www.commun-math-anal.org

Volume 5, Number 2, pp. 13–25 (2008) ISSN 1938-9787

GROWTH AND OSCILLATION THEORY OF NON-HOMOGENEOUS COMPLEX DIFFERENTIAL EQUATIONS WITH ENTIRE COEFFICIENTS

BENHARRAT BELAÏDI*

Department of Mathematics
Laboratory of Pure and Applied Mathematics
University of Mostaganem
B. P 227 Mostaganem, Algeria

(Communicated by Weiyuan Qiu)

Abstract

In this paper, we investigate the growth and the complex oscillation theory of the linear differential equation $f^{(k)} + A_{k-1}f^{(k-1)} + ... + A_1f^{'} + A_0f = F$, where $A_0, A_1, ..., A_{k-1}, F \not\equiv 0$ are entire functions. We also investigate the relation between the solutions of a pair non-homogeneous linear differential equations. We improve some results due to the author, S. Abbas and Z. X. Chen, S. A. Gao.

AMS Subject Classification: 34M10, 34M05, 30D35.

Keywords: Differential equations, Order of growth, Exponent of convergence of distinct zeros, Wiman-Valiron theory.

1 Introduction and statement of results

Throughout this paper, we assume that the reader is familiar with the fundamental results and the standard notations of the Nevanlinna value distribution theory (see [7]). In addition, we will use $\lambda(f)$ and $\overline{\lambda}(f)$ to denote respectively the exponents of convergence of the zero-sequence and the sequence of distinct zeros of f, $\rho(f)$ to denote the order of growth of f.

For $k \ge 2$ we consider the linear differential equation

$$f^{(k)} + A_{k-1}f^{(k-1)} + \dots + A_1f' + A_0f = F,$$
(1.1)

where $A_0, A_1, ..., A_{k-1}, F \not\equiv 0$ are entire functions of finite order.

It is well-known that all solutions of equation (1.1) are entire functions and if at least one coefficient $A_s(z)$ is transcendental, then at least some of the solutions are of infinite order.

^{*}E-mail address: belaidi@univ-mosta.dz

On the other hand, there exist equations of this form that possess one or more solutions of finite order. For example $f(z) = e^z$ satisfies $f''' - e^z f'' - e^{-z} f' + e^z f = e^z - 1$.

Recently the complex oscillation theory of the complex differential equations has been investigated actively [1, 2, 3, 4]. In [4], Chen and Gao have investigated the complex oscillation of (1.1) and have obtained the following results:

Theorem 1.1. ([4], p. 455) Suppose that $k \ge 2$ is a natural number and that $A_0, A_1, ..., A_{k-1}, F \not\equiv 0$ are finite order entire functions, where there exists an A_s ($0 \le s \le k-1$) such that for real constants $\alpha > 0$, $\beta > 0$, we have $\rho(A_j) < \beta$ ($j \ne s$) and $\rho(F) \ge \beta$. Suppose that for any given $\varepsilon > 0$, there exist two finite collections of real numbers $\{\varphi_m\}$ and $\{\theta_m\}$ which satisfy

$$\varphi_1 < \theta_1 < \varphi_2 < \theta_2 < \dots < \varphi_n < \theta_n < \varphi_{n+1} = \varphi_1 + 2\pi$$
(1.2)

and

$$\sum_{m=1}^{n} \left(\varphi_{m+1} - \Theta_m \right) < \varepsilon, \tag{1.3}$$

such that

$$|A_s(z)| \ge \exp\left\{ (1 + o(1)) \alpha |z|^{\beta} \right\}$$
 (1.4)

as $z \to \infty$ in $\varphi_m \le \arg(z) \le \theta_m$ (m = 1, ..., n). Then all solutions of (1.1) satisfy

$$\overline{\lambda}(f) = \lambda(f) = \rho(f) = \infty$$
 (1.5)

with some possible finite order solutions. All of the possible finite order solutions have the same order of growth ρ $(0 \le \rho < \infty)$. If there exist two finite order solutions f_0 , f_1 $(f_0 \ne f_1)$ of (1.1), then $f_0 - f_1$ is a polynomial with $\deg(f_0 - f_1) \le s - 1$, and f_0 satisfies

$$\rho = \rho(f_0) \le \max \left\{ \rho(A_s), \rho(F), \overline{\lambda}(f_0) \right\}. \tag{1.6}$$

