Growth and Oscillation Theory of Non-homogeneous Complex Differential Equations With Entire Coefficients

BENHARRAT BELAÏDI*
Department of Mathematics
Laboratory of Pure and Applied Mathematics
University of Mostaganem
B. P 227 Mostaganem, Algeria

(Communicated by Weiyuan Qiu)

Abstract

In this paper, we investigate the growth and the complex oscillation theory of the linear differential equation $f^{(k)}+A_{k-1} f^{(k-1)}+\ldots+A_{1} f^{\prime}+A_{0} f=F$, where A_{0}, A_{1}, \ldots, $A_{k-1}, F \not \equiv 0$ are entire functions. We also investigate the relation between the solutions of a pair non-homogeneous linear differential equations. We improve some results due to the author, S. Abbas and Z. X. Chen, S. A. Gao.

AMS Subject Classification: 34M10, 34M05, 30D35.
Keywords: Differential equations, Order of growth, Exponent of convergence of distinct zeros, Wiman-Valiron theory.

1 Introduction and statement of results

Throughout this paper, we assume that the reader is familiar with the fundamental results and the standard notations of the Nevanlinna value distribution theory (see [7]). In addition, we will use $\lambda(f)$ and $\bar{\lambda}(f)$ to denote respectively the exponents of convergence of the zerosequence and the sequence of distinct zeros of $f, \rho(f)$ to denote the order of growth of f.

For $k \geq 2$ we consider the linear differential equation

$$
\begin{equation*}
f^{(k)}+A_{k-1} f^{(k-1)}+\ldots+A_{1} f^{\prime}+A_{0} f=F \tag{1.1}
\end{equation*}
$$

where $A_{0}, A_{1}, \ldots, A_{k-1}, F \not \equiv 0$ are entire functions of finite order.
It is well-known that all solutions of equation (1.1) are entire functions and if at least one coefficient $A_{S}(z)$ is transcendental, then at least some of the solutions are of infinite order.

[^0]On the other hand, there exist equations of this form that possess one or more solutions of finite order. For example $f(z)=e^{z}$ satisfies $f^{\prime \prime \prime}-e^{z} f^{\prime \prime}-e^{-z} f^{\prime}+e^{z} f=e^{z}-1$.

Recently the complex oscillation theory of the complex differential equations has been investigated actively $[1,2,3,4]$. In [4], Chen and Gao have investigated the complex oscillation of (1.1) and have obtained the following results:

Theorem 1.1. ([4], p. 455) Suppose that $k \geq 2$ is a natural number and that A_{0}, A_{1}, \ldots, $A_{k-1}, F \not \equiv 0$ are finite order entire functions, where there exists an $A_{s}(0 \leq s \leq k-1)$ such that for real constants $\alpha>0, \beta>0$, we have $\rho\left(A_{j}\right)<\beta(j \neq s)$ and $\rho(F) \geq \beta$. Suppose that for any given $\varepsilon>0$, there exist two finite collections of real numbers $\left\{\varphi_{m}\right\}$ and $\left\{\theta_{m}\right\}$ which satisfy

$$
\begin{equation*}
\varphi_{1}<\theta_{1}<\varphi_{2}<\theta_{2}<\ldots<\varphi_{n}<\theta_{n}<\varphi_{n+1}=\varphi_{1}+2 \pi \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{m=1}^{n}\left(\varphi_{m+1}-\theta_{m}\right)<\varepsilon \tag{1.3}
\end{equation*}
$$

such that

$$
\begin{equation*}
\left|A_{s}(z)\right| \geq \exp \left\{(1+o(1)) \alpha|z|^{\beta}\right\} \tag{1.4}
\end{equation*}
$$

as $z \rightarrow \infty$ in $\varphi_{m} \leq \arg (z) \leq \theta_{m}(m=1, \ldots, n)$. Then all solutions of (1.1) satisfy

$$
\begin{equation*}
\bar{\lambda}(f)=\lambda(f)=\rho(f)=\infty \tag{1.5}
\end{equation*}
$$

with some possible finite order solutions. All of the possible finite order solutions have the same order of growth $\rho(0 \leq \rho<\infty)$. If there exist two finite order solutions f_{0}, $f_{1}\left(f_{0} \neq f_{1}\right)$ of (1.1), then $f_{0}-f_{1}$ is a polynomial with $\operatorname{deg}\left(f_{0}-f_{1}\right) \leq s-1$, and f_{0} satisfies

$$
\begin{equation*}
\rho=\rho\left(f_{0}\right) \leq \max \left\{\rho\left(A_{s}\right), \rho(F), \bar{\lambda}\left(f_{0}\right)\right\} . \tag{1.6}
\end{equation*}
$$

If $\rho\left(A_{s}\right) \neq \rho(F), \bar{\lambda}\left(f_{0}\right)<\rho$, then $\rho\left(f_{0}\right)=\max \left\{\rho\left(A_{s}\right), \rho(F)\right\}$. Furthermore, if among A_{s-1}, \ldots, A_{0}, there exist and only exist $A_{m_{1}}, \ldots, A_{m_{d}}\left(s-1 \geq m_{1}>m_{2}>\ldots>m_{d} \geq 0\right)$ being transcendental, $\rho\left(A_{m_{j}}\right)(j=1, \ldots, d)$ are unequal to each other or $d=1$, and if (1) $m_{d}=0$ or (2) $m_{d}>0$ and polynomials $A_{m_{d}-1}, A_{m_{d}-2}, \ldots, A_{0}$ satisfy that $\operatorname{deg}\left(A_{j}\right)-j$ $\left(j=m_{d}-1, m_{d}-2, \ldots, 0\right)$ are unequal to each other, or $m_{d}=1$ and $A_{0} \not \equiv 0$, then all solutions of (1.1) satisfy (1.5) with at most one possible finite order solution.

Theorem 1.2. ($[4], p .455)$ Suppose that $A_{0}, \ldots, A_{s}, \ldots, A_{k-1}, \alpha, \beta,\left\{\varphi_{m}\right\},\left\{\theta_{m}\right\}$ and k satisfy the hypotheses of Theorem 1.1, and that $F \not \equiv 0$ is an entire function with $\rho(F)<\beta$. Then all solutions of (1.1) satisfy (1.5) with some possible polynomial solutions of degree $\leq s-1$.

