumber s 5 21 (westward propagat-
ing), and meridional structure given approximately by

3 1
1 1mP (m) 2 P (m), (2)2 32 3

where m is cosine of colatitude and denote associatedlPn

Legendre functions of degree n and order l. Maximum
amplitudes of approximately 1 mbar occur at midlati-
tudes (Fig. 1).

Based on the different zonal wavenumbers of the forc-
ing and response, the large-scale coherence of the re-
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FIG. 1. Spatial structure of the 5-day Rossby–Haurwitz wave in
atmospheric surface pressure described by Madden and Julian (1972).
Meridional structure is given in (2) and units are millibars. Wave is
shown only over oceanic domain for which numerical solutions are
later considered.

sponse, and the lack of equatorial trapping of the sea
level signals, Luther speculated that the dynamic re-
sponse could be related to the excitation of one or more
barotropic normal modes of the Pacific basin, most like-
ly involving planetary waves and vorticity dynamics.
The observed gains of z on pa were mostly smaller than
1 cm/mbar, suggesting, in case of resonance, a weak
excitation or highly damped response. Estimates of the
dissipation based on the bandwidth of the z spectral
peak, seen only in some of the tide gauges, and on the
assumption of a single resonance in the response, indeed
suggested an energy e-folding decay scale of approxi-
mately 3 days.1 For such high damping rates, however,
the establishment of basin modes, dependent on reflec-
tion of energy from boundaries, seems unlikely. More
localized modes dependent on vortex stretching asso-
ciated with specific topographic features are also a pos-
sibility, but in such case the large-scale coherence of z
signals seems difficult to explain.

Another interpretation of the broad spectral band-
width, without invoking such high dissipation rates, in-
volves the presence of more than one resonance in the
response. Miller (1989) found four vorticity modes in
the 4–6 day band in his calculations of the barotropic
planetary oscillations of the Pacific Ocean. In the pres-
ence of continental shelves and other finescale topog-
raphy, these modes are likely to suffer some finesplitting
(Miller 1986), giving rise to families of modes closely
spaced in frequency, with similar large-scale structures

1 The presence of a broadband peak in sea level need not involve
any oceanic resonance, given that the atmospheric forcing itself shows
a broadband peak centered at 5 days (see Fig. 5 of Luther 1982).
However, the extent to which peaks in the forcing are due to the
5-day Rossby–Haurwitz mode or other shorter-scale variability, and
their relation to the oceanic response, remains unclear.

away from relevant topographic features. Miller (1989)
suggested that these modes could play a role in the
observed broadband oceanic response.

Recent analysis of sea level records at St. Helena and
Ascension Islands, in the tropical South Atlantic, have
revealed clear departures from the IB model near a pe-
riod of 5 days (Woodworth et al. 1995). Not only are
the gains quite different than 1 cm/mbar at these sites,
but z and pa are almost in phase rather than out of phase
as expected for an equilibrium response. Besides point-
ing to the global nature of the phenomenon, the findings
of Woodworth et al. reopen the question regarding the
nature of the dynamic signals. Could these signals be
related after all to one or more global barotropic modes
with significant amplitudes in both Pacific and Atlantic
basins? The question is more than academic, as the ex-
citation of normal modes and their observability could
provide insight into barotropic ocean dynamics, includ-
ing reflectivity of boundaries and dissipation processes
(e.g., see Luther 1983).

To understand the dynamics behind the 5-day sea lev-
el fluctuations and help interpret the records, we ex-
amine the response of a shallow-water, barotropic, glob-
al model to pressure fields representative of the Rossby–
Haurwitz atmospheric wave. Besides trying to establish
if the observed z signals are indeed related to the Ross-
by–Haurwitz forcing wave, we examine the conditions
under which a dynamic response is expected and the
extent to which excitation of near-resonances is part of
the dynamics. To introduce the numerical solutions, we
first use the LTE formalism to discuss what is expected
theoretically for a flat-bottom ocean covering the globe.
The effects of topography, realistic geometry, and dis-
sipation are then studied numerically and solutions com-
pared to the tide gauge records. Our results suggest that,
besides possible contributions from near-resonant ex-
citation of basin vorticity modes, the large-scale non-
equilibrium response is closely related to gravity wave
dynamics and the difficulty in establishing interbasin
adjustment of the mass field, in the presence of global-
scale high-frequency forcing and continental land mass-
es that force cross-basin mass shifts to occur largely
through the Southern Ocean.

2. Theoretical considerations

Given a well-defined atmospheric pressure signal, it
is useful to explore what is the expected nature of the
oceanic response (static or dynamic?) and its vertical
structure (barotropic, baroclinic, or surface trapped?)
based on purely theoretical grounds. Note that our forc-
ing wave has spatial scales large compared to the oce-
anic Rossby radius of deformation and a propagation
phase speed of approximately 100 m s21 approaching
that of oceanic gravity waves and comparable to that of
nondispersive (b plane) barotropic Rossby waves. Sim-
ple theoretical arguments suggest that under such con-
ditions a dynamic response can occur (Ponte 1993). To
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FIG. 2. Coastline geometry and bottom topography (in km) from
Ponte (1993). Contour interval is 1 km.

be more quantitative, we consider briefly the case of a
water-covered globe (no landmasses) forced by the os-
cillation in pa. The exercise is also relevant to assert the
effect of continents on the response, when numerical
solutions are considered later.

