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Abstract

In this paper we start with the Hardy’s well-known Tauberian theorem for Cesàro
means formulated as follows, if the sequenceX = (xn)n satisfieslimC1X = L and
∆xn = O(1/n) thenlim X = L. We give here some extensions to the cases when the
Ces̀aro operator is replaced by the operator of weighted meansNq defined by Hardy
and by the operatorC(λ). We show among other things that under some conditions
if the sequenceX = (xn)n satisfieslim NqX = L1 andlim Qn∆qnxn = L2 thenlim X =
L1. Similarly under other conditions it is also shown thatlim X = L1 if X satisfies
the conditionslim NqX = L1 andlim q−1

n Qn∆xn = L2. Next we determine sequences
µ for which the conditions[C(λ)X]n and µn∆xn are convergent imply together that
X is convergent. This result is an extension of Hardy’s Tauberian theorem and the
other results extend in a certain sense some Tauberian theorems given by Hardy and
Littlewood.
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1 Introduction and preliminary results

In this paper we start from results on Hardy’sTauberiantheorem forCes̀aro means. This
one was formulated as follows, if the sequenceX = (xn)n satisfieslimn→∞C1X = L and
∆xn = O(1/n) thenlimn→∞ X = L. It was shown by Fridy and Khan [2] that the hypothesis
limn→∞C1X = L can be replaced by the weaker assumption of thestatistical limit st−
limC1X = L, that is for everyε > 0

lim
n→∞

1
n
|{k≤ n : |[C1X]k−L| ≥ ε}|= 0.
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Here our aim is to show that the Hardy’sTauberiantheorem forCes̀aro meanscan
be extended to the cases whenC1 is successively replaced by the operator of weighted
meansNq defined in [3] and byC(λ). In this way in Theorem 2 we show that under some
conditions, ifX = (xn)n satisfieslimn→∞ NqX = L1 andlimn→∞ Qn∆qnxn = L2 then

lim
n→∞

X = L1. (1.1)

Similarly in Theorem 6 we show that under some other conditions we have (1.1) forX
satisfying

lim
n→∞

NqX = L1 and lim
n→∞

Qn

qn
∆xn = L2.

The result stated in Proposition 8 is an extension of Hardy’s Tauberian theorem, there we
consider the case whenC1 is replaced byC(λ) and we determine sequencesµ for which the
conditions[C(λ)X]n andµn∆xn are convergent imply together thatX is convergent.

Now recall some definitions and results that are useful in the following. For given
infinite matrix A = (anm)n,m≥1 of complex numbers we define the operatorsAn for any
integern≥ 1, by

An(X) =
∞

∑
m=1

anmxm (1.2)

whereX = (xn)n≥1 is a complex sequence. The series intervening in the second member
being convergent. So we are led to the study of the infinite linear system

An(X) = bn n = 1,2, ... (1.3)

whereB = (bn)n≥1 is a one-column matrix andX the unknown one-column matrix. The
system (1.3) can be written in the formAX = B, whereAX = (An(X))n≥1. To simplify we
will write [A]nm = anm. By s we will denote the set of all complex sequences, and byc, c0

andl∞ we will denote the sets of all convergent, convergent to zero and bounded sequences
respectively. For given subsetsE andF of s we will denote(E,F) for theset of all infinite
matrices mappingE to F . We will write e= (1,1, ...,1, ...) andS1 is the set of all infinite
matricesA = (anm)n,m≥1 with ‖A‖S1

= supn≥1 ∑∞
m=1 |anm|< ∞. It is well known thatS1 is a

Banach algebra with norm‖A‖S1
.

Recall the characterization of(c,c) that we will use in all that follows.

Lemma 1.1. A = (anm)n,m≥1 ∈ (c,c) if and only if
i) A∈ S1,
ii) limn→∞ ∑∞

m=1anm = l for somel ∈ C
iii) limn→∞ anm = lm for somelm∈ C and for allm≥ 1.