If $\rho(A_s) \neq \rho(F)$, $\overline{\lambda}(f_0) < \rho$, then $\rho(f_0) = \max\{\rho(A_s), \rho(F)\}$. Furthermore, if among $A_{s-1},...,A_0$, there exist and only exist $A_{m_1},...,A_{m_d}$ $(s-1 \geq m_1 > m_2 > ... > m_d \geq 0)$ being transcendental, $\rho(A_{m_j})$ (j=1,...,d) are unequal to each other or d=1, and if (1) $m_d=0$ or (2) $m_d>0$ and polynomials $A_{m_d-1},A_{m_d-2},...,A_0$ satisfy that $\deg(A_j)-j$ $(j=m_d-1,m_d-2,...,0)$ are unequal to each other, or $m_d=1$ and $A_0\not\equiv 0$, then all solutions of (1.1) satisfy (1.5) with at most one possible finite order solution.

Theorem 1.2. ([4], p. 455) Suppose that $A_0, ..., A_s, ..., A_{k-1}, \alpha, \beta, \{\varphi_m\}, \{\theta_m\}$ and k satisfy the hypotheses of Theorem 1.1, and that $F \not\equiv 0$ is an entire function with $\rho(F) < \beta$. Then all solutions of (1.1) satisfy (1.5) with some possible polynomial solutions of degree $\leq s-1$.

The purpose of this paper is to improve the above results by expressing the growth condition of the coefficient $A_s(z)$ more explicitly without making use of o(1). We will prove the following theorems:

Theorem 1.3. Suppose that $k \ge 2$ is a natural number and that $A_0, A_1, ..., A_{k-1}, F \not\equiv 0$ are finite order entire functions, where there exists an A_s $(0 \le s \le k-1)$ such that for real constants α , δ with $\alpha > 0$, $\delta > 0$, we have

$$\max \left\{ \rho \left(A_{j} \right) : j = 0, 1, ..., s - 1, s + 1, ..., k - 1, \rho \left(F \right) \right\} < \delta \tag{1.7}$$

and either

- (i) $\max \{ \rho(A_j) : j = 1, ..., s 1, \rho(F) \} < \rho(A_0) \text{ or }$
- (ii) $\max\{\rho(A_i): j=0,1,...,s-1\} < \rho(F)$.

Suppose that for any given $\varepsilon > 0$, there exist two finite collections of real numbers $\{\phi_m\}$ and $\{\theta_m\}$ which satisfy (1.2) and (1.3) such that

$$|A_s(z)| \ge \exp\left\{\alpha |z|^{\delta}\right\} \tag{1.8}$$

as $z \to \infty$ in $\varphi_m \le \arg(z) \le \theta_m$ (m = 1, ..., n).

(a) Then every solution f of (1.1), satisfies

$$\lambda(f) = \overline{\lambda}(f) = \rho(f) = \infty. \tag{1.9}$$

(b) If φ is a finite order entire function, then

$$\lambda(f - \varphi) = \overline{\lambda}(f - \varphi) = \rho(f) = \infty. \tag{1.10}$$

From Theorem 1.3, we obtain the following corollary:

Corollary 1.4. Suppose that $A_0,...,A_{k-1}$, $F \not\equiv 0$, $\alpha,\delta,\epsilon,\{\phi_m\}$, $\{\theta_m\}$ and k satisfy the hypotheses of Theorem 1.3. Then every solution f of (1.1) has infinitely many fixed points and

$$\lambda(f-z) = \overline{\lambda}(f-z) = \rho(f) = \infty. \tag{1.11}$$

Theorem 1.5. Suppose that $k \ge 2$ is a natural number and that $A_0, A_1, ..., A_{k-1}, F \not\equiv 0$ are finite order entire functions, where there exists an A_s $(0 \le s \le k-1)$ such that for real constants α , δ with $\alpha > 0$, $\delta > 0$, we have

$$\max \left\{ \rho \left(A_{j} \right) : j = 0, 1, ..., s - 1, s + 1, ..., k - 1 \right\} < \delta \tag{1.12}$$

and

$$\max \{\rho(A_j): j = 1, ..., s - 1\} < \rho(A_0), \tag{1.13}$$

let $F \not\equiv 0$ be a finite order entire function such that $\rho(F) \geq \delta$. Suppose that for any given $\varepsilon > 0$, there exist two finite collections of real numbers $\{\phi_m\}$ and $\{\theta_m\}$ that satisfy (1.2),(1.3) such that (1.8) holds as $z \to \infty$ in $\phi_m \leq \arg z \leq \theta_m$ (m = 1, ..., n).

- (a) Then all solutions of (1.1) satisfy (1.9), with at most one finite order solution f_0 .
- (b) If there exists a finite order solution f_0 in case (a), then f_0 satisfies

$$\rho(f_0) \le \max\left\{\rho(F), \rho(A_s), \overline{\lambda}(f_0)\right\}. \tag{1.14}$$

If
$$\overline{\lambda}\left(f_{0}\right)<\rho\left(f_{0}\right),$$
 $\rho\left(F\right)\neq\rho\left(A_{s}\right),$ then $\rho\left(f_{0}\right)=\max\left\{ \rho\left(F\right),\rho\left(A_{s}\right)\right\} .$

(c) If f is an infinite order solution of equation (1.1) and if φ is a finite order entire function which is not solution of (1.1), then

$$\lambda(f - \varphi) = \overline{\lambda}(f - \varphi) = \rho(f) = \infty. \tag{1.15}$$

From Theorem 1.5, we obtain the following corollary:

Corollary 1.6. Suppose that $A_0,...,A_{k-1}$, $F \not\equiv 0$, $\alpha, \delta, \epsilon, \{\phi_m\}$, $\{\theta_m\}$ and k satisfy the hypotheses of Theorem 1.5. Then

(i) If there exists a finite order solution f_0 in case (a), then for any infinite order solution f of equation (1.1) and for any constant $C \neq 1$, we have

$$\lambda(f - Cf_0) = \overline{\lambda}(f - Cf_0) = \rho(f) = \infty. \tag{1.16}$$

(ii) If f is an infinite order solution of (1.1), then f has infinitely many fixed points and

$$\lambda(f-z) = \overline{\lambda}(f-z) = \rho(f) = \infty. \tag{1.17}$$

In what follows, we investigate the relation between the solutions of a pair non-homogeneous linear differential equations and we obtain the following results :

Theorem 1.7. Suppose that $A_0,...,A_{k-1}, \alpha, \delta, \epsilon, \{\phi_m\}, \{\theta_m\}$ and k satisfy the hypotheses of Theorem 1.5, and that $F_1 \not\equiv 0$, $F_0 \not\equiv 0$ are finite order entire functions such that $\rho(F_1) < \delta$, $\rho(F_0) \geq \delta$. If the equation

$$f^{(k)} + A_{k-1}f^{(k-1)} + \dots + A_0f = F_1$$
 (1.18)

has a solution f_1 , then equation

$$f^{(k)} + A_{k-1} f^{(k-1)} + \dots + A_0 f = F_0$$
 (1.19)

has at most one infinite order solution f_0 that satisfies

$$\rho(f_1 - Cf_0) \le \max\left\{\rho(F_0), \rho(A_s), \overline{\lambda}(f_1 - Cf_0)\right\}$$
(1.20)

and all other solutions f_2 of (1.19) satisfy

$$\lambda(f_1 - Cf_2) = \overline{\lambda}(f_1 - Cf_2) = \rho(f_1 - Cf_2) = \infty$$
(1.21)

for any constant C.