The global nature of the forcing requires the use of
the LTE over the sphere, whose free solutions are dis-
cussed in great detail by Longuet-Higgins (1968). In
general, for a resting basic-state ocean with constant
depth H, solutions consist of zonally propagating waves
of the form ei(sc2st) and meridional structure given by
the so-called Hough modes (combination of associated
Legendre functions). These modes constitute a complete
orthogonal set that can be used to expand the meridional
dependence of any forcing field. The method of solution
for the pa forcing case thus follows closely that of the
equatorial b plane (Ponte 1992) and is only outlined
here; see also Holton (1975) for a detailed treatment of
the stratified LTE and Longuet-Higgins (1968) for a
brief discussion of the forced LTE problem.

The vertical structure of solutions for constant buoy-
ancy frequency N is proportional to (Ponte 1992)

coshm(z 1 H), (3)

where m is a vertical scale defined in terms of the equiv-
alent depth h9 as

2N
2m 5 2 , (4)

gh9

and related to s, s, and Hough mode number j by a
dispersion relation. On the equatorial b plane, an ana-
lytical form for the dispersion relation exists, but for
the LTE it has to be found numerically for general h9
(Longuet-Higgins 1968). In the forced problem, s and
s are fixed (and equal to the forcing parameters), de-
fining h9 for each mode j onto which the meridional
structure of the forcing has a nonzero projection. In our
case, the observed forcing structure is approximately a
Hough mode (j 5 1) and one expects a dominant con-
tribution from that mode on the modal projection. Val-
ues of h9 can be positive or negative, corresponding
respectively, to oscillatory or evanescent dependence in
z, as seen from (3) and (4).

Using the dispersion relation plotted in Figs. 2b and
17b of Longuet-Higgins (1968), one can infer the ver-
tical scale m21 for the case s 5 21, s/2V 5 0.1 cor-
responding to the westward propagating forcing wave
of interest. (Note that, in Longuet-Higgins convention,
s is always positive and the sign of s defines zonal
propagation direction. Also the values in Longuet-Hig-
gins are presented for a sphere of unit radius. Thus, to
calculate the vertical scale m21 using (4), we multiply
his value of gh9/2V by 2Va/N with a being the earth’sÏ
radius.) For a typical depth-averaged value of N 5 2 3
1023 s21, one obtains an oscillatory response for j 5 1
(i.e., positive h9 and imaginary m) with very large ver-
tical scales (order 200 km), using the branch of solutions
associated with planetary or second class waves. For

higher Hough modes, the solution becomes evanescent
in the vertical but with relatively large vertical decay
scales; for example, for j 5 9, m21 ; 30 km. Thus, one
expects to capture the essence of the response with a
barotropic model, taken to represent in a general sense
the vertically averaged solution.

Given a vertical scale m21, one can estimate whether
an equilibrium or nonequilibrium response is expected.
The relevant variable is sea level, which can be written
as (Ponte 1992)

ibzjz 5 (5)O
1 1 fj j

with
2N

f 5 cothm H, (6)j jgmj

where is the equilibrium response for each Houghibzj

mode represented in the modal expansion of the forcing.
Significant nonequilibrium response is expected only for
values of f different than zero, with resonances occur-
ing for f 5 21. For mode j 5 1, expected to be the
most strongly forced, we have |m21| ; 200 km and f
; 24. The response thus can deviate significantly from
the IB value, both in amplitude and sign. For higher
Hough modes, f rapidly approaches zero and the IB
solution holds.

In summary, for the large-scale high-frequency forc-
ing under study, the theory strongly suggests the pos-
sibility for a nonequilibrium response, associated with
the near-resonant excitation of the barotropic mode of
the LTE. Furthermore, the occurrence of dynamic sig-
nals is somewhat sensitive to mode number. As higher
Hough modes with shorter spatial scales are considered,
the response rapidly becomes isostatic. Of course, in an
ocean with bottom topography and coastal boundaries,
the possibility for both local and global resonant exci-
tation increases. The presence of land masses can also
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influence the large-scale mass shifts necessary to attain
an equilibrium response, as seen by Miller et al. (1993)
in the case of the fortnightly tide signals in the tropical
Pacific, and thus change the character of solutions in
general. Such effects are explored next with a more
realistic model.