A matrix transformationA= (anm)n,m≥1∈ (c,c) is said to beregular if A= (anm)n,m≥1∈
(c,c) andxn→ l (n→ ∞) impliesAn(x) = ∑∞

m=1anmxm is convergent for alln and converges
to thesame limit. We will write xn→ l impliesAn(x)→ l (n→ ∞). Recall thatA is regular
if and only if A satisfies Lemma 1.1 i),limn→∞ An(e) = 1 andlimn→∞ anm= 0 for all m≥ 1.

In the following we will use triangles. Recall that the infinite matrixT is a triangle if
Tnm = 0 for m> n, for all n, m andTnn 6= 0 for all n. Let £ be the set of all trianglesT, the
set£ with the product of matrices is a group.
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Let q= (qn)n≥1 be a positive sequence,Q be the sequence defined byQn = ∑n
m=1qm for

all n≥ 1. The operator of weighted meansNq ∈ £ is defined by

[
Nq

]
nm =

{ qm

Qn
for m≤ n,

0 otherwise.

In all that follows we writexn = 0 for any term of sequence with negative subscript. For
givenα ∈ s we writeDα = (αnδnm)n,m≥1 for the diagonal matrix, (whereδnn = 1 for all n
andδnm = 0 for n 6= m). We writeΣ for the infinite matrix defined byΣnm = 1 for m≤ n
andΣnm = 0 otherwise. By∆ we denote the matrix with∆nn = 1, ∆n,n−1 =−1 for all n and
∆nm = 0 otherwise. It can be shown that∆Σ = Σ∆ = I in the set£. With these notations it
can easily be seen thatNq = D1/QΣDq.

We will use the matrix transformationC(λ) whereλ ∈ s andλn 6= 0 for all n, see [1],
recall thatC(λ) ∈ £ and [C(λ)]nm = 1/λn for m≤ n, n = 1, 2,.... For λ = e we have
C(λ) = Σ. In the set£ we have

[C(λ)]−1 =
(
D1/λΣ

)−1 = ∆Dλ.

So putting∆(λ) = ∆Dλ we conclude[C(λ)]−1 = ∆(λ). For λ = (n)n≥1, C(λ) = C1 is the
Ces̀aro operator.

2 Tauberian theorems

In this section we will give two versions of Tauberian theorems concerning the operator of
weighted meansNq. Then we will deal with the operatorC(λ).

2.1 First version of Tauberian theorem forNq

State the next result.

Theorem 2.1. (i) The following statements are equivalent.
(a)

Q
q
∈ l∞,

(b) for any given sequence(xn)n≥1

lim
n→∞

q1x1 + ...+qnxn

Qn
= L1 if and only if lim

n→∞
xn = L1

for someL1 ∈ C.

(ii) Assume

lim
n→∞

1
nqn

n

∑
m=1

m
Qm

= L (2.1)
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and

lim
n→∞

Qn

nqn
= L′ 6= 0 (2.2)

for some scalarsL andL′. Then for any given sequence(xn)n≥1 the conditions

lim
n→∞

q1x1 + ...+qnxn

Qn
= L1 and lim

n→∞
Qn(qnxn−qn−1xn−1) = L2

for someL1, L2 ∈ C imply togetherlimn→∞ xn = L1.

Proof. (i) In the set£ we haveN
−1
q =

(
D1/QΣDq

)−1 = D1/q∆DQ that is
[
N
−1
q

]
n,n−1

=

−Qn−1/qn,
[
N
−1
q

]
nn

= Qn/qn for all n≥ 1 (with the conventionQ0 = 0) and
[
N
−1
q

]
nn

= 0

otherwise. SinceQ is increasing andQ/q∈ l∞ we have

∥∥∥N
−1
q

∥∥∥
S1

= sup
n

(
Qn +Qn−1

qn

)
≤ 2sup

n

Qn

qn
< ∞.

Then limn→∞ (Qn−Qn−1)/qn = 1 and we conclude thatN
−1
q is regular. This shows (a)

holds if and only ifN
−1
q is regular. So (a) means that for anyY = (yn)n≥1 the condition

yn =
[
NqX

]
n → L1 implies

xn =
[
N
−1
q Y

]
n
→ L1 (n→ ∞) .

Now Nq is regular so it is trivial that

xn → L1 impliesyn → L1 (n→ ∞) .

