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Abstract

In this paper we start with the Hardy’s well-known Tauberian theorem foaKes
means formulated as follows, if the sequencte= (x,), satisfiesimC;X =L and
Mx, = O(1/n) thenlim X = L. We give here some extensions to the cases when the
Cesaro operator is replaced by the operator of weighted mdrefined by Hardy
and by the operatdZ (). We show among other things that under some conditions
if the sequenc& = (xn), satisfiedim NgX = L1 andlim QaAdnXx, = Lo thenlim X =
L;. Similarly under other conditions it is also shown thiat X = L1 if X satisfies
the conditiondim NgX = L1 andlim q,;lQnAxn = Lp. Next we determine sequences
u for which the conditiongC (A) X],, and unAx, are convergent imply together that
X is convergent. This result is an extension of Hardy's Tauberian theorem and the
other results extend in a certain sense some Tauberian theorems given by Hardy and
Littlewood.
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1 Introduction and preliminary results

In this paper we start from results on Hardyauberiantheorem forCesiro means This
one was formulated as follows, if the sequeice= (xn), satisfieslimp_..,CiX = L and
AX, = O(1/n) thenlim,_, X = L. It was shown by Fridy and Khan [2] that the hypothesis
lim,_CiX = L can be replaced by the weaker assumption ofdadistical limit st—
limMCy1X =L, that is for everye > 0

lim %]{kg n:|[CiX],—L|>¢€}=0.

n—oo
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Here our aim is to show that the Hardylfauberiantheorem forCesaro meanscan
be extended to the cases whénis successively replaced by the operator of weighted
meansN defined in [3] and byC (A). In this way in Theorem 2 we show that under some

conditions, ifX = (Xn),, satisfiedimp . NgX = L1 andlimp_.. QnAgnXn = L2 then

rI]im X =L;. (1.1)

Similarly in Theorem 6 we show that under some other conditions we have (1.X) for
satisfying

lim NgX =Lz and lim %Axn = L,.

n—oo n—oo qn
The result stated in Proposition 8 is an extension of Hardy’s Tauberian theorem, there we
consider the case whé&} is replaced by (A) and we determine sequenge®r which the
conditions|C (A) X],, andp,Ax, are convergent imply together thétis convergent.

Now recall some definitions and results that are useful in the following. For given

infinite matrix A = (anm)nm>1 Of complex numbers we define the operatérsfor any
integern > 1, by

00

Pa(X) =S @omim (1.2)

m=1
whereX = (Xn)n>1 iS @ complex sequence. The series intervening in the second member
being convergent. So we are led to the study of the infinite linear system

An(X)=by, n=1.2,.. (1.3)

whereB = (bp)n>1 is aone-column matrix an&K the unknown one-column matrixhe
system (1.3) can be written in the foriX = B, whereAX = (An (X)),~1. To simplify we
will write [A],,= anm- By swe will denote the set of all complex sequences, and, lny
andl. we will denote the sets of all convergent, convergent to zero and bounded sequences
respectively. For given subsdEsandF of swe will denote(E, F) for theset of all infinite
matrices mappingde to F. We will write e= (1,1,...,1,...) andS; is the set of all infinite
matricesA = (anm)n m>1 With [|Alls, = SUR>1 Y me1 [@am| < oo It is well known thatS, is a
Banach algebra with normiA|g, .

Recall the characterization ¢¢, c) that we will use in all that follows.

Lemma 1.1. A= (&nm)ym=1 € (C,C) if and only if
NAcS, -
i) lIMp—e S _18nm=1 for some € C
i) limp_e8nm = Im for somd, € C and for allm > 1.

A matrix transformatio® = (anm),, m>1 € (C, €) is said to beegularif A= (am),, m>1 €
(c,c) andx, — | (N — oo) impliesAy (X) = T%,_; anmXm iS convergent for alh and converges
to thesame limit We will write X, — | impliesA, (x) — | (n — ). Recall thatA is regular
if and only if A satisfies Lemma 1.1 i)imp .. An (€) = 1 andlimp_,. 8ym=0forallm> 1.