3. Shallow-water numerical model

Given that the response to the 5-day, s 5 21, Rossby–
Haurwitz mode is likely to be depth-independent, the
effects of realistic geometry and bottom relief are ad-
dressed using a barotropic numerical model. Stratifi-
cation may nevertheless be important if bottom topog-
raphy induces motions with short vertical scales (e.g.,
Willebrand et al. 1980). The scattering between baro-
tropic and baroclinic motions in the presence of topog-
raphy may indeed be a major dissipation mechanism for
energy in the barotropic mode. Explicit treatment of this
process is, however, beyond the scope of the present
work.

Numerical experiments are performed with the shal-
low-water model in spherical coordinates described by
Ponte et al. (1991) and Ponte (1993); the reader is re-
ferred to these earlier papers for details. The coastlines
and bottom topography shown in Fig. 2 are those of
Ponte (1993). The Arctic Ocean is closed off and a solid
wall is assumed along latitude 658N. A no-normal flow
condition is imposed on all boundaries. The topography
is necessarily smooth, given the 1.1258 grid spacing.
Focus is on the large-scale characteristics of the re-
sponse. Although higher resolution might provide for
more topographic wave resonances, these may not
change significantly the structure of the open ocean re-
sponse, apart from introducing small frequency shifts
and splitting of the available basin-scale modes (Miller
1989). Dissipation is modeled as a linear drag term with
variable coefficient b/H, where b is constant. Laplacian
viscosity of the form given in Willebrand et al. (1980)
is also included. A value of 1 g cm23 is used for the
density.

Most solutions discussed are obtained using the an-
alytical pressure signal shown in Fig. 1, representative
of the observed signal described by Madden and Julian
(1972). We run the model from an initial resting state
until periodicity in the solutions is achieved. Given the
short period considered and the rapid barotropic ad-
justment, transients due to the initialization are insig-
nificant after running the model for typically 70–100
days, depending on the amount of dissipation assumed.
A number of different runs were performed to determine
the dependence of the response on topography, coastal
boundaries, dissipation, and forcing characteristics.
These will be presented as the ensuing discussion war-
rants. Both lateral viscosity and bottom friction coef-
ficients were varied. In all cases, for the large-scale
signals studied here, the equivalent damping timescales
due to lateral viscosity are much longer than those due

to bottom friction, which is, therefore, the dominant
dissipative mechanism.

4. Pressure-forced numerical solutions

To study the equilibrium or nonequilibrium character
of the response in the numerical experiments, we need
only focus on model sea level, which can in general be
written as

z 5 zib 1 zd, (7)

that is, the sum of IB and dynamic signals zib and zd,
respectively. Given a known pressure field, zib is defined
by (1). The dynamic signal is the component of sea
level that represents effective horizontal pressure gra-
dients in the ocean (Gill 1982). In what follows, we will
mostly be showing spatial maps of amplitude and phase
of z and zd signals at the 5-day period and a complex
admittance or transfer function parameter defined as

rgF{z}
A 5 , (8)

F{p }a

where F denotes the Fourier transform. An equilibrium
response should yield an admittance of unit amplitude
and phase equal to p, unless variability in pa is com-
parable to pa, which is not the case for the forcing in
Fig. 1. Defining A as in (8) allows easy comparison with
the gains and phases calculated by Luther (1982) and
Woodworth et al. (1995) for Pacific and Atlantic tide
gauges (see section 6); the phase convention is as in
Luther; that is, positive phase means z leads pa and vice
versa.

The amplitude and phase of the 5-day signal in z are
shown in Fig. 3 for the case of lateral viscosity coef-
ficient equal to 108 cm2 s21, and bottom friction coef-
ficient b 5 0.1 cm s21, which for a mean H 5 4000 m
is equivalent to an energy e-folding timescale of ap-
proximately 23 days, that is, weak dissipation compared
to the maximum possible from the estimate of Luther
(1982). As expected, the presence of boundaries and
bottom topography introduces a whole spectrum of spa-
tial scales and complex phase behavior, that is absent
in the LTE solutions of the previous section. A number
of features are worth noting. Sea level has larger am-
plitudes at high latitudes and a large-scale phase pattern
of westward propagation (particularly in the Pacific)
more or less consistent with the forcing in Fig. 1, but
with significantly more structure than expected under a
pure IB response. Westward phase propagation in the
Pacific is not uniform and shows a tendency for lati-
tudinal propagation near the boundaries. The North At-
lantic shows westward and southward phase propaga-
tion. Inferred phase speeds are generally larger than that
of the forcing.

The amplitudes of zd, shown in Fig. 4, are not small
compared to zib and confirm the importance of the dy-
namic response. The phase plot exhibits a complex be-
havior on the short scale, particularly in the Southern
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FIG. 3. Amplitude in millimeters and phase in degrees of model
sea level at a period of 5 days for bottom friction coefficient b 5
0.1 cm s21. Largest amplitude contoured is 10 mm (dotted line).
Negative phases are plotted in dotted.

FIG. 4. Amplitude and phase of dynamic signal zd for the solution
given in Fig. 3. Plotting conventions are as in Fig. 3.

