

Volume 5, Number 2, pp. 1-12 (2008)

TAUBERIAN THEOREMS FOR THE OPERATOR OF Weighted Means

Bruno de Malafosse*
LMAH Université du Havre
BP 4006 I.U.T Le Havre
76610 Le Havre, France

(Communicated by Hüseyin Bor)

Abstract

In this paper we start with the Hardy's well-known Tauberian theorem for Cesàro means formulated as follows, if the sequence $X=\left(x_{n}\right)_{n}$ satisfies $\lim C_{1} X=L$ and $\Delta x_{n}=O(1 / n)$ then $\lim X=L$. We give here some extensions to the cases when the Cesàro operator is replaced by the operator of weighted means \bar{N}_{q} defined by Hardy and by the operator $C(\lambda)$. We show among other things that under some conditions if the sequence $X=\left(x_{n}\right)_{n}$ satisfies $\lim \bar{N}_{q} X=L_{1}$ and $\lim Q_{n} \Delta q_{n} x_{n}=L_{2}$ then $\lim X=$ L_{1}. Similarly under other conditions it is also shown that $\lim X=L_{1}$ if X satisfies the conditions $\lim \bar{N}_{q} X=L_{1}$ and $\lim q_{n}^{-1} Q_{n} \Delta x_{n}=L_{2}$. Next we determine sequences μ for which the conditions $[C(\lambda) X]_{n}$ and $\mu_{n} \Delta x_{n}$ are convergent imply together that X is convergent. This result is an extension of Hardy's Tauberian theorem and the other results extend in a certain sense some Tauberian theorems given by Hardy and Littlewood.

AMS Subject Classification: 40C05 and 46A45.
Keywords: matrix of weighted means, Tauberian theorem, infinite matrix

1 Introduction and preliminary results

In this paper we start from results on Hardy's Tauberian theorem for Cesàro means. This one was formulated as follows, if the sequence $X=\left(x_{n}\right)_{n}$ satisfies $\lim _{n \rightarrow \infty} C_{1} X=L$ and $\Delta x_{n}=O(1 / n)$ then $\lim _{n \rightarrow \infty} X=L$. It was shown by Fridy and Khan [2] that the hypothesis $\lim _{n \rightarrow \infty} C_{1} X=L$ can be replaced by the weaker assumption of the statistical limit st $\lim C_{1} X=L$, that is for every $\varepsilon>0$

$$
\lim _{n \rightarrow \infty} \frac{1}{n}\left|\left\{k \leq n:\left|\left[C_{1} X\right]_{k}-L\right| \geq \varepsilon\right\}\right|=0 .
$$

[^0]Here our aim is to show that the Hardy's Tauberian theorem for Cesàro means can be extended to the cases when C_{1} is successively replaced by the operator of weighted means \bar{N}_{q} defined in [3] and by $C(\lambda)$. In this way in Theorem 2 we show that under some conditions, if $X=\left(x_{n}\right)_{n}$ satisfies $\lim _{n \rightarrow \infty} \bar{N}_{q} X=L_{1}$ and $\lim _{n \rightarrow \infty} Q_{n} \Delta q_{n} x_{n}=L_{2}$ then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} X=L_{1} . \tag{1.1}
\end{equation*}
$$

Similarly in Theorem 6 we show that under some other conditions we have (1.1) for X satisfying

$$
\lim _{n \rightarrow \infty} \bar{N}_{q} X=L_{1} \text { and } \lim _{n \rightarrow \infty} \frac{Q_{n}}{q_{n}} \Delta x_{n}=L_{2} .
$$

The result stated in Proposition 8 is an extension of Hardy's Tauberian theorem, there we consider the case when C_{1} is replaced by $C(\lambda)$ and we determine sequences μ for which the conditions $[C(\lambda) X]_{n}$ and $\mu_{n} \Delta x_{n}$ are convergent imply together that X is convergent.

Now recall some definitions and results that are useful in the following. For given infinite matrix $A=\left(a_{n m}\right)_{n, m \geq 1}$ of complex numbers we define the operators A_{n} for any integer $n \geq 1$, by

$$
\begin{equation*}
A_{n}(X)=\sum_{m=1}^{\infty} a_{n m} x_{m} \tag{1.2}
\end{equation*}
$$

where $X=\left(x_{n}\right)_{n \geq 1}$ is a complex sequence. The series intervening in the second member being convergent. So we are led to the study of the infinite linear system

$$
\begin{equation*}
A_{n}(X)=b_{n} \quad n=1,2, \ldots \tag{1.3}
\end{equation*}
$$

where $B=\left(b_{n}\right)_{n \geq 1}$ is a one-column matrix and X the unknown one-column matrix. The system (1.3) can be written in the form $A X=B$, where $A X=\left(A_{n}(X)\right)_{n \geq 1}$. To simplify we will write $[A]_{n m}=a_{n m}$. By s we will denote the set of all complex sequences, and by c, c_{0} and l_{∞} we will denote the sets of all convergent, convergent to zero and bounded sequences respectively. For given subsets E and F of s we will denote (E, F) for the set of all infinite matrices mapping E to F. We will write $e=(1,1, \ldots, 1, \ldots)$ and S_{1} is the set of all infinite matrices $A=\left(a_{n m}\right)_{n, m \geq 1}$ with $\|A\|_{S_{1}}=\sup _{n \geq 1} \sum_{m=1}^{\infty}\left|a_{n m}\right|<\infty$. It is well known that S_{1} is a Banach algebra with norm $\|A\|_{S_{1}}$.