The purpose of this paper is to improve the above results by expressing the growth condition of the coefficient $A_{s}(z)$ more explicitly without making use of $o(1)$. We will prove the following theorems:

Theorem 1.3. Suppose that $k \geq 2$ is a natural number and that $A_{0}, A_{1}, \ldots, A_{k-1}, F \not \equiv 0$ are finite order entire functions, where there exists an $A_{s}(0 \leq s \leq k-1)$ such that for real constants α, δ with $\alpha>0, \delta>0$, we have

$$
\begin{equation*}
\max \left\{\rho\left(A_{j}\right): j=0,1, \ldots, s-1, s+1, \ldots, k-1, \rho(F)\right\}<\delta \tag{1.7}
\end{equation*}
$$

and either
(i) $\max \left\{\rho\left(A_{j}\right): j=1, \ldots, s-1, \rho(F)\right\}<\rho\left(A_{0}\right)$ or
(ii) $\max \left\{\rho\left(A_{j}\right): j=0,1, \ldots, s-1\right\}<\rho(F)$.

Suppose that for any given $\varepsilon>0$, there exist two finite collections of real numbers $\left\{\varphi_{m}\right\}$ and $\left\{\theta_{m}\right\}$ which satisfy (1.2) and (1.3) such that

$$
\begin{equation*}
\left|A_{s}(z)\right| \geq \exp \left\{\alpha|z|^{\delta}\right\} \tag{1.8}
\end{equation*}
$$

as $z \rightarrow \infty$ in $\varphi_{m} \leq \arg (z) \leq \theta_{m}(m=1, \ldots, n)$.
(a) Then every solution f of (1.1), satisfies

$$
\begin{equation*}
\lambda(f)=\bar{\lambda}(f)=\rho(f)=\infty . \tag{1.9}
\end{equation*}
$$

(b) If φ is a finite order entire function, then

$$
\begin{equation*}
\lambda(f-\varphi)=\bar{\lambda}(f-\varphi)=\rho(f)=\infty . \tag{1.10}
\end{equation*}
$$

From Theorem 1.3, we obtain the following corollary:
Corollary 1.4. Suppose that $A_{0}, \ldots, A_{k-1}, F \not \equiv 0, \alpha, \delta, \varepsilon,\left\{\phi_{m}\right\},\left\{\theta_{m}\right\}$ and k satisfy the hypotheses of Theorem 1.3. Then every solution f of (1.1) has infinitely many fixed points and

$$
\begin{equation*}
\lambda(f-z)=\bar{\lambda}(f-z)=\rho(f)=\infty . \tag{1.11}
\end{equation*}
$$

Theorem 1.5. Suppose that $k \geq 2$ is a natural number and that $A_{0}, A_{1}, \ldots, A_{k-1}, F \not \equiv 0$ are finite order entire functions, where there exists an $A_{s}(0 \leq s \leq k-1)$ such that for real constants α, δ with $\alpha>0, \delta>0$, we have

$$
\begin{equation*}
\max \left\{\rho\left(A_{j}\right): j=0,1, \ldots, s-1, s+1, \ldots, k-1\right\}<\delta \tag{1.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\max \left\{\rho\left(A_{j}\right): j=1, \ldots, s-1\right\}<\rho\left(A_{0}\right), \tag{1.13}
\end{equation*}
$$

let $F \not \equiv 0$ be a finite order entire function such that $\rho(F) \geq \delta$. Suppose that for any given $\varepsilon>0$, there exist two finite collections of real numbers $\left\{\phi_{m}\right\}$ and $\left\{\theta_{m}\right\}$ that satisfy (1.2),(1.3) such that (1.8) holds as $z \rightarrow \infty$ in $\phi_{m} \leq \arg z \leq \theta_{m}(m=1, \ldots, n)$.
(a) Then all solutions of (1.1) satisfy (1.9), with at most one finite order solution f_{0}.
(b) If there exists a finite order solution f_{0} in case (a), then f_{0} satisfies

$$
\begin{gather*}
\rho\left(f_{0}\right) \leq \max \left\{\rho(F), \rho\left(A_{s}\right), \bar{\lambda}\left(f_{0}\right)\right\} . \tag{1.14}\\
\text { If } \bar{\lambda}\left(f_{0}\right)<\rho\left(f_{0}\right), \rho(F) \neq \rho\left(A_{s}\right), \text { then } \rho\left(f_{0}\right)=\max \left\{\rho(F), \rho\left(A_{s}\right)\right\} .
\end{gather*}
$$

(c) If f is an infinite order solution of equation (1.1) and if φ is a finite order entire function which is not solution of (1.1), then

$$
\begin{equation*}
\lambda(f-\varphi)=\bar{\lambda}(f-\varphi)=\rho(f)=\infty . \tag{1.15}
\end{equation*}
$$

From Theorem 1.5, we obtain the following corollary:
Corollary 1.6. Suppose that $A_{0}, \ldots, A_{k-1}, F \not \equiv 0, \alpha, \delta, \varepsilon,\left\{\phi_{m}\right\},\left\{\theta_{m}\right\}$ and k satisfy the hypotheses of Theorem 1.5. Then
(i) If there exists a finite order solution f_{0} in case (a), then for any infinite order solution f of equation (1.1) and for any constant $C \neq 1$, we have

$$
\begin{equation*}
\lambda\left(f-C f_{0}\right)=\bar{\lambda}\left(f-C f_{0}\right)=\rho(f)=\infty . \tag{1.16}
\end{equation*}
$$

(ii) If f is an infinite order solution of (1.1), then f has infinitely many fixed points and

$$
\begin{equation*}
\lambda(f-z)=\bar{\lambda}(f-z)=\rho(f)=\infty . \tag{1.17}
\end{equation*}
$$

In what follows, we investigate the relation between the solutions of a pair non-homogeneous linear differential equations and we obtain the following results :