FIG. 5. Amplitude and phase of the admittance A defined by (8),
calculated for the solution shown in Fig. 3. Solid lines denote am-
plitudes greater than one. Phase is plotted as in Fig. 3.

Ocean, showing several amphidromic points. However,
the large-scale pattern is relatively simple, with regions
of fairly homogeneous phase in the Atlantic, Pacific,
and Indian Oceans and a tendency for the Atlantic Ocean
to be approximately out of phase with large regions of
the Pacific. There is some evidence of westward phase
propagation in the North Pacific and somewhat ampli-
fied signals in the western half of the basin. These fea-
tures are consistent with the excitation of Rossby wave
energy. Comparison of the Pacific zd patterns to the
relevant mode structures described by Miller (1989)
yields, however, no visible similarities.

The admittance A corresponding to the solution in
Fig. 3 is shown in Fig. 5. Because pa has amplitude
constant in longitude and phase constant in latitude, the
zonal structure in the amplitudes and the meridional
structure in the phases of A are due to z and somewhat
resemble those of Fig. 3. Amplitudes are generally dif-
ferent than one and phases are quite different than the
constant value of p characteristic of the IB response.
Large-scale patterns of sea level response both larger
and smaller than the expected IB value are seen, but
with the exception of a few small-scale localized fea-
tures mainly in southern latitudes, admittance ampli-
tudes are, in general, smaller than 2. For an approxi-
mately linear system, admittance amplitudes at or near
an isolated resonant frequency should be inversely pro-
portional to the friction coefficient (e.g., Munk and Mac-
Donald 1960, p. 22). Solutions with b 5 0.02 cm s21

(dissipation five times weaker) did not yield signifi-

cantly larger amplitudes. Solutions with stronger damp-
ing, discussed in more detail below, also did not lead
to major changes in admittance amplitudes. Dependence
on friction does not support the single resonance hy-
pothesis. Results do not preclude, however, the existence
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FIG. 6. Amplitude and phase of the admittance A for the case of
a flat-bottom ocean with depth H 5 4000 m. Plotting conventions
are as in Fig. 5.

FIG. 7. Amplitude and phase of zd for the case of a flat-bottom ocean
with depth H 5 4000 m. Plotting conventions are as in Fig. 3.

of several resonances closely spaced in frequency, in
which case the dependence of |A | on friction should be
weaker.

Resonant vorticity (local or basin) modes are most
likely dependent on the vortex stretching induced by a
varying topography. To check for these effects, Fig. 6
shows A for solutions with a flat-bottom ocean of depth
H 5 4000 m. Most local peaks in amplitude seen in
southern latitudes in Fig. 5 disappear. The topography
adds significant structure to the response, as expected
because of distorted f/H contours, possibility of topo-
graphic waves, etc. Differences are also noticeable on
the large-scale pattern, particularly in the Pacific, where
larger admittance amplitudes, more symmetric pattern
across the equator, and more rapid phase changes occur
in the flat-bottom case. The alternating patterns of |A |
larger and smaller than unity are, however, similar. In
the Atlantic, the region where |A | . 1 is smaller in Fig.
6, but the amphidromic structure is fairly similar in the
two cases.

Figure 7 shows zd for solution with constant H. Com-
pared to the case with topography in Fig. 4, clear west-
ward phase propagation is now present throughout the
Pacific and also the South Indian Ocean. The amplitude
and phase structure in the Pacific is highly reminiscent
of the flat-bottom vorticity mode at period of 5 days
calculated by Miller (1989; cf. Fig. 4d). The presence
of topography inhibits this basin-scale Rossby wave ex-
citation. Thus, to the extent that a basin-scale resonance
may be contributing partially to the large-scale dynamic
signals excited in the Pacific, topography actually leads

to detuning and somewhat weaker excitation.2 In the
Atlantic, the phase is still approximately constant in Fig.
7, as in the case with topography. Regardless of topo-
graphic effects, large-scale Rossby wave excitation is
apparently less efficient in the smaller Atlantic Ocean.
Excluding southern features already noted, shorter-scale
vorticity-type resonances related to the topography are
not prominent in the solutions in Figs. 4 and 5. This is
not due to strong damping of short scales by lateral
viscosity in the model, as solutions with viscosity co-
efficients ten times smaller (not shown) were essentially
unchanged, but may be related to the smooth topography
used.

The solutions with b 5 0.1 cm s21 have an energy
e-folding timescale approximately 10 times longer than
the lower bound estimated by Luther (1982) from the
observations. Figure 8 shows the admittance calculated
with b 5 1 cm s21, that is, for values of bottom friction
approaching those necessary to achieve the maximum
energy dissipation rates inferred by Luther. A number
of effects are worth discussing in comparison with Fig.
5. Regions of large amplitudes are mostly suppressed
and a cleaner large-scale pattern emerges. In the Atlan-
tic, the localized peak off South America is largely
damped out and there is a more general pattern of am-
plitudes smaller than one, with phase patterns quite sim-
ilar to those in Fig. 5. In the Pacific, values larger than

2 Miller (1989) draws some correspondence between the 5-day flat-
bottom mode and a 5.5-day full topography mode (his Fig. 11c), but
evidence for the excitation of the latter mode in our results is weak.
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FIG. 8. Amplitude and phase of admittance A as in Fig. 5 but for
the case of strong bottom friction (b 5 1 cm s21).