Theorem 1.8. Suppose that $A_0,...,A_{k-1}, \alpha, \delta, \epsilon, \{\phi_m\}, \{\theta_m\}$ and k satisfy the hypotheses of Theorem 1.5, and that $F_1 \not\equiv 0$, $F_0 \not\equiv 0$ are finite order entire functions such that $F_1 \not\equiv CF_0$ for any constant C. Suppose that

$$\max \left\{ \rho \left(A_{j} \right) : j = 0, 1, ..., s - 1, s + 1, ..., k - 1, \rho \left(F_{0} \right), \rho \left(F_{1} \right) \right\} < \delta$$
 (1.22)

and

$$\max \left\{ \rho \left(A_{j} \right) : j = 1, ..., s - 1, \rho \left(F_{0} \right), \rho \left(F_{1} \right) \right\} < \rho \left(A_{0} \right). \tag{1.23}$$

Then all solutions of (1.18) and (1.19) satisfy (1.21).

Remark 1.9. In Theorem 1.3, if we don't suppose the additional conditions

$$\max \{ \rho(A_i) : j = 1, ..., s - 1, \rho(F) \} < \rho(A_0)$$

or

$$\max \{ \rho(A_j) : j = 0, 1, ..., s - 1 \} < \rho(F),$$

then equation (1.1) may have polynomial solution. For example the equation

$$f^{(4)} + \sinh z^3 f^{(3)} + z^2 e^{z^2} f'' - z e^{z^2} f' + z f = z^3$$
 (1.24)

has a polynomial solution $f(z) = z^2$. The equation (1.24) satisfies the other additional hypotheses of Theorem 1.3 but does not satisfies

$$\max\{\rho(A_j): \ j=1,2,\rho(F)\} < \rho(A_0)$$

or

$$\max\{\rho(A_j): j = 0, 1, 2\} < \rho(F).$$

2 Preliminary Lemmas

Lemma 2.1. ([4]) Suppose that $A_0, A_1, ..., A_{k-1}, F \not\equiv 0$ are entire functions with at least one A_s ($0 \le s \le k-1$) being transcendental. Let the equation

$$f^{(k)} + A_{k-1}f^{(k-1)} + \dots + A_1f' + A_0f = 0$$
(2.1)

be the corresponding homogeneous differential equation of (1.1). Then both (1.1) and (2.1) must have infinite order solutions.

Lemma 2.2. (*Phragmen-Lindelöf Theorem*, see [9], p. 214). Let f(z) be analytic in the region $D = \{z : \alpha_1 < \arg z < \beta_1, \ r_0 < |z| < \infty\}$ and continuous on $\overline{D} = D \cup \Gamma$, where Γ is the boundary of D. If for any given small $\varepsilon > 0$, there exists $r_1(\varepsilon) > 0$ such that for $|z| \ge r_1(\varepsilon)$, $z \in D$, we have

$$|f(z)| < \exp\left\{\varepsilon|z|^{\frac{\pi}{\beta_1 - \alpha_1}}\right\},\tag{2.2}$$

and for $z \in \Gamma$, we have $|f(z)| \le M$ (M > 0 is a constant), then $|f(z)| \le M$ for all $z \in D$. |f(z)| = M if and only if f is a constant.

Remark 2.3. ([4]) Now suppose that g(z) is analytic in the region $D = \{z : \alpha_1 < \arg z < \beta_1, \ r_0 \le |z| < \infty\}$ and $|g(z)| \le \exp\{|z|^{\sigma}\}$ for some constant $0 \le \sigma < \infty$. If a subset $E \subset (\alpha_1, \beta_1)$ has linear measure zero and for any $\psi_0 \in (\alpha_1, \beta_1) - E$, |g(z)| is bounded for all z satisfying $\arg z = \psi_0$ and $|z| \ge r_0$, then for any given small $\varepsilon > 0$, there exists $r_1(\varepsilon) > r_0$ such that $|g(z)| \le \exp\{\varepsilon |z|^{\sigma+1}\}$ for $|z| = r > r_1$. We may choose points $\theta_j \in (\alpha_1, \beta_1) - E$ (j = 1, ..., n) such that $\theta_1 < \theta_2 < ... < \theta_n$ $(\alpha_1 < \theta_1 \le \alpha_1 + \varepsilon, \beta_1 - \varepsilon \le \theta_n < \beta_1)$ and $\max\{\theta_{j+1} - \theta_j : 1 \le j \le n - 1\} < \frac{\pi}{\sigma+1}$. Now from Lemma 2.1, $|g(z)| \le M$ in the sectors $\{z : \theta_j \le \arg z \le \theta_{j+1}, |z| \ge r_0\}$ (j = 1, ..., n - 1). Hence $|g(z)| \le M$ in the sector $\{z : \alpha_1 + \varepsilon \le \arg z \le \beta_1 - \varepsilon, |z| \ge r_0\}$.