Recall the characterization of (c, c) that we will use in all that follows.
Lemma 1.1. $A=\left(a_{n m}\right)_{n, m \geq 1} \in(c, c)$ if and only if
i) $A \in S_{1}$,
ii) $\lim _{n \rightarrow \infty} \sum_{m=1}^{\infty} a_{n m}=l$ for some $l \in \mathbb{C}$
iii) $\lim _{n \rightarrow \infty} a_{n m}=l_{m}$ for some $l_{m} \in \mathbb{C}$ and for all $m \geq 1$.

A matrix transformation $A=\left(a_{n m}\right)_{n, m \geq 1} \in(c, c)$ is said to be regular if $A=\left(a_{n m}\right)_{n, m \geq 1} \in$ (c, c) and $x_{n} \rightarrow l(n \rightarrow \infty)$ implies $A_{n}(x)=\sum_{m=1}^{\infty} a_{n m} x_{m}$ is convergent for all n and converges to the same limit. We will write $x_{n} \rightarrow l$ implies $A_{n}(x) \rightarrow l(n \rightarrow \infty)$. Recall that A is regular if and only if A satisfies Lemma 1.1 i), $\lim _{n \rightarrow \infty} A_{n}(e)=1$ and $\lim _{n \rightarrow \infty} a_{n m}=0$ for all $m \geq 1$.

In the following we will use triangles. Recall that the infinite matrix T is a triangle if $T_{n m}=0$ for $m>n$, for all n, m and $T_{n n} \neq 0$ for all n. Let $£$ be the set of all triangles T, the set $£$ with the product of matrices is a group.

Let $q=\left(q_{n}\right)_{n \geq 1}$ be a positive sequence, Q be the sequence defined by $Q_{n}=\sum_{m=1}^{n} q_{m}$ for all $n \geq 1$. The operator of weighted means $\bar{N}_{q} \in £$ is defined by

$$
\left[\bar{N}_{q}\right]_{n m}=\left\{\begin{array}{lc}
\frac{q_{m}}{Q_{n}} & \text { for } m \leq n \\
0 & \text { otherwise }
\end{array}\right.
$$

In all that follows we write $x_{n}=0$ for any term of sequence with negative subscript. For given $\alpha \in s$ we write $D_{\alpha}=\left(\alpha_{n} \delta_{n m}\right)_{n, m \geq 1}$ for the diagonal matrix, (where $\delta_{n n}=1$ for all n and $\delta_{n m}=0$ for $n \neq m$). We write Σ for the infinite matrix defined by $\Sigma_{n m}=1$ for $m \leq n$ and $\Sigma_{n m}=0$ otherwise. By Δ we denote the matrix with $\Delta_{n n}=1, \Delta_{n, n-1}=-1$ for all n and $\Delta_{n m}=0$ otherwise. It can be shown that $\Delta \Sigma=\Sigma \Delta=I$ in the set $£$. With these notations it can easily be seen that $\bar{N}_{q}=D_{1 / Q} \Sigma D_{q}$.

We will use the matrix transformation $C(\lambda)$ where $\lambda \in s$ and $\lambda_{n} \neq 0$ for all n, see [1], recall that $C(\lambda) \in £$ and $[C(\lambda)]_{n m}=1 / \lambda_{n}$ for $m \leq n, n=1,2, \ldots$. For $\lambda=e$ we have $C(\lambda)=\Sigma$. In the set $£$ we have

$$
[C(\lambda)]^{-1}=\left(D_{1 / \lambda} \Sigma\right)^{-1}=\Delta D_{\lambda}
$$

So putting $\Delta(\lambda)=\Delta D_{\lambda}$ we conclude $[C(\lambda)]^{-1}=\Delta(\lambda)$. For $\lambda=(n)_{n \geq 1}, C(\lambda)=C_{1}$ is the Cesàro operator.

2 Tauberian theorems

In this section we will give two versions of Tauberian theorems concerning the operator of weighted means \bar{N}_{q}. Then we will deal with the operator $C(\lambda)$.

2.1 First version of Tauberian theorem for \bar{N}_{q}

State the next result.
Theorem 2.1. (i) The following statements are equivalent.
(a)

$$
\frac{Q}{q} \in l_{\infty},
$$

(b) for any given sequence $\left(x_{n}\right)_{n \geq 1}$

$$
\lim _{n \rightarrow \infty} \frac{q_{1} x_{1}+\ldots+q_{n} x_{n}}{Q_{n}}=L_{1} \text { if and only if } \lim _{n \rightarrow \infty} x_{n}=L_{1}
$$

for some $L_{1} \in \mathbb{C}$.
(ii) Assume

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n q_{n}} \sum_{m=1}^{n} \frac{m}{Q_{m}}=L \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{Q_{n}}{n q_{n}}=L^{\prime} \neq 0 \tag{2.2}
\end{equation*}
$$