This completes the proof of (i).
(ii) Let X =(xn)n≥1∈ sand putY =(yn)n≥1 = NqX. Writing Z =(zn)n≥1 =(Qn(qnxn−qn−1xn−1))n≥1

we easily see that
Z = DQ∆DqX. (2.3)

In the set£ we have(DQ∆Dq)
−1 = D1/qΣD1/Q and by (2.3) we get

X = (DQ∆Dq)
−1Z = D1/qΣD1/Q

Z.

Then

Y = NqX = NqD1/qΣD1/QZ

= D1/QΣDqD1/qΣD1/QZ = D1/QΣ2D1/QZ

and the infinite matrixΣ2 ∈ £ is the triangle defined by
[
Σ2

]
nm = n+1−m for m≤ n and[

Σ2
]

nm = 0 otherwise. So we easily get

yn =
1

Qn

n

∑
m=1

n+1−m
Qm

zm =
n+1
Qn

n

∑
m=1

zm

Qm
− 1

Qn

n

∑
m=1

m
Qm

zm.
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Since

xn =
[
D1/qΣD1/Q

Z
]

n
=

1
qn

n

∑
m=1

zm

Qm

we get

yn =
n+1
Qn

qnxn− 1
Qn

n

∑
m=1

m
Qm

zm.

Consider now the triangle

Q̂ =




.

. . 0

. 1
(n+1)qn

m
Qm

.

. . . .


 .

Condition (2.2) implies1/nqn∼ L′/Qn (n→ ∞) and sinceQn is increasing we have

0 < lim
n→∞

Qn ≤ ∞

and(1/nqn)n≥1 ∈ c. So
[
Q̂

]
nm

tends to a limit asn tends to infinity for allm. This and

condition (2.1) implyQ̂∈ (c,c) and sinceZ ∈ c we have

1
(n+1)qn

n

∑
m=1

m
Qm

zm→ l (n→ ∞) for somel ∈ C.

Using (2.2) we deduce that ifyn → L1 andzn → L2 (n→ ∞) then

xn =
Qn

(n+1)qn
yn +

1
(n+1)qn

n

∑
m=1

m
Qm

zm→ L′L1 + l

andX ∈ c. Now sinceNq is regular andyn =
[
NqX

]
n we have

yn → L1 = L′L1 + l (n→ ∞) .

We concludexn → L1 (n→ ∞) .

Concerning Theorem 2.1 (i) we have the next result.

Corollary 2.2. LetX = (xn)n≥1 be any given sequence. The condition
[
NqX

]
n → L impliesxn → L (n→ ∞) (2.4)

for someL ∈ C implies there areγ > 1 andK > 0 such that

qn ≥ Kγn for all n.

Proof. Condition (2.4) impliesN
−1
q is regular, that is

Qn +Qn−1

qn
= O(1) (n→ ∞) .

andQ/q∈ l∞. Thenq∈ Ĉ1 whereĈ1 is the set of all sequencesX with ((∑n
k=1xk)/xn)n≥1 ∈

l∞, (cf. [1]). We conclude by [1, Proposition 2.1, pp. 1786].



6 Bruno de Malafosse

As a direct consequence of Theorem 2.1 (ii) we get

Corollary 2.3. Let α≥ 0 and let(xn)n≥1 be a sequence with

x1 +2αx2 + ...+nαxn

∑n
m=1mα → L1 and

(
n

∑
m=1

mα

)
(
nαxn− (n−1)α xn−1

)→ L2

for someL1, L2 ∈ C. Thenxn → L1 (n→ ∞).

Proof. If α = 0 (2.1) and (2.2) are trivially satisfied. Now putqn = nα with α > 0 and
α 6= 1. We obtain

1
nα+1

Z n

0
xαdx≤ Qn

nqn
= ∑n

m=1mα

nα+1 ≤ 1
nα+1

Z n+1

1
xαdx;

and since the sequences
(
1/nα+1

)R n
0 xαdx and

(
1/nα+1

)R n+1
1 xαdx tends to the same limit

1/(α+1) asn tends to infinity we concludelimn→∞ Qn/nqn → 1/(α+1) and (2.2) holds.
Now we need to verify (2.1). For this note that for everym≥ 2

m
Qm

≤ mRm
0 xαdx

=
α+1
mα .