In the following we will use triangles. Recall that the infinite maffixs a triangle if
Tom = 0for m> n, for all n, mandT,, # 0 for all n. Let £ be the set of all triangl€e§, the
set£ with the product of matrices is a group.
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Letq= (dn),>1 be a positive sequena®,be the sequence defined Qy = S m—10m for
all n> 1. The operator of weighted meaNg € £ is defined by

Om
- — form<n
N =4q Qn -
NaJ o { 0 otherwise.

In all that follows we writex, = 0 for any term of sequence with negative subscript. For
givena € swe write Dy = (0ndnm),, m>4 for the diagonal matrix, (wher&,, = 1 for all n
andd,m = 0 for n # m). We write > for the infinite matrix defined bYrm=1form<n
andXnm = 0 otherwise. ByA we denote the matrix with,, = 1, Ayn—1 = —1for all nand
Anm = 0 otherwise. It can be shown thAE = >A = | in the setE. With these notations it
can easily be seen thilt; = D;o2D,

We will use the matrix transformatiod(A) whereA € sandA, # 0 for all n, see [1],
recall thatC(A) € £ and [C(A)],,, = 1/An for m<n, n=1, 2,.... ForA =e we have
C(A) =Z. In the set we have

cn) = (sz)fl = AD,.
So puttingA () = AD, we concluddC ()]t = A(A). ForA = (Np>1, C(A) =Cyis the

Cesro operator

2 Tauberian theorems

In this section we will give two versions of Tauberian theorems concerning the operator of
weighted meanBly. Then we will deal with the operat@ ().

2.1 First version of Tauberian theorem forNg

State the next result.

Theorem 2.1. (i) The following statements are equivalent.

@)
Q

= € le,
q
(b) for any given sequencg) -

. X
im O1X1 + ... + OnXn

| =L, ifand only if rI]im Xn = L1

n—oo Qn
for somel; € C.
(i) Assume
1 2 m
lim — — = L 2.1
n—e N0 ngl Qm 1)
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and

lim =2 n

!
fim =L #0 (2.2)

for some scalarg andL’. Then for any given sequente,),,. ; the conditions

. X X
lim 01Xy + ... + OnXn

n—c Qn
for somely, Ly € C imply togethelimp X, = Lj.

=L;and r!mo Qn (ann - G]n—an—l) =Ly

Proof. (i) In the setf we haveNf1 — (Dy/gZDq) ' = Dy/ADg that is { ql} =
n—
1

n
N, =0

—Qn-1/0n, [N; } = Qn/0n for all n > 1 (with the conventiorQy = 0) and [N
otherwise. Sinc@ |s increasing an®/q € |, we have

Hﬁngsl = sgp(Q”E:‘)”_l> < ZSUp% < oo,

Thenlimp_» (Qn—Qn-1) /gn = 1 and we conclude thaﬁ;l is regular. This shows (a)

holds if and only ifN;1 is regular. So (a) means that for avy= (yn),-; the condition
yn = [NgX],, — L1 implies

_ [Nglv}n L1 (N— o).

Now Ng is regular so it is trivial that
Xp — L1 impliesy, — L1 (n— o).

This completes the proof of (i).

(i) Let X = (Xn)>1 € sand puty = (Yn)>1 = NgX. WritingZ = (Z0)n>1= (Qn (GnXn — On-1%0-1) )pn>1
we easily see that
Z = DgADgX. (2.3)

In the se€ we have(DoADg) ' = Dy /qZD1,q and by (2.3) we get
X = (DgADq) ' Z =Dy/q3D, ,Z.
Then

Y = NgX=NgD1/qED1/0Z
= Dy/qXDqD1/¢ZD1/qZ = D1/qZ?D1/QZ

and the infinite matrix? € £ is the triangle defined b§z?| =n+1—mfor m<nand
(2], = O otherwise. So we easily get

nn+1m n+1”zm

Z 2 0m QnZ
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Since L n
Zm
Xn = [Dl/QZDl/QZ} " O él@
we get
Voo = n-+ 1q “ m,
T T Qe n; Qm
Consider now the triangle
~ . 0
Q= 1 m

(N+1)0n Qm

Condition (2.2) impliesl/ng, ~ L'/Qn (N — ) and since), is increasing we have

0 < lim Qn <
n—oo

and(1/ntn),-, € C. So [6} . tends to a limit as tends to infinity for allm. This and

condition (2.1) |mpIyQ € (c,c) and sinc&Z € c we have
n+1qnz zm—>l (n — ) for somel € C.
Using (2.2) we deduce thatyf, — L; andz, — Lz (n — o) then

Qn /
Zm_>LL —|—|
(n+1)qn n+1 ) Ohn nZl !