FIG. 9. Amplitude and phase of the dynamic signal zd for solution
with b 5 1 cm s21.

FIG. 10. Amplitude and phase of admittance A as in Fig. 8 but for
the case of forcing at a period of 6 days.

one become more confined to the boundary regions. The
phase still shows the same pattern with the addition of
a couple of amphidromic points in the central Pacific.
In the Indian Ocean, admittance amplitudes change from
being larger to being mostly smaller than one in the
highly damped solution. In general, there is a tendency
for smaller admittance amplitudes, as expected for stron-
ger damping (for infinitely large damping, one should
approach a motionless, no sea level response).

The amplitudes and phase of zd for b 5 1 cm s21,
shown in Fig. 9, can be compared with those in Fig. 4
for the weaker friction. Amplitude patterns are similar,
although peak values are smaller and small-scale fea-
tures are more damped out. Thus, the amplitude pattern
becomes more homogeneous. Similarly, as most short-
scale structure to the phase pattern disappears, the ho-
mogeneity of the large-scale phase of the zd signal is
quite clear. With the exception of the Southern Ocean,
no clear phase propagation is apparent. The dynamic
signals in the Atlantic and the Pacific are almost out of
phase. The homogeneous amplitude and phase patterns
over large portions of the Atlantic, Indian, and Pacific
Oceans, again excluding the Southern Ocean, imply ba-
sin-scale dynamic pressure gradients that are, for the
most part, small compared to the imposed forcing pres-
sure gradients (e.g., see Fig. 1). These results are robust
to changes in the lateral viscosity coefficient; solutions
are virtually unchanged when viscosity is set to zero.

As another test of the importance of resonances for
the dynamic response, one can force the model at dif-
ferent frequencies. In case of a single resonance, one
expects a substantial change in the response as the forc-

ing frequency changes. A more equilibrium-like solu-
tion should result away from resonance. If several close-
ly spaced resonant frequencies are present, the modes
in Miller (1989) suggest that one should still see changes
in the spatial patterns, by changing the frequency across
the resonant band. Figure 10 shows zd calculated from
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FIG. 11. Amplitude and phase of the dynamic signal zd as in Fig. 9
but for the solution with no rotation.

solutions forced with a pressure wave of period equal
to 6 days. Comparison with Fig. 9 reveals very little
differences between the cases with 5-day and 6-day forc-
ing. Solutions found for periods of 4, 4.5, and 5.5 days
(not shown) exhibited similar behavior. The weak de-
pendence of the large-scale zd pattern on frequency does
not indicate a major role of basin or global resonances
on the nonequilibrium response, at least in the case of
high dissipation. In the case of weaker dissipation,
changes with frequency are more apparent, but mostly
at the short scales.

5. Interpretation

The numerical solutions and their dependence on fre-
quency, topography, and friction suggest a plausible in-
terpretation for the nature of the nonequilibrium response
to the 5-day atmospheric Rossby–Haurwitz wave. Leaving
out localized features, which appear to be most prominent
in the Southern Ocean (south of ;408S), and keeping our
focus on the basin-scale features, two basic mechanisms
seem to be at work. First, there is the near-resonant ex-
citation of vorticity-type modes or waves, as discussed by
Luther (1982) and Miller (1989) for the Pacific. The im-
portance of such near-resonances for the Pacific response
is clear in solutions with a flat bottom but, as discussed
above (see also Luther 1982), diminishes when realistic
topography is considered and is more apparent in the west-
ern part of the basin. For damping rates approaching max-
imum values inferred by Luther, the influence of such
signals is further reduced. In the Atlantic, north of ;208S,
the presence of free vorticity modes seems unimportant,
even for a flat-bottom ocean. The second mechanism re-
sponsible for the basin-scale nonequilibrium signals has
to do with the interbasin adjusment of the mass field under
gravity (e.g., Miller et al. 1993) and needs a more detailed
discussion.

Given the structure of the forcing, an IB solution
involves not only intrabasin but also interbasin mass
fluxes. Intrabasin adjustment of mass field is easier to
establish given the smaller distances involved. In fact,
the solutions suggest the intrabasin adjustment is close
to equilibrium, in the sense that =zd is small compared
to =zib. Interbasin fluxes have to be accomplished
through the Southern Ocean. These fluxes are nonlocally
driven and depend on free wave propagation to be es-
tablished. A number of factors may preclude total ad-
justment to equilibrium. For example, forcing scales
may be such that only a horizontally trapped response
is possible. Note that, in this case, it is the lack of
appropriate free waves, rather than their resonant ex-
citation, that may lead to departures from IB solution.
When propagation is possible, friction may still lead to
horizontal trapping. The presence of boundaries and
constricted geometries may also introduce the possibil-
ity of Helmholtz-type resonances (e.g., LeBlond and
Mysak 1989), as discussed by Gotlib et al. (1987) and
Marchuk and Kagan (1989) for the global ocean.