for some scalars L and L^{\prime}. Then for any given sequence $\left(x_{n}\right)_{n \geq 1}$ the conditions

$$
\lim _{n \rightarrow \infty} \frac{q_{1} x_{1}+\ldots+q_{n} x_{n}}{Q_{n}}=L_{1} \text { and } \lim _{n \rightarrow \infty} Q_{n}\left(q_{n} x_{n}-q_{n-1} x_{n-1}\right)=L_{2}
$$

for some $L_{1}, L_{2} \in \mathbb{C}$ imply together $\lim _{n \rightarrow \infty} x_{n}=L_{1}$.
Proof. (i) In the set $£$ we have $\bar{N}_{q}^{-1}=\left(D_{1 / Q} \Sigma D_{q}\right)^{-1}=D_{1 / q} \Delta D_{Q}$ that is $\left[\bar{N}_{q}^{-1}\right]_{n, n-1}=$ $-Q_{n-1} / q_{n},\left[\bar{N}_{q}^{-1}\right]_{n n}=Q_{n} / q_{n}$ for all $n \geq 1$ (with the convention $Q_{0}=0$) and $\left[\bar{N}_{q}^{-1}\right]_{n n}=0$ otherwise. Since Q is increasing and $Q / q \in l_{\infty}$ we have

$$
\left\|\bar{N}_{q}^{-1}\right\|_{S_{1}}=\sup _{n}\left(\frac{Q_{n}+Q_{n-1}}{q_{n}}\right) \leq 2 \sup _{n} \frac{Q_{n}}{q_{n}}<\infty
$$

Then $\lim _{n \rightarrow \infty}\left(Q_{n}-Q_{n-1}\right) / q_{n}=1$ and we conclude that \bar{N}_{q}^{-1} is regular. This shows (a) holds if and only if \bar{N}_{q}^{-1} is regular. So (a) means that for any $Y=\left(y_{n}\right)_{n \geq 1}$ the condition $y_{n}=\left[\bar{N}_{q} X\right]_{n} \rightarrow L_{1}$ implies

$$
x_{n}=\left[\bar{N}_{q}^{-1} Y\right]_{n} \rightarrow L_{1}(n \rightarrow \infty)
$$

Now \bar{N}_{q} is regular so it is trivial that

$$
x_{n} \rightarrow L_{1} \text { implies } y_{n} \rightarrow L_{1}(n \rightarrow \infty)
$$

This completes the proof of (i).
(ii) Let $X=\left(x_{n}\right)_{n \geq 1} \in s$ and put $Y=\left(y_{n}\right)_{n \geq 1}=\bar{N}_{q} X$. Writing $Z=\left(z_{n}\right)_{n \geq 1}=\left(Q_{n}\left(q_{n} x_{n}-q_{n-1} x_{n-1}\right)\right)_{n \geq 1}$ we easily see that

$$
\begin{equation*}
Z=D_{Q} \Delta D_{q} X \tag{2.3}
\end{equation*}
$$

In the set $£$ we have $\left(D_{Q} \Delta D_{q}\right)^{-1}=D_{1 / q} \Sigma D_{1 / Q}$ and by (2.3) we get

$$
X=\left(D_{Q} \Delta D_{q}\right)^{-1} Z=D_{1 / q} \Sigma D_{1 / Q} Z
$$

Then

$$
\begin{aligned}
Y & =\bar{N}_{q} X=\bar{N}_{q} D_{1 / q} \Sigma D_{1 / Q} Z \\
& =D_{1 / Q} \Sigma D_{q} D_{1 / q} \Sigma D_{1 / Q} Z=D_{1 / Q} \Sigma^{2} D_{1 / Q} Z
\end{aligned}
$$

and the infinite matrix $\Sigma^{2} \in £$ is the triangle defined by $\left[\Sigma^{2}\right]_{n m}=n+1-m$ for $m \leq n$ and $\left[\Sigma^{2}\right]_{n m}=0$ otherwise. So we easily get

$$
y_{n}=\frac{1}{Q_{n}} \sum_{m=1}^{n} \frac{n+1-m}{Q_{m}} z_{m}=\frac{n+1}{Q_{n}} \sum_{m=1}^{n} \frac{z_{m}}{Q_{m}}-\frac{1}{Q_{n}} \sum_{m=1}^{n} \frac{m}{Q_{m}} z_{m}
$$

Since

$$
x_{n}=\left[D_{1 / q} \Sigma D_{1 / Q} Z\right]_{n}=\frac{1}{q_{n}} \sum_{m=1}^{n} \frac{z_{m}}{Q_{m}}
$$

we get

$$
y_{n}=\frac{n+1}{Q_{n}} q_{n} x_{n}-\frac{1}{Q_{n}} \sum_{m=1}^{n} \frac{m}{Q_{m}} z_{m}
$$

Consider now the triangle

$$
\widehat{Q}=\left(\begin{array}{cccc}
\cdot & & & \\
\cdot & \cdot & 0 \\
\cdot & \frac{1}{(n+1) q_{n}} \frac{m}{Q_{m}} & \cdot & \\
\cdot & \cdot & \cdot & \cdot
\end{array}\right)
$$