Theorem 1.7. Suppose that $A_{0}, \ldots, A_{k-1}, \alpha, \delta, \varepsilon,\left\{\phi_{m}\right\},\left\{\theta_{m}\right\}$ and k satisfy the hypotheses of Theorem 1.5, and that $F_{1} \equiv 0, F_{0} \equiv 0$ are finite order entire functions such that $\rho\left(F_{1}\right)<\delta$, $\rho\left(F_{0}\right) \geq \delta$. If the equation

$$
\begin{equation*}
f^{(k)}+A_{k-1} f^{(k-1)}+\ldots+A_{0} f=F_{1} \tag{1.18}
\end{equation*}
$$

has a solution f_{1}, then equation

$$
\begin{equation*}
f^{(k)}+A_{k-1} f^{(k-1)}+\ldots+A_{0} f=F_{0} \tag{1.19}
\end{equation*}
$$

has at most one infinite order solution f_{0} that satisfies

$$
\begin{equation*}
\rho\left(f_{1}-C f_{0}\right) \leq \max \left\{\rho\left(F_{0}\right), \rho\left(A_{s}\right), \bar{\lambda}\left(f_{1}-C f_{0}\right)\right\} \tag{1.20}
\end{equation*}
$$

and all other solutions f_{2} of (1.19) satisfy

$$
\begin{equation*}
\lambda\left(f_{1}-C f_{2}\right)=\bar{\lambda}\left(f_{1}-C f_{2}\right)=\rho\left(f_{1}-C f_{2}\right)=\infty \tag{1.21}
\end{equation*}
$$

for any constant C.
Theorem 1.8. Suppose that $A_{0}, \ldots, A_{k-1}, \alpha, \delta, \varepsilon,\left\{\phi_{m}\right\},\left\{\theta_{m}\right\}$ and k satisfy the hypotheses of Theorem 1.5, and that $F_{1} \not \equiv 0, F_{0} \not \equiv 0$ are finite order entire functions such that $F_{1} \neq C F_{0}$ for any constant C. Suppose that

$$
\begin{equation*}
\max \left\{\rho\left(A_{j}\right): j=0,1, \ldots, s-1, s+1, \ldots, k-1, \rho\left(F_{0}\right), \rho\left(F_{1}\right)\right\}<\delta \tag{1.22}
\end{equation*}
$$

and

$$
\begin{equation*}
\max \left\{\rho\left(A_{j}\right): j=1, \ldots, s-1, \rho\left(F_{0}\right), \rho\left(F_{1}\right)\right\}<\rho\left(A_{0}\right) . \tag{1.23}
\end{equation*}
$$

Then all solutions of (1.18) and (1.19) satisfy (1.21).

Remark 1.9. In Theorem 1.3, if we don't suppose the additional conditions

$$
\max \left\{\rho\left(A_{j}\right): j=1, \ldots, s-1, \rho(F)\right\}<\rho\left(A_{0}\right)
$$

or

$$
\max \left\{\rho\left(A_{j}\right): j=0,1, \ldots, s-1\right\}<\rho(F),
$$

then equation (1.1) may have polynomial solution. For example the equation

$$
\begin{equation*}
f^{(4)}+\sinh z^{3} f^{(3)}+z^{2} e^{z^{2}} f^{\prime \prime}-z e^{z^{2}} f^{\prime}+z f=z^{3} \tag{1.24}
\end{equation*}
$$

has a polynomial solution $f(z)=z^{2}$. The equation (1.24) satisfies the other additional hypotheses of Theorem 1.3 but does not satisfies

$$
\max \left\{\rho\left(A_{j}\right): j=1,2, \rho(F)\right\}<\rho\left(A_{0}\right)
$$

or

$$
\max \left\{\rho\left(A_{j}\right): j=0,1,2\right\}<\rho(F) .
$$

2 Preliminary Lemmas

Lemma 2.1. ([4]) Suppose that $A_{0}, A_{1}, \ldots, A_{k-1}, F \not \equiv 0$ are entire functions with at least one $A_{s}(0 \leq s \leq k-1)$ being transcendental. Let the equation

$$
\begin{equation*}
f^{(k)}+A_{k-1} f^{(k-1)}+\ldots+A_{1} f^{\prime}+A_{0} f=0 \tag{2.1}
\end{equation*}
$$

be the corresponding homogeneous differential equation of (1.1). Then both (1.1) and (2.1) must have infinite order solutions.

Lemma 2.2. (Phragmen-Lindelöf Theorem, see [9], p. 214). Let $f(z)$ be analytic in the region $D=\left\{z: \alpha_{1}<\arg z<\beta_{1}, r_{0}<|z|<\infty\right\}$ and continuous on $\bar{D}=D \cup \Gamma$, where Γ is the boundary of D. Iffor any given small $\varepsilon>0$, there exists $r_{1}(\varepsilon)>0$ such that for $|z| \geq r_{1}(\varepsilon)$, $z \in D$, we have

$$
\begin{equation*}
|f(z)|<\exp \left\{\varepsilon|z|^{\frac{\pi}{\beta_{1}-\alpha_{1}}}\right\}, \tag{2.2}
\end{equation*}
$$

and for $z \in \Gamma$, we have $|f(z)| \leq M(M>0$ is a constant), then $|f(z)| \leq M$ for all $z \in D$. $|f(z)|=M$ if and only if f is a constant.

Remark 2.3. ([4]) Now suppose that $g(z)$ is analytic in the region $D=\left\{z: \alpha_{1}<\arg z<\right.$ $\left.\beta_{1}, r_{0} \leq|z|<\infty\right\}$ and $|g(z)| \leq \exp \left\{|z|^{\sigma}\right\}$ for some constant $0 \leq \sigma<\infty$. If a subset $E \subset\left(\alpha_{1}, \beta_{1}\right)$ has linear measure zero and for any $\psi_{0} \in\left(\alpha_{1}, \beta_{1}\right)-E,|g(z)|$ is bounded for all z satisfying $\arg z=\psi_{0}$ and $|z| \geq r_{0}$, then for any given small $\varepsilon>0$, there exists $r_{1}(\varepsilon)>r_{0}$ such that $|g(z)| \leq \exp \left\{\varepsilon|z|^{\sigma+1}\right\}$ for $|z|=r>r_{1}$. We may choose points $\theta_{j} \in$ $\left(\alpha_{1}, \beta_{1}\right)-E(j=1, \ldots, n)$ such that $\theta_{1}<\theta_{2}<\ldots<\theta_{n}\left(\alpha_{1}<\theta_{1} \leq \alpha_{1}+\varepsilon, \beta_{1}-\varepsilon \leq \theta_{n}<\beta_{1}\right)$ and $\max \left\{\theta_{j+1}-\theta_{j}: 1 \leq j \leq n-1\right\}<\frac{\pi}{\sigma+1}$. Now from Lemma 2.1, $|g(z)| \leq M$ in the sectors $\left\{z: \theta_{j} \leq \arg z \leq \theta_{j+1},|z| \geq r_{0}\right\}(j=1, \ldots, n-1)$. Hence $|g(z)| \leq M$ in the sector $\left\{z: \alpha_{1}+\varepsilon \leq \arg z \leq \beta_{1}-\varepsilon,|z| \geq r_{0}\right\}$.