Gravity waves (including Kelvin waves) should play a
more prominent role in the interbasin mass adjusment pro-
cesses than vorticity (Rossby) waves: They propagate fast-
er and are more efficient at transporting mass due to their
larger potential to kinetic energy ratios relative to Rossby
waves (e.g., Gill 1982). One way to check for the relevance
of mass adjustment processes to the nonequilibrium re-
sponse in our solutions is, therefore, to run the model
without rotation, in which case all vorticity modes are
filtered out. Figure 11 shows zd calculated as in Fig. 9 but
with no rotational effects. The response is still far from
equilibrium. The pattern of homogeneous phases in the
Atlantic and Pacific is striking. Furthermore, the two
oceans oscillate mostly out of phase, with a sharp phase
shift across Drake Passage, where a node in amplitude is
also apparent. The Indian Ocean plays somewhat of a
transitional role. Most of these features are discernable in
the response with rotation (cf. Fig. 9), although close cor-
respondence between the two solutions is not expected,
given that the presence of rotation not only adds vorticity
waves to the problem but also changes the gravity wave
spectrum. Thus, the importance of gravity wave dynamics
and interbasin mass adjustment processes seems clear in
our solutions.

The reasons for the partial interbasin adjustment and
the large-scale nonequilibrium response in our solutions,
in particular the role of resonances, remain an interesting
issue. As discussed by Marchuk and Kagan (1989), the
global oceans support a pure gravitational mode at a period
of about 114 h. Such a mode may play a role in the solution
in Fig. 11, in which the Atlantic and Pacific resemble a
co-Helmholtz oscillator. Similar runs without rotation, but
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TABLE 1. Gain and phase values for the island stations reported by Luther (1982) and Woodworth et al. (1995) (see text for explanation)
and respective model-based values for weak friction (wf) and strong friction (sf) cases, with b 5 0.1 and 1 cm s21, respectively.

Stations

Data

Amp Phase

Model (wf)

Amp Phase

Model (sf)

Amp Phase

Balboa
Galapagos
Canton
Majuro
Kwajalein
Eniwetok

1.31 6 .31
1.16 6 .34
0.36 6 .17
0.57 6 .37
0.56 6 .19
0.51 6 .26

2170 6 11
2150 6 14

137 6 41
79 6 44

117 6 19
140 6 29

1.42
1.38
0.87
1.39
1.38
1.26

2140
2132

91
70
65
56

1.1
1.06
0.72
0.94
0.93
0.85

2132
2124

80
85
87
92

Truk
Yap
Guam
Wake
Johnston
Pago Pago

0.63 6 .16
0.83 6 .40
0.63 6 0.18
0.43 6 0.18
0.37 6 .36
0.79 6 .24

132 6 14
148 6 23
140 6 14
120 6 22

41 6 61
114 6 28

0.72
0.72
0.29
1.46
1.32
1.34

72
133
106

60
129
109

0.88
1.08
0.80
0.80
0.74
0.72

111
133
128

89
104

92
Hilo
Honolulu
Midway
Ascension
St. Helena

0.57 6 .13
0.44 6 .09
0.95 6 .15
0.25 6 .13

0.14/0.71

162 6 11
159 6 8
161 6 7

238
238/282

0.90
0.99
1.16
1.06
0.57

172
165
129

19
66

0.45
0.51
0.68
0.82
0.46

127
127
117

17
23

TABLE 2. Phase differences between sea level at island stations
reported by Luther (1982) and respective model-based values for
weak friction (wf) and strong friction (sf) cases, with b 5 0.1 and 1
cm s21, respectively.

Stations Luther Model (wf) Model (sf)

Honolulu/Balboa
Canton/Balboa
Kwajalein/Canton
Truk/Kwajalein
Eniwetok/Canton
Yap/Truk
Guam/Kwajalein
Guam/Eniwetok

126 6 33
73 6 26

213 6 17
28 6 13

0 6 27
211 6 19

0 6 15
240 6 26

2132
142

243
212
258

45
19
30

2176
123

212
8

213
10
16
20

Guam/Wake
Wake/Johnston
Kwajalein/Honolulu
Johnston/Hilo
Canton/Honolulu
Canton/Hilo
Kwajalein/Pago Pago
Pago Pago/Hilo