Condition (2.2) implies $1 / n q_{n} \sim L^{\prime} / Q_{n}(n \rightarrow \infty)$ and since Q_{n} is increasing we have

$$
0<\lim _{n \rightarrow \infty} Q_{n} \leq \infty
$$

and $\left(1 / n q_{n}\right)_{n \geq 1} \in c$. So $[\widehat{Q}]_{n m}$ tends to a limit as n tends to infinity for all m. This and condition (2.1) imply $\widehat{Q} \in(c, c)$ and since $Z \in c$ we have

$$
\frac{1}{(n+1) q_{n}} \sum_{m=1}^{n} \frac{m}{Q_{m}} z_{m} \rightarrow l(n \rightarrow \infty) \text { for some } l \in \mathbb{C}
$$

Using (2.2) we deduce that if $y_{n} \rightarrow L_{1}$ and $z_{n} \rightarrow L_{2}(n \rightarrow \infty)$ then

$$
x_{n}=\frac{Q_{n}}{(n+1) q_{n}} y_{n}+\frac{1}{(n+1) q_{n}} \sum_{m=1}^{n} \frac{m}{Q_{m}} z_{m} \rightarrow L^{\prime} L_{1}+l
$$

and $X \in c$. Now since \bar{N}_{q} is regular and $y_{n}=\left[\bar{N}_{q} X\right]_{n}$ we have

$$
y_{n} \rightarrow L_{1}=L^{\prime} L_{1}+l(n \rightarrow \infty)
$$

We conclude $x_{n} \rightarrow L_{1}(n \rightarrow \infty)$.
Concerning Theorem 2.1 (i) we have the next result.
Corollary 2.2. Let $X=\left(x_{n}\right)_{n \geq 1}$ be any given sequence. The condition

$$
\begin{equation*}
\left[\bar{N}_{q} X\right]_{n} \rightarrow L \text { implies } x_{n} \rightarrow L(n \rightarrow \infty) \tag{2.4}
\end{equation*}
$$

for some $L \in \mathbb{C}$ implies there are $\gamma>1$ and $K>0$ such that

$$
q_{n} \geq K \gamma^{n} \text { for all } n
$$

Proof. Condition (2.4) implies \bar{N}_{q}^{-1} is regular, that is

$$
\frac{Q_{n}+Q_{n-1}}{q_{n}}=O(1)(n \rightarrow \infty)
$$

and $Q / q \in l_{\infty}$. Then $q \in \widehat{C}_{1}$ where \widehat{C}_{1} is the set of all sequences X with $\left(\left(\sum_{k=1}^{n} x_{k}\right) / x_{n}\right)_{n \geq 1} \in$ l_{∞}, (cf. [1]). We conclude by [1, Proposition 2.1, pp. 1786].

As a direct consequence of Theorem 2.1 (ii) we get
Corollary 2.3. Let $\alpha \geq 0$ and let $\left(x_{n}\right)_{n \geq 1}$ be a sequence with

$$
\frac{x_{1}+2^{\alpha} x_{2}+\ldots+n^{\alpha} x_{n}}{\sum_{m=1}^{n} m^{\alpha}} \rightarrow L_{1} \text { and }\left(\sum_{m=1}^{n} m^{\alpha}\right)\left(n^{\alpha} x_{n}-(n-1)^{\alpha} x_{n-1}\right) \rightarrow L_{2}
$$

for some $L_{1}, L_{2} \in \mathbb{C}$. Then $x_{n} \rightarrow L_{1}(n \rightarrow \infty)$.
Proof. If $\alpha=0$ (2.1) and (2.2) are trivially satisfied. Now put $q_{n}=n^{\alpha}$ with $\alpha>0$ and $\alpha \neq 1$. We obtain

$$
\frac{1}{n^{\alpha+1}} \int_{0}^{n} x^{\alpha} d x \leq \frac{Q_{n}}{n q_{n}}=\frac{\sum_{m=1}^{n} m^{\alpha}}{n^{\alpha+1}} \leq \frac{1}{n^{\alpha+1}} \int_{1}^{n+1} x^{\alpha} d x
$$

and since the sequences $\left(1 / n^{\alpha+1}\right) \int_{0}^{n} x^{\alpha} d x$ and $\left(1 / n^{\alpha+1}\right) \int_{1}^{n+1} x^{\alpha} d x$ tends to the same limit $1 /(\alpha+1)$ as n tends to infinity we conclude $\lim _{n \rightarrow \infty} Q_{n} / n q_{n} \rightarrow 1 /(\alpha+1)$ and (2.2) holds. Now we need to verify (2.1). For this note that for every $m \geq 2$

$$
\frac{m}{Q_{m}} \leq \frac{m}{\int_{0}^{m} x^{\alpha} d x}=\frac{\alpha+1}{m^{\alpha}}
$$

Then

$$
\begin{aligned}
\sum_{m=1}^{n} \frac{m}{Q_{m}} & \leq 1+(\alpha+1) \sum_{m=2}^{n} \frac{1}{m^{\alpha}} \\
& \leq 1+(\alpha+1) \int_{1}^{n} \frac{d x}{x^{\alpha}} \\
& \leq 1+\frac{\alpha+1}{1-\alpha}\left(n^{1-\alpha}-1\right)
\end{aligned}
$$