Then

n

∑
m=1

m
Qm

≤ 1+(α+1)
n

∑
m=2

1
mα

≤ 1+(α+1)
Z n

1

dx
xα

≤ 1+
α+1
1−α

(
n1−α−1

)
.

Thus
1

nα+1

n

∑
m=1

m
Qm

≤ 1+α
1−α

(
1

n2α −
1

nα+1

)
+

1
nα+1 .

and
1

nα+1

n

∑
m=1

m
Qm

→ 0 (n→ ∞) .

We conclude applying Theorem 2.1.
For α = 1 we get

1
nqn

n

∑
m=1

m
Qm

=
1
n2

n

∑
m=1

2
(m+1)

≤ 2
n2

Z n

0

dx
x+1

=
2
n2 ln(n+1)

and
1

nqn

n

∑
m=1

m
Qm

→ 0 (n→ ∞) .

Since (2.2) trivially holds withL′ = 1/2 we can apply Theorem 2.1 and conclude that
xn → L1 (n→ ∞).
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We immediatly deduce from the previous proof the following.

Corollary 2.4. Let (xn)n≥1 be any sequence. If

x1 +2x2 + ...+nxn

n2 → L1 andn2(nxn− (n−1)xn−1)→ L2

thenxn → 2L1 (n→ ∞).

2.2 Second version of Tauberian theorem for matrix of weighted means

In this subsection we consider a second statement of Tauberian theorem where conditions
(2.1) and (2.2) in Theorem 2.1 are replaced by the convergence of(1/Qn)∑n

m=2qmQm−1/Qm

and the condition onQn(qnxn−qn−1xn−1) is replaced by a similar condition on another
sequence defined byQn(xn−xn−1)/qn.

Theorem 2.5. Assume

lim
n→∞

1
Qn

n

∑
m=2

qm
Qm−1

Qm
= L (2.5)

for some scalarL. For any given sequence(xn)n≥1 the conditions

lim
n→∞

q1x1 + ...+qnxn

Qn
= L1 and lim

n→∞

Qn

qn
(xn−xn−1) = L2 (2.6)

for someL1, L2 ∈ C imply limn→∞ xn = L1.

Proof. Put
Y = (yn)n≥1 = NqX (2.7)

andZ = DQ/q∆X. Then
X = ΣDq/QZ (2.8)

and
Y = NqΣDq/QZ = D1/QΣDqΣDq/QZ.

We have

[ΣDqΣ]nm =
{

∑n
i=mqi for m≤ n,

0 otherwise.

Then

yn =
1

Qn

n

∑
m=1

(
n

∑
i=m

qi

)
qm

Qm
zm

=
1

Qn

n

∑
m=1

(Qn−Qm−1)
qm

Qm
zm

=
n

∑
m=1

qm

Qm
zm− 1

Qn

n

∑
m=1

Qm−1

Qm
qmzm.

Using (2.8) we deduce

yn = xn− 1
Qn

n

∑
m=1

Qm−1

Qm
qmzm
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and

xn = yn +
1

Qn

n

∑
m=1

Qm−1

Qm
qmzm.

Now consider the matrix̃Q with
[
Q̃

]
nm

= qmQm−1/QnQm for 2≤ m≤ n and
[
Q̃

]
nm

= 0

otherwise. SinceQ is increasing we have1/Q∈ c and
[
Q̃

]
nm

tends to a limit asn tends to

infinity. This and conditions (2.5) imply together̃Q∈ (c,c). Consider now the sequencew
defined by

wn =
1

Qn

n

∑
m=1

Qm−1

Qm
qmzm.

The conditions given in (2.6) mean thatyn → L1 andzn → L2 (n→ ∞) and sinceQ̃∈ (c,c)
we have

xn = yn +wn = yn +
[
Q̃Z

]
n
→ L1 + l for somel ∈ C.

To complete the proof we need to show thatl = 0. For this it is enough to see that sinceNq

is regular ifxn → L1 + l then

yn =
[
NqX

]
n → L1 + l = L1 (n→ ∞)

and soxn → L1 (n→ ∞). This concludes the proof.

This result leads to the next corollary.