226 6 16
231 6 22
298 6 29
249 6 24
252 6 22
262 6 26
225 6 33
227 6 36

22
289

2135
260
289
299
260
282

18
237
274
236
260
262
224
250

varying the forcing period over the 4–6 day band, indicate
a possible resonance between 4 and 5 days, consistent with
the results reported by Marchuk and Kagan. Unfortunately,
the spatial structure of their mode has not been published
and comparison with our results is not possible. When
rotation is added, Marchuk and Kagan report no mode at
114 h, but instead another mode at slightly shorter period
(112 h). The structure of this mode is discussed by Gotlib
et al. (1987). They draw a correspondence between the
114 h (no rotation) and 112 h (with rotation) modes and
assert the gravitational nature of the 112-h mode, but it is
clear from their discussion that the two modes have very
different spatial structure and that effects of rotation are
thus important. In any case, the zd solutions in Figs. 4 and
9 show some similarities with the structure of the 112-h
mode in Gotlib et al. (e.g., fairly constant amplitude and
phase in the North Atlantic, similar features in Southern

Ocean), but the details are very different. The extent to
which such a mode influences our solutions is thus not
clear.

The interplay of the two mechanisms described above
(i.e., vorticity-type resonances and mass adjustment pro-
cesses, of either a resonant or off-resonant nature) leads
to the nonequilibrium signals in the model solutions.
The latter mechanism seems to play a significant role
for regions other than the Southern Ocean (especially
for the Atlantic), and more so when high damping rates
are considered. Excitation of vorticity modes adds struc-
ture to the phase and amplitude patterns of dynamic
signals, particularly in the Southern Ocean and in the
western Pacific, and more so the weaker the dissipation.

6. Comparison with observations

The model solutions predict a large-scale structure
for A that can be tested against the Pacific and Atlantic
tide gauge calculations reported by Luther and Wood-
worth et al. and discussed in the introduction. One can
interpret the model results as a pure signal in the sense
that we have filtered out any wide band noise and non-
stationarity in the forcing. The predicted signal could
then be in error due to either poor quality of the assumed
forcing wave or to model errors per se. As for the ob-
servations, the gain and phase values are obtained over
various different periods, involving some degree of non-
stationarity, and contain noise associated with the pres-
ence of wide band forcing in wavenumber (instead of
the single wavenumber constituting the signal) and in
frequency. For these reasons, the comparison presented
here is only qualitative.

The observed gain and phase values are reproduced
in Table 1. The values for the Pacific, taken from Table
2 of Luther, are representative of the 4–6 day band,
while those for the Atlantic were kindly provided by
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P. Woodworth (1996, personal communication; see also
Woodworth et al. 1995) and represent the 4–5-day
band. Results for St. Helena showed some dependence
on the particular record periods considered in the anal-
ysis (Woodworth et al. 1995); we show in Table 1 the
observed range of gain and phase values. Otherwise,
error bars at the 95% confidence level are given. Table
1 also includes corresponding gain and phase values
calculated from the model solutions with ‘‘weak’’ (b
5 0.1 cm s21) and ‘‘strong’’ (b 5 1 cm s21) friction
for the forcing shown in Fig. 1, which most closely
resembles the observed wave. Table 2 presents a sim-
ilar comparison between the sea level phase differences
between various station pairs presented in Table 4 of
Luther and respective values calculated from the mod-
el.

The agreement between model and data inferred from
Tables 1 and 2 is qualitatively good for both weak and
strong friction cases, but is somewhat improved in the
latter, with phases and gains closer to the observed val-
ues in general. In particular, gains larger than one in the
central Pacific present in the weak friction solution (Fig.
5) become smaller than one in the strong friction case,
providing better agreement with observations at Majuro,
Kwajalein, Eniwetok, Johnston, and Pago Pago. With
the exception of Yap, the strong friction solution thus
reproduces well the observed local tendencies for 1B
undershoot and overshoot. The tendency for an in-phase
relation between sea level and pressure observed in the
Atlantic (St. Helena and Ascension) is also correctly
predicted by the model.

Output from 1-yr long model runs described in Ponte
(1993) and Gaspar and Ponte (1997), performed with
realistic operationally derived pressure fields, provided
an opportunity to check effects of wide band noise,
nonstationary signals, etc., on the comparisons. Results
(not shown) indicate always a clear tendency for a non-
equilibrium response, but the admittance values may
differ from those of Table 1. Agreement improves for
certain stations and worsens for others (see also Fig. 10
of Ponte 1993). Note that the extent to which the ob-
served 5-day pressure signal is captured in the opera-
tionally analyzed fields is not well known, although We-
ber and Madden (1993) have presented evidence for
such a signal in the European Centre for Medium-Range
Forecasts fields. Weber and Madden also find evidence
for seasonal modulation of the pressure signal (strongest
in spring and autumn). In light of the likely importance
of noise and nonstationarity in the forcing when deter-
mining local admittance functions, a more quantitative
model and data comparison must use realistic forcing
pressure fields for longer (several years) and concurrent
periods, and deal carefully with the issue of seasonality.