Thus

$$
\frac{1}{n^{\alpha+1}} \sum_{m=1}^{n} \frac{m}{Q_{m}} \leq \frac{1+\alpha}{1-\alpha}\left(\frac{1}{n^{2 \alpha}}-\frac{1}{n^{\alpha+1}}\right)+\frac{1}{n^{\alpha+1}}
$$

and

$$
\frac{1}{n^{\alpha+1}} \sum_{m=1}^{n} \frac{m}{Q_{m}} \rightarrow 0(n \rightarrow \infty) .
$$

We conclude applying Theorem 2.1.
For $\alpha=1$ we get

$$
\frac{1}{n q_{n}} \sum_{m=1}^{n} \frac{m}{Q_{m}}=\frac{1}{n^{2}} \sum_{m=1}^{n} \frac{2}{(m+1)} \leq \frac{2}{n^{2}} \int_{0}^{n} \frac{d x}{x+1}=\frac{2}{n^{2}} \ln (n+1)
$$

and

$$
\frac{1}{n q_{n}} \sum_{m=1}^{n} \frac{m}{Q_{m}} \rightarrow 0(n \rightarrow \infty)
$$

Since (2.2) trivially holds with $L^{\prime}=1 / 2$ we can apply Theorem 2.1 and conclude that $x_{n} \rightarrow L_{1}(n \rightarrow \infty)$.

We immediatly deduce from the previous proof the following.
Corollary 2.4. Let $\left(x_{n}\right)_{n \geq 1}$ be any sequence. If

$$
\frac{x_{1}+2 x_{2}+\ldots+n x_{n}}{n^{2}} \rightarrow L_{1} \text { and } n^{2}\left(n x_{n}-(n-1) x_{n-1}\right) \rightarrow L_{2}
$$

then $x_{n} \rightarrow 2 L_{1}(n \rightarrow \infty)$.

2.2 Second version of Tauberian theorem for matrix of weighted means

In this subsection we consider a second statement of Tauberian theorem where conditions (2.1) and (2.2) in Theorem 2.1 are replaced by the convergence of $\left(1 / Q_{n}\right) \sum_{m=2}^{n} q_{m} Q_{m-1} / Q_{m}$ and the condition on $Q_{n}\left(q_{n} x_{n}-q_{n-1} x_{n-1}\right)$ is replaced by a similar condition on another sequence defined by $Q_{n}\left(x_{n}-x_{n-1}\right) / q_{n}$.
Theorem 2.5. Assume

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{Q_{n}} \sum_{m=2}^{n} q_{m} \frac{Q_{m-1}}{Q_{m}}=L \tag{2.5}
\end{equation*}
$$

for some scalar L. For any given sequence $\left(x_{n}\right)_{n \geq 1}$ the conditions

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{q_{1} x_{1}+\ldots+q_{n} x_{n}}{Q_{n}}=L_{1} \text { and } \lim _{n \rightarrow \infty} \frac{Q_{n}}{q_{n}}\left(x_{n}-x_{n-1}\right)=L_{2} \tag{2.6}
\end{equation*}
$$

for some $L_{1}, L_{2} \in \mathbb{C}$ imply $\lim _{n \rightarrow \infty} x_{n}=L_{1}$.
Proof. Put

$$
\begin{equation*}
Y=\left(y_{n}\right)_{n \geq 1}=\bar{N}_{q} X \tag{2.7}
\end{equation*}
$$

and $Z=D_{Q / q} \Delta X$. Then

$$
\begin{equation*}
X=\Sigma D_{q / Q} Z \tag{2.8}
\end{equation*}
$$

and

$$
Y=\bar{N}_{q} \Sigma D_{q / Q} Z=D_{1 / Q} \Sigma D_{q} \Sigma D_{q / Q} Z
$$

We have

$$
\left[\Sigma D_{q} \Sigma\right]_{n m}= \begin{cases}\sum_{i=m}^{n} q_{i} & \text { for } m \leq n \\ 0 & \text { otherwise }\end{cases}
$$

Then

$$
\begin{aligned}
y_{n} & =\frac{1}{Q_{n}} \sum_{m=1}^{n}\left(\sum_{i=m}^{n} q_{i}\right) \frac{q_{m}}{Q_{m}} z_{m} \\
& =\frac{1}{Q_{n}} \sum_{m=1}^{n}\left(Q_{n}-Q_{m-1}\right) \frac{q_{m}}{Q_{m}} z_{m} \\
& =\sum_{m=1}^{n} \frac{q_{m}}{Q_{m}} z_{m}-\frac{1}{Q_{n}} \sum_{m=1}^{n} \frac{Q_{m-1}}{Q_{m}} q_{m} z_{m}
\end{aligned}
$$

Using (2.8) we deduce

$$
y_{n}=x_{n}-\frac{1}{Q_{n}} \sum_{m=1}^{n} \frac{Q_{m-1}}{Q_{m}} q_{m} z_{m}
$$

and

$$
x_{n}=y_{n}+\frac{1}{Q_{n}} \sum_{m=1}^{n} \frac{Q_{m-1}}{Q_{m}} q_{m} z_{m} .
$$