Lemma 2.4. ([4]) Let $A_{0}, A_{1}, \ldots, A_{k-1}, F \not \equiv 0$ be finite order entire functions. If f is a solution of (1.1) with $\rho(f)=\infty$, then $\bar{\lambda}(f)=\lambda(f)=\rho(f)=\infty$.

Lemma 2.5. [5] Let f be a transcendental entire function of finite order ρ, let

$$
\Gamma=\left\{\left(k_{1}, j_{1}\right),\left(k_{2}, j_{2}\right), \ldots,\left(k_{m}, j_{m}\right)\right\}
$$

denote a finite set of distinct pairs of integers that satisfy $k_{i}>j_{i} \geq 0(i=1, \ldots, m)$, and let $\varepsilon>0$ be a given constant. Then there exists a set $E \subset[0,2 \pi)$ that has linear measure zero, such that if $\psi_{0} \in[0,2 \pi)-E$, then there is a constant $R_{0}=R_{0}\left(\psi_{0}\right)>1$ such that for all z satisfying $\arg z=\psi_{0}$ and $|z| \geq R_{0}$, and for all $(k, j) \in \Gamma$, we have

$$
\begin{equation*}
\left|\frac{f^{(k)}(z)}{f^{(j)}(z)}\right| \leq|z|^{(k-j)(\rho-1+\varepsilon)} \tag{2.3}
\end{equation*}
$$

Lemma 2.6. ([8], [6], Lemma 3) Let $f(z)$ be an entire function and suppose that $\left|f^{(k)}(z)\right|$ is unbounded on some ray $\arg z=\theta$. Then there exists an infinite sequence of points $z_{n}=r_{n} e^{i \theta}$ $(n=1,2, \ldots)$, where $r_{n} \rightarrow+\infty$ such that $f^{(k)}\left(z_{n}\right) \rightarrow \infty$ and

$$
\begin{equation*}
\left|\frac{f^{(j)}\left(z_{n}\right)}{f^{(k)}\left(z_{n}\right)}\right| \leq \frac{1}{(k-j)!}(1+o(1))\left|z_{n}\right|^{k-j}(j=0, \ldots, k-1) \tag{2.4}
\end{equation*}
$$

Lemma 2.7. Suppose that $k \geq 2$ is a natural number and that $A_{0}, A_{1}, \ldots, A_{k-1}$ are entire functions. For real constants $\alpha, \delta, \theta_{1}, \theta_{2}$ such that $\alpha>0, \delta>0, \theta_{1}<\theta_{2}$, we have for some $A_{s}(0 \leq s \leq k-1)$

$$
\begin{equation*}
\left|A_{s}(z)\right| \geq \exp \left(\alpha|z|^{\delta}\right) \tag{2.5}
\end{equation*}
$$

as $z \rightarrow \infty$ in $S=\left\{z: \theta_{1} \leq \arg z \leq \theta_{2}\right\}$ and

$$
\begin{equation*}
\max \left\{\rho\left(A_{j}\right): j=0,1, \ldots, s-1, s+1, \ldots, k-1\right\}<\delta . \tag{2.6}
\end{equation*}
$$

If $f \not \equiv 0$ is a solution of equation (2.1) with $\rho(f)=\rho<\infty$, then for any given small $\varepsilon>0$, there is a constant $M>0$ such that $|f(z)| \leq M|z|^{s}$ for all z in $S(\varepsilon)=\left\{z: \theta_{1}+\varepsilon \leq \arg z \leq\right.$ $\left.\theta_{2}-\varepsilon\right\}$ with $|z| \geq r_{0}>0$.

Proof. Set $\rho(f)=\rho<\infty$. Then by Lemma 2.5 there exists a set $E \subset[0,2 \pi)$ with linear measure zero such that if $\psi_{0} \in[0,2 \pi)-E$, then there is a constant $R_{0}=R_{0}\left(\psi_{0}\right)>1$ such that for all $j=s+1, \ldots, k$

$$
\begin{equation*}
\left|\frac{f^{(j)}(z)}{f^{(s)}(z)}\right| \leq|z|^{(j-s)(\rho-1+\varepsilon)} \leq|z|^{(k-s) \rho} \quad(0<\varepsilon<1) \tag{2.7}
\end{equation*}
$$

as $|z| \geq R_{0}$ along $\arg z=\psi_{0}$.
Now suppose that $\left|f^{(s)}(z)\right|$ is unbounded on some ray $\arg z=\phi_{0}$, where $\phi_{0} \in\left[\theta_{1}, \theta_{2}\right]-$ E. Then by Lemma 2.6, there exists an infinite sequence of points $z_{n}=r_{n} e^{i \phi_{0}}$, where $r_{n} \rightarrow \infty$ such that $f^{(s)}\left(z_{n}\right) \rightarrow \infty$ and

$$
\begin{equation*}
\left|\frac{f^{(j)}\left(z_{n}\right)}{f^{(s)}\left(z_{n}\right)}\right| \leq \frac{1}{(s-j)!}(1+o(1))\left|z_{n}\right|^{s-j} \leq 2\left|z_{n}\right|^{s} \quad(j=0, \ldots, s-1) \tag{2.8}
\end{equation*}
$$

as $z_{n} \rightarrow \infty$. By (2.1) and (2.6)-(2.8), we have as $z_{n} \rightarrow \infty$

$$
\begin{align*}
& \left|A_{s}\left(z_{n}\right)\right| \leq\left|\frac{f^{(k)}\left(z_{n}\right)}{f^{(s)}\left(z_{n}\right)}\right|+\left|\frac{f^{(k-1)}\left(z_{n}\right)}{f^{(s)}\left(z_{n}\right)}\right|\left|A_{k-1}\right|+\ldots \\
& +\left|\frac{f^{(s+1)}\left(z_{n}\right)}{f^{(s)}\left(z_{n}\right)}\right|\left|A_{s+1}\right|+\left|\frac{f^{(s-1)}\left(z_{n}\right)}{f^{(s)}\left(z_{n}\right)}\right|\left|A_{s-1}\right|+\ldots \\
& +\left|\frac{f\left(z_{n}\right)}{f^{(s)}\left(z_{n}\right)}\right|\left|A_{0}\right| \leq M_{0} \exp \left\{o(1)\left|z_{n}\right|^{\delta}\right\}\left|z_{n}\right|^{M_{1}} \tag{2.9}
\end{align*}
$$