7. Summary and final remarks

The simple experiments in this study confirm the non-
isostatic nature of the response to loading found by Lu-

ther (1982) and Woodworth et al. (1995) at periods close
to 5 days. The qualitative comparisons with the obser-
vations in the Pacific and Atlantic indicate that the ob-
served non-IB signals are most likely related to the
Rossby–Haurwitz 5-day atmospheric mode, and favors
a highly damped oceanic response. The dependence of
solutions on frequency and topography, their behavior
under different damping rates, and the amplitude and
phase patterns of dynamic signals suggest that, besides
the near-resonant excitation of large-scale vorticity
modes, whose effects are substantially reduced when
topography and strong damping are present, the large-
scale nonequilibrium response is due to gravity wave
dynamics and related processes of adjustment of the
mass field. The inability to shift mass among the dif-
ferent oceans at the rate needed for global equilibrium
response is not surprising, given that the timescale for
barotropic adjustment of the global ocean, relevant for
the spatial scales of the Rossby–Haurwitz pressure wave
considered, is not negligible compared to forcing period.

Large-scale nonequilibrium signals were a general
characteristic of several numerical experiments forced
by pa fields with scales similar to the observed Rossby–
Haurwitz atmospheric wave. These included forcing the
model with zonal wavenumber s 5 22 and s 5 1 (east-
ward propagating) disturbances, and higher Hough
mode numbers. The model responded nonisostatically
even when the LTE solutions predict otherwise for a
given forcing structure. Other important differences be-
tween numerical and analytical solutions are also clear.
For example, the phase between z and pa is not confined
to values of p or zero, and the phase between z at
different longitudes is not simply that of the forcing
wave, as one would expect from the LTE solutions (5)
in the case of an aquaplanet. Friction, topography, and
landmasses can all contribute to the increased com-
plexity of the numerical solutions, by introducing many
spatial scales and zonal dependences far from having
the simple form eisc, and by changing wave character-
istics and ultimately affecting the adjustment timescales.
Thus, although analytical solutions give an indication
of what the response will be like, solving the problem
numerically is ultimately required.

The strongly damped solutions reproduce more close-
ly the observations and largely smooth out some of the
shorter-scale likely unrealistic features associated with
local resonances. Whether such high damping rates are
realistic or appropriate everywhere remains an issue.
The strong dissipation inferred by Luther is based on
the single resonance hypothesis and the width of the
spectral peaks for a couple of tide gauge records in the
western Pacific. It is, however, true that similar values
of dissipation have been inferred for the diurnal and
semidiurnal tides. The mechanisms responsible for the
dissipation are also unclear, although scattering into bar-
oclinic motions by bottom topography is a strong can-
didate. Proper parameterization of such processes, here
simply done with a depth-dependent linear drag law,
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may be important for more quantitative data and model
comparisons in the future.

The model, of course, predicts the admittance func-
tion globally and offers the opportunity for comparison
with other tide guages and possibly altimeter data. The
estimation of A from altimeter data is made difficult by
the short period of the oscillation relative to the repeat
period of altimeters such as TOPEX/Poseidon (10 days).
The large spatial scales of the dynamical signal (e.g.,
Fig. 9) may allow subsampling to create a time series
of global maps with sufficient resolution. More powerful
methods involving data assimilation could also be tried.
Whether the sea level signal (typical amplitudes of 0.5
cm according to Fig. 9) is strong enough to be detectable
in the data remains a question, however. Alternatively,
many island tide gauges remain to be examined, and
analysis of Pugh (1979) for the Indian Ocean shows that
peculiar sea level behavior at 5-day periods is not con-
fined to the Pacific and Atlantic Oceans.

We have purposefully used deterministic forcing in our
solutions to examine the response to the Rossby–Haurwitz
mode in isolation from any ‘‘noise.’’ Of course the real
forcing is stochastic, and the nature of the response may
differ under such forcing. In particular, nonequilibrium
signals related to interbasin mass adjustment processes
may not be as important when the pressure signals do not
have, for example, a perfect s 5 21 structure. Analysis
of the response in runs with realistic forcing are needed
to clarify these issues, as discussed in section 6.

Finally, we return to the issue of resonant excitation
of global or basin modes. The identification in the model
solutions of the modes calculated by Miller (1989) for
the Pacific or Gotlib et al. (1987) for the global ocean
was not very successful. This may signify that the Ross-
by–Haurwitz forcing wave does not project strongly
onto these modes. Another reason for the poor match
between the detailed spatial structures of the modes and
our solutions could be the effects of friction and dis-
sipation. These effects may lead to stronger attenuation
of some features of the modal structure compared to
others. For example, bottom friction acts more strongly
on shallow depths, and thus influence of some topo-
graphic features on the mode may be weakened. Vor-
ticity and gravity wave components involved in the
modes may be differently affected. The effects of fric-
tion on the structure of the modes of Miller (1989) or
Gotlib et al. (1987) need to be addressed before this
issue can be resolved.
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