Now consider the matrix \widetilde{Q} with $[\widetilde{Q}]_{n m}=q_{m} Q_{m-1} / Q_{n} Q_{m}$ for $2 \leq m \leq n$ and $[\widetilde{Q}]_{n m}=0$ otherwise. Since Q is increasing we have $1 / Q \in c$ and $[\widetilde{Q}]_{n m}$ tends to a limit as n tends to infinity. This and conditions (2.5) imply together $\widetilde{Q} \in(c, c)$. Consider now the sequence w defined by

$$
w_{n}=\frac{1}{Q_{n}} \sum_{m=1}^{n} \frac{Q_{m-1}}{Q_{m}} q_{m} z_{m} .
$$

The conditions given in (2.6) mean that $y_{n} \rightarrow L_{1}$ and $z_{n} \rightarrow L_{2}(n \rightarrow \infty)$ and since $\widetilde{Q} \in(c, c)$ we have

$$
x_{n}=y_{n}+w_{n}=y_{n}+[\widetilde{Q} Z]_{n} \rightarrow L_{1}+l \text { for some } l \in \mathbb{C} .
$$

To complete the proof we need to show that $l=0$. For this it is enough to see that since \bar{N}_{q} is regular if $x_{n} \rightarrow L_{1}+l$ then

$$
y_{n}=\left[\bar{N}_{q} X\right]_{n} \rightarrow L_{1}+l=L_{1}(n \rightarrow \infty)
$$

and so $x_{n} \rightarrow L_{1}(n \rightarrow \infty)$. This concludes the proof.
This result leads to the next corollary.
Corollary 2.6. Let $\left(x_{n}\right)_{n \geq 1}$ be a sequence with

$$
\lim _{n \rightarrow \infty} \frac{1}{\ln n}\left(x_{1}+\frac{1}{2} x_{2}+\ldots+\frac{1}{n} x_{n}\right)=L_{1} \text { and } \lim _{n \rightarrow \infty} n \ln n\left(x_{n}-x_{n-1}\right)=L_{2} .
$$

Then $\lim _{n \rightarrow \infty} x_{n}=L_{1}$.
Proof. We have $q_{n}=1 / n$ for all n and $Q_{n}=\sum_{m=1}^{n} 1 / m$ and

$$
u_{n}=\frac{1}{Q_{n}} \sum_{m=2}^{n} q_{m} \frac{Q_{m-1}}{Q_{m}}=\frac{1}{Q_{n}} \sum_{m=2}^{n} \frac{1}{m}-\sigma_{n}
$$

with

$$
\sigma_{n}=\frac{1}{Q_{n}} \sum_{m=2}^{n} \frac{1}{m^{2} Q_{m}} .
$$

Since Q_{n} tends to infinity as n tends to infinity and $\sigma_{n} \leq\left(1 / Q_{n}\right) \sum_{m=2}^{n} 1 / m^{2}$ we have σ_{n} tends to zero. Then u_{n} tends to 1 as n tends to infinity and condition (2.5) in Theorem 2.5 is verified. Finally since $Q_{n} \sim \ln n$ we have $Q_{n} / q_{n} \sim n \ln n(n \rightarrow \infty)$ and we conclude by Theorem 2.5.
Remark 2.7. We can see that Theorem 2.1 and Theorem 2.5 are not embedded the one into the other. Indeed, consider the case when $q_{n}=n$ for all n. Then the sequence $X=e$ verifies Theorem 2.5 since (2.5) is satisfied with $L=1$ and $\left(Q_{n} / q_{n}\right)\left(x_{n}-x_{n-1}\right)=0$ for all n but

$$
Q_{n}\left(q_{n} x_{n}-q_{n-1} x_{n-1}\right) \sim n^{2} / 2(n \rightarrow \infty)
$$

so $Q_{n}\left(q_{n} x_{n}-q_{n-1} x_{n-1}\right) \rightarrow \infty(n \rightarrow \infty)$ and Theorem 2.1 cannot be verified.
Furthermore in the case when $q_{n}=1 / n$ we have seen in Corollary 2.6 that condition (2.5) in Theorem 2.5 is verified but (2.2) in Theorem 2.1 is not satisfied.

2.3 Case of the operator $C(\lambda)$

In this subsection we will consider the case when \bar{N}_{q} is replaced by $C(\lambda)$. We will obtain some results that extend some of those given in the previous subsections.

Reasoning as in Theorem 2.1 and Theorem 2.5 we can state another result where \bar{N}_{q} is replaced by $C(\lambda)$. We will see that in the case $\lambda=\mu$ the sequence λ plays the role of Q with $q=e$. In the following we will write U^{+}for the set of all sequences $\left(x_{n}\right)_{n \geq 1}$ with $x_{n}>0$ for all n.