Lemma 2.4. ([4]) Let $A_0, A_1, ..., A_{k-1}, F \not\equiv 0$ be finite order entire functions. If f is a solution of (1.1) with $\rho(f) = \infty$, then $\overline{\lambda}(f) = \lambda(f) = \rho(f) = \infty$.

Lemma 2.5. [5] Let f be a transcendental entire function of finite order ρ , let

$$\Gamma = \{(k_1, j_1), (k_2, j_2), ..., (k_m, j_m)\}$$

denote a finite set of distinct pairs of integers that satisfy $k_i > j_i \ge 0$ (i = 1, ..., m), and let $\varepsilon > 0$ be a given constant. Then there exists a set $E \subset [0, 2\pi)$ that has linear measure zero, such that if $\psi_0 \in [0, 2\pi) - E$, then there is a constant $R_0 = R_0(\psi_0) > 1$ such that for all z satisfying $\arg z = \psi_0$ and $|z| \ge R_0$, and for all $(k, j) \in \Gamma$, we have

$$\left| \frac{f^{(k)}(z)}{f^{(j)}(z)} \right| \le |z|^{(k-j)(\rho-1+\varepsilon)}. \tag{2.3}$$

Lemma 2.6. ([8], [6], Lemma 3) Let f(z) be an entire function and suppose that $|f^{(k)}(z)|$ is unbounded on some ray $\arg z = \theta$. Then there exists an infinite sequence of points $z_n = r_n e^{i\theta}$ (n = 1, 2, ...), where $r_n \to +\infty$ such that $f^{(k)}(z_n) \to \infty$ and

$$\left| \frac{f^{(j)}(z_n)}{f^{(k)}(z_n)} \right| \le \frac{1}{(k-j)!} (1 + o(1)) |z_n|^{k-j} \quad (j = 0, ..., k-1).$$
 (2.4)

Lemma 2.7. Suppose that $k \ge 2$ is a natural number and that $A_0, A_1, ..., A_{k-1}$ are entire functions. For real constants $\alpha, \delta, \theta_1, \theta_2$ such that $\alpha > 0, \delta > 0, \theta_1 < \theta_2$, we have for some A_s $(0 \le s \le k-1)$

$$|A_s(z)| \ge \exp\left(\alpha |z|^{\delta}\right) \tag{2.5}$$

as $z \to \infty$ in $S = \{z : \theta_1 \le \arg z \le \theta_2\}$ and

$$\max \left\{ \rho(A_j) : j = 0, 1, ..., s - 1, s + 1, ..., k - 1 \right\} < \delta.$$
 (2.6)

If $f \not\equiv 0$ is a solution of equation (2.1) with $\rho(f) = \rho < \infty$, then for any given small $\varepsilon > 0$, there is a constant M > 0 such that $|f(z)| \leq M|z|^s$ for all z in $S(\varepsilon) = \{z : \theta_1 + \varepsilon \leq \arg z \leq \theta_2 - \varepsilon\}$ with $|z| \geq r_0 > 0$.