Xn =

andX e c. Now sinceNg is regular andy, = [NgX] , we have
yn—>L1:LL1+I(n—>oo).
We conclude, — L (n— o). O

Concerning Theorem 2.1 (i) we have the next result.
Corollary 2.2. LetX = (x1),~1 be any given sequence. The condition
[NgX] , — L impliesx, — L (n— o) (2.4)
for somelL € C implies there arg/ > 1 andK > 0 such that

gn > Ky for all n.

Proof. Condition (2.4) implieﬂ;1 is regular, that is
Qn+tQna
On

andQ/q € l. Thenq e C; whereC; is the set of all sequencswith ((FP_; %) /Xn) =g €
I, (cf. [1]). We conclude by [1, Proposition 2.1, pp. 1786]. O

= 0(1) (n— ).
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As a direct consequence of Theorem 2.1 (ii) we get

Corollary 2.3. Leta > 0and Iet(xn)nZl be a sequence with

n

— L and ( Z m“) (N"% — (n—1)"%q-1) — Lo

m=1

X1+ 2% 4 ... +n%X,
ey M°

for somely, Ly € C. Thenx, — L1 (N — o).

Proof. If a =0 (2.1) and (2.2) are trivially satisfied. Now pgt = n* with a > 0 and
a # 1. We obtain

A Qn _ Sman® 1 om
n(}+l 0 - ﬁ = nﬂ+1 S nG+l 1 X dX,
R R
and since the sequencfy/n®+1) " 'x@dxand (1/n®*1) " "x@dx tends to the same limit
1/ (a+ 1) asn tends to infinity we concludém,_... Q,/ngy, — 1/ (a+ 1) and (2.2) holds.
Now we need to verify (2.1). For this note that for every- 2

m_pm _a+l
Qm~ ¢@dx e
Then
T m 11
— < 14+(a+1) Y —
m:lQm ?szu
< 1+(a+1) "dx
1 X©
a+1 1—
< 1+—(n"%-1
- 1—0(( )
Thus .
1 m 1+a/ 1 1 1
a+12£1<m—a+1> g
n%*t & Qm —a \n n n
and

1 Om
— — 0 (n .
n‘Hln;lQm ( —>00)

We conclude applying Theorem 2.1.
Fora =1 we get

n Z

1am 18 2 _2frvax 2
n rTZlQm_nzrrgl(m+1)—n2 0o Xx+1
and L 0
— m—>0(n—>00).

Since (2.2) trivially holds withL’ = 1/2 we can apply Theorem 2.1 and conclude that
Xp — L1 (n— o0). O
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We immediatly deduce from the previous proof the following.

Corollary 2.4. Let(xn),-; be any sequence. If

X1+ 2%+ ... +NX,
nZ

— Ly andn?(n%, — (N—1)%,_1) — Lo

thenx, — 2L1 (N — ).

2.2 Second version of Tauberian theorem for matrix of weighted means

In this subsection we consider a second statement of Tauberian theorem where conditions
(2.1)and (2.2) in Theorem 2.1 are replaced by the converger{¢¢®@f) 5 n,_» dmQm-1/Qm

and the condition oy (gnX, — On—-1%n—1) IS replaced by a similar condition on another
sequence defined )n (Xn — Xn—1) /Cn-

Theorem 2.5. Assume
Qm-1 _

lim @ Z g = (2.5)
for some scalat. For any given sequenq‘e(n)nZl the conditions
fim I o tim 2 (0 — X1 = Lo (2.6)

n—oo Qn n—o Qn
for somely, Lo € C imply limp e Xn = L1.