Proposition 2.8. Let $\lambda, \mu \in U^{+}$and assume

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{m=1}^{n} \frac{m}{\mu_{m}}=L \tag{2.9}
\end{equation*}
$$

and

$$
\lim _{n \rightarrow \infty} \frac{\lambda_{n}}{n}=L^{\prime}
$$

for some scalars L and L^{\prime}.
Then for any given sequence $\left(x_{n}\right)_{n \geq 1} \in s$ conditions

$$
\begin{equation*}
\frac{x_{1}+\ldots+x_{n}}{\lambda_{n}} \rightarrow l \text { and } \mu_{n}\left(x_{n}-x_{n-1}\right) \rightarrow l^{\prime}(n \rightarrow \infty) \tag{2.10}
\end{equation*}
$$

for some $l, l^{\prime} \in \mathbb{C}$ imply together $\left(x_{n}\right)_{n \geq 1}$ is convergent and

$$
x_{n} \rightarrow L^{\prime} l(n \rightarrow \infty) .
$$

Proof. Put $y_{n}=\left(x_{1}+\ldots+x_{n}\right) / \lambda_{n}$ and $z_{n}=\mu_{n}\left(x_{n}-x_{n-1}\right)$. We have $Y=C(\lambda) X$ and $Z=$ $D_{\mu} \Delta X$ and then $Y=C(\lambda) \Sigma D_{1 / \mu} Z$. Since $C(\lambda)=D_{1 / \lambda} \Sigma$ and $\left(D_{\mu} \Delta\right)^{-1}=\Sigma D_{1 / \mu}$ we get $Y=D_{1 / \lambda} \Sigma^{2} D_{1 / \mu} Z$ and $X=\Sigma D_{1 / \mu} Z$. As we have seen in the proof of Theorem 2.5 the explicit calculation of $D_{1 / \lambda} \Sigma^{2} D_{1 / \mu}$ permits us to obtain

$$
y_{n}=\frac{1}{\lambda_{n}} \sum_{m=1}^{n} \frac{n-m+1}{\mu_{m}} z_{m} .
$$

Similarly we have

$$
x_{n}=\left[\Sigma D_{1 / \mu} Z\right]_{n}=\sum_{m=1}^{n} \frac{z_{m}}{\mu_{m}} .
$$

So we successively get

$$
\begin{equation*}
y_{n}=\frac{n+1}{\lambda_{n}} x_{n}-\frac{1}{\lambda_{n}} \sum_{m=1}^{n} \frac{m}{\mu_{m}} z_{m}, \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{n}=\frac{\lambda_{n}}{n+1} y_{n}+\frac{1}{n+1} \sum_{m=1}^{n} \frac{m}{\mu_{m}} z_{m} . \tag{2.12}
\end{equation*}
$$

Now let Λ be the triangle defined by $\Lambda_{n m}=m /\left((n+1) \mu_{m}\right)$ for $2 \leq m \leq n, \Lambda_{n m}=0$ for $m=1$ or $m>n$ and for all n, m. By (2.9) we have $\Lambda \in(c, c)$. Now conditions given in (2.10) mean that $y_{n} \rightarrow l$ and $z_{n} \rightarrow l^{\prime}(n \rightarrow \infty)$ and since $\Lambda \in(c, c)$ we deduce that

$$
x_{n}=\frac{\lambda_{n}}{n+1} y_{n}+[\Lambda Z]_{n} \rightarrow L^{\prime} l+\chi(n \rightarrow \infty) \text { for some } \chi \in \mathbb{C}
$$

Now we are led to deal with the cases $L^{\prime}=0$ and $L^{\prime} \neq 0$.
1 - Assume $L^{\prime}=0$. Here $x_{n} \rightarrow L^{\prime} l+\chi=\chi$ and

$$
\frac{x_{1}+\ldots+x_{n}}{n} \rightarrow \chi .
$$

Since $n / \lambda_{n} \rightarrow \infty$ and

$$
\frac{x_{1}+\ldots+x_{n}}{\lambda_{n}}=\frac{x_{1}+\ldots+x_{n}}{n} \frac{n}{\lambda_{n}} \rightarrow l(n \rightarrow \infty)
$$

we conclude that $\chi=0$ and $x_{n} \rightarrow 0=L^{\prime} l(n \rightarrow \infty)$.
2 - Case $L^{\prime} \neq 0$. Here since $x_{n} \rightarrow L^{\prime} l+\chi(n \rightarrow \infty)$ we also have

$$
\frac{x_{1}+\ldots+x_{n}}{n} \rightarrow L^{\prime} l+\chi(n \rightarrow \infty)
$$

Then

$$
\frac{x_{1}+\ldots+x_{n}}{\lambda_{n}}=\frac{x_{1}+\ldots+x_{n}}{n} \frac{n}{\lambda_{n}} \rightarrow \frac{L^{\prime} l+\chi}{L^{\prime}}=l(n \rightarrow \infty)
$$

So $\chi=0$ and $x_{n} \rightarrow L^{\prime} l(n \rightarrow \infty)$. This concludes the proof.
We deduce the following
Corollary 2.9. Let $X=\left(x_{n}\right)_{n \geq 1}$ be a sequence with

$$
\left(x_{1}+\ldots+x_{n}\right) / n \rightarrow l \text { and } n\left(x_{n}-x_{n-1}\right) \rightarrow l^{\prime}(n \rightarrow \infty)
$$

for some $l, l^{\prime} \in \mathbb{C}$. Then
(i) $x_{n} \rightarrow l(n \rightarrow \infty)$,
(ii) $l^{\prime}=0$.