where $M_{0}>0, M_{1}>0$ are some constants. Thus (2.9) contradicts (2.5). Therefore, $f^{(s)}(z)$ is bounded on any arbitrary ray $\arg z=\psi_{0} \in\left[\theta_{1}, \theta_{2}\right]-E$. From Remark 2.3 , it is easy to see that

$$
\begin{equation*}
\left|f^{(s)}(z)\right| \leq M_{2} \tag{2.10}
\end{equation*}
$$

in $S(\varepsilon)=\left\{z: \theta_{1}+\varepsilon \leq \arg z \leq \theta_{2}-\varepsilon\right\}$ for some constant $M_{2}>0$. By s-fold iterated integration along the line segment $[0, z]$, we obtain

$$
\begin{align*}
f(z)=f(0) & +f^{\prime}(0) \frac{z}{1!}+\ldots+\frac{1}{(s-1)!} f^{(s-1)}(0) z^{s-1} \\
& +\int_{0}^{z} \ldots \int_{0}^{z} \int_{0}^{z} f^{(s)}(t) d t \ldots d t \tag{2.11}
\end{align*}
$$

Therefore, by an elementary triangle inequality and (2.10), we obtain from (2.11) for an arbitrary point z in $S(\varepsilon)$ with $|z| \geq r_{0}>0$

$$
\begin{equation*}
|f(z)| \leq|f(0)|+\left|f^{\prime}(0)\right| \frac{|z|}{1!}+\left|f^{\prime \prime}(0)\right| \frac{|z|^{2}}{2!}+\ldots+M_{2} \frac{|z|^{s}}{s!} \leq M|z|^{s} \tag{2.12}
\end{equation*}
$$

where $M>0$ is some constant.
Lemma 2.8. Suppose that $A_{0}, \ldots, A_{k-1}, \alpha, \delta, \varepsilon, \theta_{1}, \theta_{2}, S, S(\varepsilon)$ and k satisfy the hypotheses of Lemma 2.7 and $F \not \equiv 0$ is an entire function with $\rho(F)<\delta$. Then every solution f of (1.1) with $\rho(f)=\rho<\infty$, satisfies $|f(z)| \leq M|z|^{s}$ for all z in $S(\varepsilon)$ with $|z| \geq r_{0}>0$ for some constant $M>0$.

Proof. Let $\rho(f)=\rho<\infty$. Using the same reasoning as in Lemma 2.7, it is easy to see that (2.7) holds for $f(z)$. If we assume $\left|f^{(s)}(z)\right|$ is unbounded on a some ray $\arg z=\phi_{0}$ where $\phi_{0} \in\left[\theta_{1}, \theta_{2}\right]-E$, then using the same reasoning as in Lemma 2.7, it is easy to see that (2.8) holds. Since $\left|f^{(s)}\left(z_{n}\right)\right| \rightarrow \infty(n \rightarrow \infty)$, we may assume that $\left|f^{(s)}\left(z_{n}\right)\right| \geq 1$ for all n. Hence

$$
\begin{equation*}
\left|\frac{F\left(z_{n}\right)}{f^{(s)}\left(z_{n}\right)}\right| \leq\left|F\left(z_{n}\right)\right| \leq \exp \left\{o(1)\left|z_{n}\right|^{\delta}\right\} \tag{2.13}
\end{equation*}
$$

From (1.1), (2.6), (2.7), (2.8) and (2.13) we get

$$
\begin{gather*}
\left|A_{s}\left(z_{n}\right)\right| \leq\left|\frac{f^{(k)}\left(z_{n}\right)}{f^{(s)}\left(z_{n}\right)}\right|+\left|\frac{f^{(k-1)}\left(z_{n}\right)}{f^{(s)}\left(z_{n}\right)}\right|\left|A_{k-1}\right|+\ldots \\
+\left|\frac{f^{(s+1)}\left(z_{n}\right)}{f^{(s)}\left(z_{n}\right)}\right|\left|A_{s+1}\right|+\left|\frac{f^{(s-1)}\left(z_{n}\right)}{f^{(s)}\left(z_{n}\right)}\right|\left|A_{s-1}\right|+\ldots \\
+\left|\frac{f\left(z_{n}\right)}{f^{(s)}\left(z_{n}\right)}\right|\left|A_{0}\right|+\left|\frac{F\left(z_{n}\right)}{f^{(s)}\left(z_{n}\right)}\right| \leq M_{2} \exp \left\{o(1)\left|z_{n}\right|^{\delta}\right\}\left|z_{n}\right|^{M_{1}} \tag{2.14}
\end{gather*}
$$

where $M_{2}>0, M_{1}>0$ are some constants. This contradicts (2.5). Therefore $\left|f^{(s)}(z)\right|$ is bounded on any arbitrary ray $\arg z=\psi_{0} \in\left[\theta_{1}, \theta_{2}\right]-E$. And also using the same reasoning as in Lemma 2.7, we have $|f(z)| \leq M|z|^{s}$ for all z in $S(\varepsilon)$ with $|z| \geq r_{0}>0$ for some constant $M>0$.