Proof. Put
andZ = Dg/qAX. Then
X =3%DqyqZ (2.8)
and
Y = NqZDq/QZ = D1/gZD¢ZDy/0Z.
We have .
_ Siemai form<n,
(2D = { 0 otherwise.
Then
1 n
Yn = a z Z G| ~
m=1
1 n
- @rrz (Qn Qm 1)Qm
n
Om Qm 1
= an_ e
om0
Using (2.8) we deduce
Qm 1

=03,
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and

Qm_

Yn+* z

Now consider the matriﬁ with [6] — OmQm-1/QnQm for 2 < m < n and [6} =0

nm
otherwise. Sinc®) is increasing we havé/Q € c and [6] tends to a limit as tends to
nm

infinity. This and conditions (2.5) imply togeth€re (c,c). Consider now the sequenae
defined by

= Qm 1
Qn nZl Qm

The conditions given in (2.6) mean that— L1 andz, — L, (n — o) and sinceQ € (c,c)
we have

Wn = OmZm-

Xn=Yn+Wn=Yn+ [Qz}n—iﬁ—l for somel € C.

To complete the proof we need to show that 0. For this it is enough to see that sirldg
is regular ifx, — L1 +1 then

and sox, — L1 (n — ). This concludes the proof. O

This result leads to the next corollary.

Corollary 2.6. Let(xn),-; be a sequence with

1 1 1 .
rI]mn nn <x1+ 2xz+...+nxn> =L, and rI]monlnn(xn—xn,l) = L,.

Thenlimp_e Xy, = L1.
Proof. We haveg, = 1/nfor allnandQ, = ¥, 1/mand

1 21
= QO 1 = z - O_n
Qn =2 Qmn  Qn = M

Un =

with
Z szm

SinceQ, tends to infinity as tends to infinity ands, < (1/Qn) S, 1/m? we haveay,
tends to zero. Theu, tends tol asn tends to infinity and condition (2.5) in Theorem 2.5
is verified. Finally sinceQ, ~ Inn we haveQ,/q, ~ ninn (n — ) and we conclude by
Theorem 2.5.

Remark2.7. We can see that Theorem 2.1 and Theorem 2.5 are not embedded the one into
the other. Indeed, consider the case wies: nfor all n. Then the sequencé= e verifies
Theorem 2.5 since (2.5) is satisfied with= 1 and(Qn/dn) (Xn — Xn—1) = O for all n but

Qn (OGnXn — On-1%n-1) ~ n2/2 (N— o)
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S0Qn (GnXn — Gn—1Xn—1) — (N — ) and Theorem 2.1 cannot be verified.

Furthermore in the case whep = 1/n we have seen in Corollary 2.6 that condition

(2.5) in Theorem 2.5 is verified but (2.2) in Theorem 2.1 is not satisfied.

2.3 Case of the operatoC())

In this subsection we will consider the case witgpis replaced byC (). We will obtain
some results that extend some of those given in the previous subsections.

Reasoning as in Theorem 2.1 and Theorem 2.5 we can state another resulNyigere
replaced byC (A). We will see that in the case= pthe sequenck plays the role of) with
q= e In the following we will writeU * for the set of all sequencés,),,., with x, > 0 for
all n.

Proposition 2.8. LetA, pe€ U™ and assume

10
im =y =L 2.9)
nﬁwnrrﬁll'lm

and

A
lim =2 =’
n—o N

for some scalar& andL’.
Then for any given sequenge,),,..; € sconditions

w—ﬂ andpy (Xn —Xn_1) — I (N — ) (2.10)

n

for some, I’ € C imply together(xy) .., is convergent and
Xy — L'l (n— ).