Corollary 2.6. Let (xn)n≥1 be a sequence with

lim
n→∞

1
lnn

(
x1 +

1
2

x2 + ...+
1
n

xn

)
= L1 and lim

n→∞
nlnn(xn−xn−1) = L2.

Thenlimn→∞ xn = L1.

Proof. We haveqn = 1/n for all n andQn = ∑n
m=11/mand

un =
1

Qn

n

∑
m=2

qm
Qm−1

Qm
=

1
Qn

n

∑
m=2

1
m
−σn

with

σn =
1

Qn

n

∑
m=2

1
m2Qm

.

SinceQn tends to infinity asn tends to infinity andσn ≤ (1/Qn)∑n
m=21/m2 we haveσn

tends to zero. Thenun tends to1 asn tends to infinity and condition (2.5) in Theorem 2.5
is verified. Finally sinceQn ∼ lnn we haveQn/qn ∼ nlnn (n→ ∞) and we conclude by
Theorem 2.5.

Remark2.7. We can see that Theorem 2.1 and Theorem 2.5 are not embedded the one into
the other. Indeed, consider the case whenqn = n for all n. Then the sequenceX = everifies
Theorem 2.5 since (2.5) is satisfied withL = 1 and(Qn/qn)(xn−xn−1) = 0 for all n but

Qn(qnxn−qn−1xn−1)∼ n2/2 (n→ ∞)
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soQn(qnxn−qn−1xn−1)→ ∞ (n→ ∞) and Theorem 2.1 cannot be verified.
Furthermore in the case whenqn = 1/n we have seen in Corollary 2.6 that condition

(2.5) in Theorem 2.5 is verified but (2.2) in Theorem 2.1 is not satisfied.

2.3 Case of the operatorC(λ)

In this subsection we will consider the case whenNq is replaced byC(λ). We will obtain
some results that extend some of those given in the previous subsections.

Reasoning as in Theorem 2.1 and Theorem 2.5 we can state another result whereNq is
replaced byC(λ). We will see that in the caseλ = µ the sequenceλ plays the role ofQ with
q= e. In the following we will writeU+ for the set of all sequences(xn)n≥1 with xn > 0 for
all n.

Proposition 2.8. Let λ, µ∈U+ and assume

lim
n→∞

1
n

n

∑
m=1

m
µm

= L (2.9)

and

lim
n→∞

λn

n
= L′

for some scalarsL andL′.
Then for any given sequence(xn)n≥1 ∈ sconditions

x1 + ...+xn

λn
→ l andµn(xn−xn−1)→ l ′ (n→ ∞) (2.10)

for somel , l ′ ∈ C imply together(xn)n≥1 is convergent and

xn → L′l (n→ ∞) .

Proof. Putyn = (x1 + ...+xn)/λn andzn = µn(xn−xn−1). We haveY = C(λ)X andZ =
Dµ∆X and thenY = C(λ)ΣD1/µZ. SinceC(λ) = D1/λΣ and (Dµ∆)−1 = ΣD1/µ we get
Y = D1/λΣ2D1/µZ and X = ΣD1/µZ. As we have seen in the proof of Theorem 2.5 the
explicit calculation ofD1/λΣ2D1/µ permits us to obtain

yn =
1
λn

n

∑
m=1

n−m+1
µm

zm.

Similarly we have

xn =
[
ΣD1/µZ

]
n
=

n

∑
m=1

zm

µm
.

So we successively get

yn =
n+1

λn
xn− 1

λn

n

∑
m=1

m
µm

zm, (2.11)

and

xn =
λn

n+1
yn +

1
n+1

n

∑
m=1

m
µm

zm. (2.12)
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Now let Λ be the triangle defined byΛnm = m/((n+1)µm) for 2≤ m≤ n, Λnm = 0 for
m = 1 or m > n and for alln, m. By (2.9) we haveΛ ∈ (c,c). Now conditions given in
(2.10) mean thatyn → l andzn → l ′ (n→ ∞) and sinceΛ ∈ (c,c) we deduce that

xn =
λn

n+1
yn +[ΛZ]n → L′l +χ (n→ ∞) for someχ ∈ C.