Lemma 2.9. Suppose that $k \geq 2$ is a natural number and $A_{0}, A_{1}, \ldots, A_{k-1}$, are finite order entire functions. Suppose that there exists an $A_{s}(0 \leq s \leq k-1)$ such that for real constants α, δ, with $\alpha>0, \delta>0$, we have

$$
\begin{equation*}
\max \left\{\rho\left(A_{j}\right): j=0,1, \ldots, s-1, s+1, \ldots, k-1\right\}<\delta \tag{2.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\max \left\{\rho\left(A_{j}\right): j=1, \ldots, s-1\right\}<\rho\left(A_{0}\right) \tag{2.16}
\end{equation*}
$$

Suppose that for any given $\varepsilon>0$, there exist two finite collections of real numbers $\left\{\phi_{m}\right\}$ and $\left\{\theta_{m}\right\}$ that satisfy (1.2), (1.3). In $D_{m}=\left\{z: \phi_{m} \leq \arg z \leq \theta_{m}\right\}(m=1, \ldots, n)$ as $z \rightarrow \infty$, we have

$$
\begin{equation*}
\left|A_{s}(z)\right| \geq \exp \left\{\alpha|z|^{\delta}\right\} \tag{2.17}
\end{equation*}
$$

Then every solution f of (2.1) satisfies $\rho(f)=\infty$.
Proof. Let $f \not \equiv 0$ be a solution of (2.1) with $\rho(f)=\rho<\infty$. By the hypotheses, for any given $\varepsilon\left(0<\varepsilon<\frac{\pi}{3\left(\rho+\frac{1}{4}\right)}\right)$, there exist two finite collections of real numbers $\left\{\phi_{m}\right\}$ and $\left\{\theta_{m}\right\}$ that satisfy (1.2), (1.3). Suppose A_{s} satisfies (2.17) in $D_{m}(m=1, \ldots, n)$ and $A_{j}(j=0,1$, $\ldots, s-1, s+1, \ldots, k-1)$ satisfy

$$
\begin{equation*}
\left|A_{j}(z)\right| \leq \exp \left\{o(1)|z|^{\delta}\right\} \tag{2.18}
\end{equation*}
$$

Then by Lemma 2.7, we have

$$
\begin{equation*}
|f(z)| \leq M|z|^{s} \quad(M>0 \text { is some constant }) \tag{2.19}
\end{equation*}
$$

in $D_{m}^{*}(\varepsilon)=\left\{z: \phi_{m}+\varepsilon \leq \arg z \leq \theta_{m}-\varepsilon\right\}(m=1, \ldots, n)$ with $|z| \geq r_{1}$.
On the other hand, in the sector $\theta_{m}-\varepsilon \leq \arg z \leq \phi_{m+1}+\varepsilon(m=1, \ldots, n)$, from $\rho(f)=$ $\rho<\infty$, we have $|f(z)| \leq \exp \left\{r^{\rho+\frac{1}{4}}\right\}$ holds for $|z|=r>r_{0}>0$. By (1.3) and $0<\varepsilon<$
$\frac{\pi}{3\left(\rho+\frac{1}{4}\right)}$, we have $\left(\phi_{m+1}+\varepsilon\right)-\left(\theta_{m}-\varepsilon\right)<3 \varepsilon<\frac{\pi}{\rho+\frac{1}{4}}$. Hence there exists $R>1+r_{0}$ such that for $r>R$, we have $r^{\rho+\frac{1}{4}}<\varepsilon r^{\left[\left(\varphi_{m+1}+\varepsilon\right)-\left(\theta_{m}-\varepsilon\right)\right.}$. Therefore, in $\theta_{m}-\varepsilon \leq \arg z \leq \phi_{m+1}+\varepsilon$ $(m=1, \ldots, n)$

$$
\begin{equation*}
\left|\frac{f(z)}{z^{s}}\right| \leq|f(z)| \leq \exp \left\{|z|^{\rho+\frac{1}{4}}\right\}<\exp \left\{\varepsilon|z|^{\left[\left(\rho_{m+1}+\varepsilon\right)-\left(\theta_{m}-\varepsilon\right]\right.}\right\} \tag{2.20}
\end{equation*}
$$

holds for $|z|=r>R$. And on the rays $\arg z=\theta_{m}-\varepsilon, \arg z=\varphi_{m+1}+\varepsilon$ with $|z| \geq r_{1}>0$, we have $\left|\frac{f(z)}{z^{s}}\right| \leq M$ holds from (2.19). Hence by Lemma 2.2, $\left|\frac{f(z)}{z^{s}}\right| \leq M$ holds in $\theta_{m}-\varepsilon \leq$ $\arg z \leq \varphi_{m+1}+\varepsilon(m=1, \ldots, n)$ with $|z|>R$. So $|f(z)| \leq M|z|^{s}$ holds in the whole plane from (2.19). Therefore, $f(z)$ is a polynomial.

If f is a polynomial of $\operatorname{deg} f \geq s$, then $\rho\left(f^{(k)}+A_{k-1} f^{(k-1)}+\ldots+A_{0} f\right)=\rho\left(A_{s}\right) \geq$ $\delta>0$ and this contradicts (2.1). If f is a non zero polynomial of $\operatorname{deg} f \leq s-1$, then $\rho\left(A_{s-1} f^{(s-1)}+\ldots+A_{0} f\right)=\rho\left(A_{0}\right)>0$. This contradicts (2.1). Therefore, every solution f $\not \equiv 0$ of (2.1) satisfies $\rho(f)=\infty$.
Lemma 2.10. Suppose that $A_{0}, \ldots, A_{k-1}, \alpha, \delta, \varepsilon,\left\{\phi_{m}\right\},\left\{\theta_{m}\right\}, k$ and D_{m} satisfy the hypotheses of Lemma 2.9, and that $F \not \equiv 0$ is a finite order entire function such that $\rho(F)<\delta$ and that either:
(i) $\max \left\{\rho\left(A_{j}\right): j=1, \ldots, s-1, \rho(F)\right\}<\rho\left(A_{0}\right)$ or that
(ii) $\max \left\{\rho\left(A_{j}\right): j=0,1, \ldots, s-1\right\}<\rho(F)$.

Then every solution f of (1.1) satisfies $\rho(f)=\infty$.
Proof. Let f be a solution of (1.1) with $\rho(f)=\rho<\infty$. Using the same reasoning as in Lemma 2.9 and together with Lemma 2.8, it easy to see that $|f(z)| \leq M|z|^{s}$ for some constant $M>0$ in

$$
D_{m}^{*}(\varepsilon)=\left\{z: \phi_{m}+\varepsilon \leq \arg z \leq \theta_{m}-\varepsilon\right\} \quad(m=1, \ldots, n)
$$

with $|z| \geq r_{1}$. Similarly in $\theta_{m}-\varepsilon \leq \arg z \leq \phi_{m+1}+\varepsilon(m=1, \ldots, n)$, also using the same reasoning as in Lemma 2.9, we see that $|f(z)| \leq M|z|^{s}$ in $D_{m}^{* *}(\varepsilon)=\left\{z: \theta_{m}-\varepsilon \leq \arg z \leq\right.$ $\left.\phi_{m+1}+\varepsilon\right\}(m=1, \ldots, n)$ with $|z|>R$. Hence f is a polynomial.