Proof. Puty, = (X1 + ... +Xn) /An @andz, = pn (Xn — Xn—1). We haveY =C(A) X andZ =
DuAX and thenY = C(A) 2D, Z. SinceC(A) = D1\ Z and (DMA)_1 = 2Dy, we get

Y = Dl/AZZDl/HZ andX = 2Dy, Z. As we have seen in the proof of Theorem 2.5 the

explicit calculation oﬂZ)l/AZZDl/u permits us to obtain

1 2 n-m+1
Yn—)\nngl Hm

Similarly we have
n

Xn = [ZDyZ] | = luz:'
m=

So we successively get
_n+1 1 2 m

= - =Y —7zn, 2.11
Yn ” Xn " rT;umzm (2.11)
and \ L n
_An m
X =gt n+1m1%%' (2.12)
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Now let A be the triangle defined b&nm = m/ ((n+ 1) pm) for 2 < m < n, Apm = 0 for
m=1 or m> n and for alln, m. By (2.9) we have\ € (c,c). Now conditions given in
(2.10) mean thay, — | andz, — I’ (n — o) and since\ € (c,c) we deduce that

):lynJr [AZ], — L'l +X (n— =) for somex € C.

Xn:

Now we are led to deal with the cadgs= 0 andL’ £ 0.
1- Assume.’ = 0. Herex, — L'l +x =x and

-
n

Sincen/A, — o and
Xit+X _X1+...+X N

— — (n—>oo)

An n An

we conclude thag = 0 andx, — 0= L'l (n— ).
2- Casd.’ # 0. Here since; — L'l +X (n— ) we also have

- n X0 X (n— o).
Then L’I
Xt +X  Xif X N +X (n— o)
An n )\n L’
Sox = 0 andx, — L'l (n— ). This concludes the proof. O

We deduce the following

Corollary 2.9. LetX = (xn),-1 be a sequence with

(X1 + ...+ %) /N — | andn (xy —Xq_1) — 1" (N — o)

for some, |’ € C. Then
(i) Xa =1 (N — o),
@iy I'=
Proof. Condition (2.9) is trivially satisfied and = L’ = 1. SinceA/L = A defined in the

proof of Proposition 2.8 is regular we have hEre x. As we have just seen we successively
getx, — I +x (n— o), [+x=1+1"=1andl’=0. O

Remark2.10 It can be seen that Proposition 2.8 is an extension of Hardy’s Tauberian
theorem. For this show therejiss U™ with (n/pn),, € U™\l such that (2.9) holds. Take

for instancey, = 2' /i whenn=2', i > 1 andp, = n otherwise. Len be a given integer
and putl, = {2': 2' < n}. Using the notatioﬁ =1n [1,n] we successively get

é Zum ﬁzi

mel},
1

Zk+f .

ke{i:2'<n}

S,]:

IA
Sl Sl

cl/
n
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PuttingN = max{i : 2' <n} andS= yp_; 1/m? we deduce

_IN(N+1) S

-n 2
Since2N < nwe get

1 s
< NN+ D)+

Finally from the definition oN and the inequaliti <Inn/In2we obtainN =E (Inn/In 2).
SoN tends to infinity as tends to infinity and, tends to zero.
Since we have

n
N(Xn—%n-1) = ml-ln (Xn —Xn—1)

and(n/pn) =1 ¢ l the conditiorpy (X — Xn—1) — I’ (N — o) does notimplhyn (X, —Xn-1) =
O(1) (n— ) and we have shown that Proposition 2.8 is an extension of Hardy’s Tauberian
theorem.

More precisely we can state another result wB¢N) X € cp. For this we need to recall
the next well-known result

Lemma 2.11. A€ (co,Cp) if and only ifA € § andlimp_... anm = 0 for all m.
We can state the following.

Proposition 2.12. LetA, p€ U*and assume

12 m
su < o0 2.13
np< m;urn> (2.13)
and
supM < 00, (2.14)
nn

For any given sequeno{an)nzl the conditiongxs + ... +Xn) /An — O andpn (Xn — Xn—1) —
0implyXx, — 0 (n— o).

Proof. We will use the same notations that in the proof of Proposition 2.8. Here from (2.13)
we have\ € S and trivially limp_,. Anm = O for all m> 1. ThenA € (cp,¢p) and

n+1 Z zm—>0 (n— o) forall Z € cp.

By (2.14) we also have

An An N

o Yn=0(1)o(1) = 0(1) (n— w)

nn+1’"

and from the identity (2.12) given in the previous proof we conclyde> 0 (N — ). [J
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