Now we are led to deal with the casesL′ = 0 andL′ 6= 0.
1- AssumeL′ = 0. Herexn → L′l +χ = χ and

x1 + ...+xn

n
→ χ.

Sincen/λn → ∞ and

x1 + ...+xn

λn
=

x1 + ...+xn

n
n
λn
→ l (n→ ∞)

we conclude thatχ = 0 andxn → 0 = L′l (n→ ∞).
2- CaseL′ 6= 0. Here sincexn → L′l +χ (n→ ∞) we also have

x1 + ...+xn

n
→ L′l +χ (n→ ∞) .

Then
x1 + ...+xn

λn
=

x1 + ...+xn

n
n
λn
→ L′l +χ

L′
= l (n→ ∞)

Soχ = 0 andxn → L′l (n→ ∞). This concludes the proof.

We deduce the following

Corollary 2.9. LetX = (xn)n≥1 be a sequence with

(x1 + ...+xn)/n→ l andn(xn−xn−1)→ l ′ (n→ ∞)

for somel , l ′ ∈ C. Then
(i) xn → l (n→ ∞) ,
(ii) l ′ = 0.

Proof. Condition (2.9) is trivially satisfied andL = L′ = 1. SinceΛ/L = Λ defined in the
proof of Proposition 2.8 is regular we have herel ′ = χ. As we have just seen we successively
getxn → l +χ (n→ ∞), l +χ = l + l ′ = l andl ′ = 0.

Remark2.10. It can be seen that Proposition 2.8 is an extension of Hardy’s Tauberian
theorem. For this show there isµ∈U+ with (n/µn)n ∈U+\l∞ such that (2.9) holds. Take
for instanceµn = 2i/i whenn = 2i , i ≥ 1 andµn = n3 otherwise. Letn be a given integer
and putIn =

{
2i : 2i ≤ n

}
. Using the notationI ′n = In

T
[1,n] we successively get

sn =
1
n

n

∑
m=1

m
µm

=
1
n ∑

m∈In

m
µm

+
1
n ∑

m∈I ′n

m
µm

≤ 1
n ∑

k∈{i:2i≤n}
k+

1
n ∑

m∈I ′n

1
m2 .
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PuttingN = max
{

i : 2i ≤ n
}

andS= ∑∞
m=11/m2 we deduce

sn ≤ 1
n

N(N+1)
2

+
S
n

.

Since2N ≤ n we get

sn ≤ 1
2N+1N(N+1)+

S
n
.

Finally from the definition ofN and the inequalityN≤ lnn/ ln2we obtainN = E (lnn/ ln2).
SoN tends to infinity asn tends to infinity andsn tends to zero.

Since we have
n(xn−xn−1) =

n
µn

µn(xn−xn−1)

and(n/µn)n≥1 /∈ l∞ the conditionµn(xn−xn−1)→ l ′ (n→ ∞) does not implyn(xn−xn−1)=
O(1) (n→ ∞) and we have shown that Proposition 2.8 is an extension of Hardy’s Tauberian
theorem.

More precisely we can state another result whenC(λ)X ∈ c0. For this we need to recall
the next well-known result

Lemma 2.11. A∈ (c0,c0) if and only ifA∈ S1 and limn→∞ anm = 0 for all m.

We can state the following.

Proposition 2.12. Let λ, µ∈U+and assume

sup
n

(
1
n

n

∑
m=1

m
µm

)
< ∞ (2.13)

and

sup
n

λn

n
< ∞. (2.14)

For any given sequence(xn)n≥1 the conditions(x1 + ...+xn)/λn→ 0 andµn(xn−xn−1)→
0 implyxn → 0 (n→ ∞) .

Proof. We will use the same notations that in the proof of Proposition 2.8. Here from (2.13)
we haveΛ ∈ S1 and trivially limn→∞ Λnm = 0 for all m≥ 1. ThenΛ ∈ (c0,c0) and

1
n+1

n

∑
m=1

m
µm

zm→ 0 (n→ ∞) for all Z ∈ c0.

By (2.14) we also have

λn

n+1
yn =

λn

n
n

n+1
yn = O(1)o(1) = o(1) (n→ ∞)

and from the identity (2.12) given in the previous proof we concludexn → 0 (n→ ∞) .
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