If f is a polynomial with $\operatorname{deg} f \geq s$, then

$$
\rho\left(f^{(k)}+A_{k-1} f^{(k-1)}+\ldots+A_{0} f\right)=\rho\left(A_{s}\right) \geq \delta>\rho(F)
$$

This contradicts (1.1). If f is a non zero polynomial with $\operatorname{deg} f \leq s-1$, then if

$$
\max \left\{\rho\left(A_{j}\right): j=1, \ldots, s-1, \rho(F)\right\}<\rho\left(A_{0}\right),
$$

we have $\rho\left(A_{s-1} f^{(s-1)}+\ldots+A_{0} f\right)=\rho\left(A_{0}\right)>\rho(F)$. This contradicts (1.1). If $\max \left\{\rho\left(A_{j}\right)\right.$: $j=0,1, \ldots, s-1\}<\rho(F)$, then

$$
\rho\left(f^{(k)}+A_{k-1} f^{(k-1)}+\ldots+A_{0} f\right) \leq \max \left\{\rho\left(A_{j}\right): j=0,1, \ldots, s-1\right\}<\rho(F) .
$$

This contradicts (1.1). Therefore, every solution f of (1.1) has infinite order.

3 Proof of Theorem 1.3.

(a) From $f(z)$ is a solution of (1.1) and Lemma 2.10, we know that $\rho(f)=+\infty$. Together with Lemma 2.4, we know that $f(z)$ satisfies (1.9).
(b) Set $g=f-\varphi$. Since f is a solution of (1.1), then we have $\rho(g)=\rho(f)=\infty$. Substituting $f=g+\varphi$ into equation (1.1), we get

$$
\begin{equation*}
g^{(k)}+A_{k-1} g^{(k-1)}+\ldots+A_{0} g=F-\left(\varphi^{(k)}+A_{k-1} \varphi^{(k-1)}+\ldots+A_{0} \varphi\right) \tag{3.1}
\end{equation*}
$$

By $\rho(\varphi)<+\infty$, then φ is not a solution of (1.1). Thus, we have

$$
\begin{equation*}
F-\left(\varphi^{(k)}+A_{k-1} \varphi^{(k-1)}+\ldots+A_{0} \varphi\right) \not \equiv 0 \tag{3.2}
\end{equation*}
$$

and by Lemma 2.4, we know that

$$
\begin{equation*}
\lambda(f-\varphi)=\bar{\lambda}(f-\varphi)=\rho(f)=\infty . \tag{3.3}
\end{equation*}
$$

4 Proof of Theorem 1.5.

(a) Assume that f_{0} is a solution of (1.1) with $\rho\left(f_{0}\right)=\rho<\infty$. If f_{1} is another finite order solution of (1.1), then $\rho\left(f_{1}-f_{0}\right)<\infty$, and $f_{1}-f_{0}$ is a solution of the corresponding homogeneous equation (2.1) of (1.1), but $\rho\left(f_{1}-f_{0}\right)=\infty$ from Lemma 2.9. This is a contradiction. Hence (1.1) has at most one finite order solution f_{0} and all other solutions f_{1} of (1.1) satisfy (1.9) by Lemma 2.4.
(b) Assume that f_{0} is a solution of (1.1) with $\rho\left(f_{0}\right)<\infty$. By (1.1) we can write

$$
\begin{equation*}
\frac{1}{f_{0}}=\frac{1}{F}\left(\frac{f_{0}^{(k)}}{f_{0}}+A_{k-1} \frac{f_{0}^{(k-1)}}{f_{0}}+\ldots+A_{1} \frac{f_{0}^{\prime}}{f_{0}}+A_{0}\right) \tag{4.1}
\end{equation*}
$$

It follows that if f_{0} has a zero at z_{0} of order $d>k$, then F must have a zero at z_{0} of order $d-k$. Hence

$$
\begin{equation*}
n\left(r, \frac{1}{f_{0}}\right) \leq k \bar{n}\left(r, \frac{1}{f_{0}}\right)+n\left(r, \frac{1}{F}\right) \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
N\left(r, \frac{1}{f_{0}}\right) \leq k \bar{N}\left(r, \frac{1}{f_{0}}\right)+N\left(r, \frac{1}{F}\right) \tag{4.3}
\end{equation*}
$$

Applying the Lemma of the logarithmic derivative [7]

$$
\begin{equation*}
m\left(r, \frac{f_{0}^{(j)}}{f_{0}}\right)=O(\ln r)(j=1, \ldots, k) \quad\left(\rho\left(f_{0}\right)<+\infty\right) \tag{4.4}
\end{equation*}
$$

From (4.1) we have

$$
\begin{equation*}
m\left(r, \frac{1}{f_{0}}\right) \leq m\left(r, \frac{1}{F}\right)+\sum_{j=0}^{k-1} m\left(r, A_{j}\right)+\sum_{j=1}^{k} m\left(r, \frac{f_{0}^{(j)}}{f_{0}}\right)+O(1) \tag{4.5}
\end{equation*}
$$

Then we get from (4.3), (4.4) and (4.5)

$$
\begin{gather*}
T\left(r, f_{0}\right)=T\left(r, \frac{1}{f_{0}}\right)+O(1) \\
\leq k \bar{N}\left(r, \frac{1}{f_{0}}\right)+T(r, F)+\sum_{j=0}^{k-1} T\left(r, A_{j}\right)+O(\log r) . \tag{4.6}
\end{gather*}
$$

Now set $\alpha=\max \left\{\rho\left(A_{s}\right), \rho(F)\right\}$. Then for given small $\varepsilon>0$ and sufficiently large r, we have

$$
\begin{equation*}
T(r, F)<r^{\alpha+\varepsilon}, T\left(r, A_{j}\right)<r^{\alpha+\varepsilon}(j=0, \ldots, k-1) . \tag{4.7}
\end{equation*}
$$