Proof. Condition (2.9) is trivially satisfied and $L=L^{\prime}=1$. Since $\Lambda / L=\Lambda$ defined in the proof of Proposition 2.8 is regular we have here $l^{\prime}=\chi$. As we have just seen we successively get $x_{n} \rightarrow l+\chi(n \rightarrow \infty), l+\chi=l+l^{\prime}=l$ and $l^{\prime}=0$.

Remark 2.10. It can be seen that Proposition 2.8 is an extension of Hardy's Tauberian theorem. For this show there is $\mu \in U^{+}$with $\left(n / \mu_{n}\right)_{n} \in U^{+} \backslash l_{\infty}$ such that (2.9) holds. Take for instance $\mu_{n}=2^{i} / i$ when $n=2^{i}, i \geq 1$ and $\mu_{n}=n^{3}$ otherwise. Let n be a given integer and put $I_{n}=\left\{2^{i}: 2^{i} \leq n\right\}$. Using the notation $\overline{I_{n}^{\prime}}=\overline{I_{n}} \cap[1, n]$ we successively get

$$
\begin{aligned}
s_{n} & =\frac{1}{n} \sum_{m=1}^{n} \frac{m}{\mu_{m}}=\frac{1}{n} \sum_{m \in I_{n}} \frac{m}{\mu_{m}}+\frac{1}{n} \sum_{m \in \overline{I_{n}^{\prime}}} \frac{m}{\mu_{m}} \\
& \leq \frac{1}{n} \sum_{k \in\left\{i: 2^{i} \leq n\right\}} k+\frac{1}{n} \sum_{m \in \bar{I}_{n}} \frac{1}{m^{2}} .
\end{aligned}
$$

Putting $N=\max \left\{i: 2^{i} \leq n\right\}$ and $S=\sum_{m=1}^{\infty} 1 / m^{2}$ we deduce

$$
s_{n} \leq \frac{1}{n} \frac{N(N+1)}{2}+\frac{S}{n}
$$

Since $2^{N} \leq n$ we get

$$
s_{n} \leq \frac{1}{2^{N+1}} N(N+1)+\frac{S}{n}
$$

Finally from the definition of N and the inequality $N \leq \ln n / \ln 2$ we obtain $N=E(\ln n / \ln 2)$. So N tends to infinity as n tends to infinity and s_{n} tends to zero.

Since we have

$$
n\left(x_{n}-x_{n-1}\right)=\frac{n}{\mu_{n}} \mu_{n}\left(x_{n}-x_{n-1}\right)
$$

and $\left(n / \mu_{n}\right)_{n \geq 1} \notin l_{\infty}$ the condition $\mu_{n}\left(x_{n}-x_{n-1}\right) \rightarrow l^{\prime}(n \rightarrow \infty)$ does not imply $n\left(x_{n}-x_{n-1}\right)=$ $O(1)(n \rightarrow \infty)$ and we have shown that Proposition 2.8 is an extension of Hardy's Tauberian theorem.

More precisely we can state another result when $C(\lambda) X \in c_{0}$. For this we need to recall the next well-known result

Lemma 2.11. $A \in\left(c_{0}, c_{0}\right)$ if and only if $A \in S_{1}$ and $\lim _{n \rightarrow \infty} a_{n m}=0$ for all m.
We can state the following.
Proposition 2.12. Let $\lambda, \mu \in U^{+}$and assume

$$
\begin{equation*}
\sup _{n}\left(\frac{1}{n} \sum_{m=1}^{n} \frac{m}{\mu_{m}}\right)<\infty \tag{2.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{n} \frac{\lambda_{n}}{n}<\infty \tag{2.14}
\end{equation*}
$$

For any given sequence $\left(x_{n}\right)_{n \geq 1}$ the conditions $\left(x_{1}+\ldots+x_{n}\right) / \lambda_{n} \rightarrow 0$ and $\mu_{n}\left(x_{n}-x_{n-1}\right) \rightarrow$ 0 imply $x_{n} \rightarrow 0(n \rightarrow \infty)$.

Proof. We will use the same notations that in the proof of Proposition 2.8. Here from (2.13) we have $\Lambda \in S_{1}$ and trivially $\lim _{n \rightarrow \infty} \Lambda_{n m}=0$ for all $m \geq 1$. Then $\Lambda \in\left(c_{0}, c_{0}\right)$ and

$$
\frac{1}{n+1} \sum_{m=1}^{n} \frac{m}{\mu_{m}} z_{m} \rightarrow 0(n \rightarrow \infty) \text { for all } Z \in c_{0}
$$

By (2.14) we also have

$$
\frac{\lambda_{n}}{n+1} y_{n}=\frac{\lambda_{n}}{n} \frac{n}{n+1} y_{n}=O(1) o(1)=o(1)(n \rightarrow \infty)
$$

and from the identity (2.12) given in the previous proof we conclude $x_{n} \rightarrow 0(n \rightarrow \infty)$.

References

[1] de Malafosse, B., On some BK space, Int. J. Math.-Math. Sci. 28 (2003), 1783-1801.
[2] Fridy, J. A., Khan, M. K., Statistical extensions of some classical Tauberian theorems, Proc. Amer. Math. Soc. 128 (2000), 2347-2355.
[3] Hardy, G. H., Divergent series, Oxford University Press, Oxford, 1949.

[^0]: *E-mail address: bdemalaf@ wanadoo.fr