So, by (4.6), (4.7)

$$
\begin{equation*}
T\left(r, f_{0}\right) \leq k \bar{N}\left(r, \frac{1}{f_{0}}\right)+(k+1) r^{\alpha+\varepsilon}+O(\log r) \tag{4.8}
\end{equation*}
$$

holds for a sufficiently large r. Therefore,

$$
\begin{equation*}
\rho\left(f_{0}\right) \leq \max \left\{\alpha, \bar{\lambda}\left(f_{0}\right)\right\}=\max \left\{\rho\left(A_{s}\right), \rho(F), \bar{\lambda}\left(f_{0}\right)\right\} . \tag{4.9}
\end{equation*}
$$

If $\bar{\lambda}\left(f_{0}\right)<\rho\left(f_{0}\right), \rho\left(A_{s}\right) \neq \rho(F)$, then by (4.9) we have

$$
\begin{equation*}
\rho\left(f_{0}\right) \leq \max \left\{\rho\left(A_{s}\right), \rho(F)\right\} \tag{4.10}
\end{equation*}
$$

and by (1.1), we get

$$
\begin{equation*}
\rho\left(f_{0}\right) \geq \max \left\{\rho\left(A_{s}\right), \rho(F)\right\} . \tag{4.11}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\rho\left(f_{0}\right)=\max \left\{\rho\left(A_{s}\right), \rho(F)\right\} . \tag{4.12}
\end{equation*}
$$

(c) Set $g=f-\varphi$. If f is a solution of (1.1) with $\rho(f)=\infty$, then we have $\rho(g)=\rho(f)=$ ∞. Substituting $f=g+\varphi$ into equation (1.1) we get

$$
\begin{equation*}
g^{(k)}+A_{k-1} g^{(k-1)}+\ldots+A_{0} g=F-\left(\varphi^{(k)}+A_{k-1} \varphi^{(k-1)}+\ldots+A_{0} \varphi\right) . \tag{4.13}
\end{equation*}
$$

Since φ is not a solution of (1.1), then we have

$$
\begin{equation*}
F-\left(\varphi^{(k)}+A_{k-1} \varphi^{(k-1)}+\ldots+A_{0} \varphi\right) \not \equiv 0 \tag{4.14}
\end{equation*}
$$

and by Lemma 2.4, we know that

$$
\begin{equation*}
\lambda(f-\varphi)=\bar{\lambda}(f-\varphi)=\rho(f)=\infty . \tag{4.15}
\end{equation*}
$$

5 Proof of Theorem 1.7

Suppose that f_{1} is a solution of equation (1.18) and f_{2} is a solution of equation (1.19). Set $g=f_{1}-C f_{2}$. Then g is a solution of equation $g^{(k)}+A_{k-1} g^{(k-1)}+\ldots+A_{0} g=F_{1}-C F_{0}$. By $\rho\left(F_{1}-C F_{0}\right)=\rho\left(F_{0}\right) \geq \delta$ and Theorem 1.5 the equation $g^{(k)}+A_{k-1} g^{(k-1)}+\ldots+A_{0} g=$ $F_{1}-C F_{0}$ has at most one finite order solution $g_{0}=f_{1}-C f_{0}$ that satisfies

$$
\begin{equation*}
\rho\left(g_{0}\right) \leq \max \left\{\rho\left(F_{0}\right), \rho\left(A_{s}\right), \bar{\lambda}\left(g_{0}\right)\right\} \tag{5.1}
\end{equation*}
$$

and all other solutions $g=f_{1}-C f_{2}$ of $g^{(k)}+A_{k-1} g^{(k-1)}+\ldots+A_{0} g=F_{1}-C F_{0}$ satisfy

$$
\begin{equation*}
\lambda\left(f_{1}-C f_{2}\right)=\bar{\lambda}\left(f_{1}-C f_{2}\right)=\rho\left(f_{1}-C f_{2}\right)=\infty . \tag{5.2}
\end{equation*}
$$

6 Proof of Theorem 1.8

Suppose that f_{1} is a solution of equation (1.18) and f_{2} is a solution of equation (1.19). Set $g=f_{1}-C f_{2}$. Then g is a solution of equation $g^{(k)}+A_{k-1} g^{(k-1)}+\ldots+A_{0} g=F_{1}-C F_{0}$. By $F_{1}-C F_{0} \not \equiv 0, \rho\left(F_{1}-C F_{0}\right)<\delta$ and Theorem 1.3, we have $\rho(g)=\infty$. Thus, by Lemma 2.4, we know that

$$
\begin{equation*}
\lambda\left(f_{1}-C f_{2}\right)=\bar{\lambda}\left(f_{1}-C f_{2}\right)=\rho\left(f_{1}-C f_{2}\right)=\infty . \tag{6.1}
\end{equation*}
$$

Acknowledgement. The author would like to thank the referee for his/her helpful remarks and suggestions.

References

[1] B. Belaïdi and S. Abbas, Growth and oscillation theory of non-homogeneous complex differential equations with entire coefficients, Int. Math. Forum 1 (2006), no. 37-40, 1849-1860.
[2] T. B. Cao and H. X. Yi, On the complex oscillation of higher order linear differential equations with meromorphic functions, J. Syst. Sci. Complex. 20(2007), no. 1, 135-148.
[3] Z. X. Chen and S. A. Gao, The complex oscillation theory of certain non-homogeneous linear differential equations with transcendental entire coefficients, J. Math. Anal. Appl. 179 (1993), 403-416.
[4] Z. X. Chen and S. A. Gao, Entire solutions of differential equations with finite order transcendental entire coefficients. A Chinese summary appears in Acta Math. Sinica 40 (1997), no. 6, 951. Acta Math. Sinica (N.S.) 13 (1997), no. 4, 453-464.
[5] G. G. Gundersen, Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates, J. London. Math. Soc. (2) 37 (1988), pp. 88-104.
[6] G. G. Gundersen and E. M. Steinbart, Finite order solutions of non-homogeneous linear differential equations, Ann. Acad. Sci. Fenn. A. I. Math. 17, (1992), pp. 327-341.
[7] W. K. Hayman, Meromorphic functions, Clarendon Press, Oxford, 1964.
[8] I. Laine and R. Yang, Finite order solutions of complex linear differential equations. Electron. J. Differential Equations 2004 (2004), no. 65, 8 pp.
[9] A. I. Markushevich, Theory of functions of a complex variable, Vol. II, translated by R. A. Silverman, Prentice-Hall, Englewood Cliffs, New Jersey, 1965.

[^0]: *E-mail address: belaidi@univ-mosta.dz