Proof. Set $\rho(f) = \rho < \infty$. Then by Lemma 2.5 there exists a set $E \subset [0,2\pi)$ with linear measure zero such that if $\psi_0 \in [0,2\pi) - E$, then there is a constant $R_0 = R_0(\psi_0) > 1$ such that for all j = s + 1, ..., k

$$\left| \frac{f^{(j)}(z)}{f^{(s)}(z)} \right| \le |z|^{(j-s)(\rho-1+\varepsilon)} \le |z|^{(k-s)\rho} \quad (0 < \varepsilon < 1)$$
 (2.7)

as $|z| \ge R_0$ along $\arg z = \psi_0$.

Now suppose that $|f^{(s)}(z)|$ is unbounded on some ray $\arg z = \phi_0$, where $\phi_0 \in [\theta_1, \theta_2] - E$. Then by Lemma 2.6, there exists an infinite sequence of points $z_n = r_n e^{i\phi_0}$, where $r_n \to \infty$ such that $f^{(s)}(z_n) \to \infty$ and

$$\left| \frac{f^{(j)}(z_n)}{f^{(s)}(z_n)} \right| \le \frac{1}{(s-j)!} (1 + o(1)) |z_n|^{s-j} \le 2 |z_n|^s \quad (j = 0, ..., s-1)$$
 (2.8)

as $z_n \to \infty$. By (2.1) and (2.6)-(2.8), we have as $z_n \to \infty$

$$|A_{s}(z_{n})| \leq \left| \frac{f^{(k)}(z_{n})}{f^{(s)}(z_{n})} \right| + \left| \frac{f^{(k-1)}(z_{n})}{f^{(s)}(z_{n})} \right| |A_{k-1}| + \dots$$

$$+ \left| \frac{f^{(s+1)}(z_{n})}{f^{(s)}(z_{n})} \right| |A_{s+1}| + \left| \frac{f^{(s-1)}(z_{n})}{f^{(s)}(z_{n})} \right| |A_{s-1}| + \dots$$

$$+ \left| \frac{f(z_{n})}{f^{(s)}(z_{n})} \right| |A_{0}| \leq M_{0} \exp\left\{ o(1) |z_{n}|^{\delta} \right\} |z_{n}|^{M_{1}}, \tag{2.9}$$

where $M_0 > 0$, $M_1 > 0$ are some constants. Thus (2.9) contradicts (2.5). Therefore, $f^{(s)}(z)$ is bounded on any arbitrary ray $\arg z = \psi_0 \in [\theta_1, \theta_2] - E$. From Remark 2.3, it is easy to see that

$$\left| f^{(s)}(z) \right| \le M_2 \tag{2.10}$$

in $S(\varepsilon) = \{z : \theta_1 + \varepsilon \le \arg z \le \theta_2 - \varepsilon\}$ for some constant $M_2 > 0$. By s-fold iterated integration along the line segment [0, z], we obtain

$$f(z) = f(0) + f'(0) \frac{z}{1!} + \dots + \frac{1}{(s-1)!} f^{(s-1)}(0) z^{s-1} + \int_0^z \dots \int_0^z \int_0^z f^{(s)}(t) dt \dots dt.$$
 (2.11)

Therefore, by an elementary triangle inequality and (2.10), we obtain from (2.11) for an arbitrary point z in $S(\varepsilon)$ with $|z| \ge r_0 > 0$

$$|f(z)| \le |f(0)| + |f'(0)| \frac{|z|}{1!} + |f''(0)| \frac{|z|^2}{2!} + \dots + M_2 \frac{|z|^s}{s!} \le M|z|^s,$$
 (2.12)

where M > 0 is some constant.

Lemma 2.8. Suppose that $A_0,...,A_{k-1},\alpha,\delta,\epsilon,\theta_1,\theta_2,S,S(\epsilon)$ and k satisfy the hypotheses of Lemma 2.7 and $F \not\equiv 0$ is an entire function with $\rho(F) < \delta$. Then every solution f of (1.1) with $\rho(f) = \rho < \infty$, satisfies $|f(z)| \leq M|z|^s$ for all z in $S(\epsilon)$ with $|z| \geq r_0 > 0$ for some constant M > 0.

Proof. Let $\rho(f) = \rho < \infty$. Using the same reasoning as in Lemma 2.7, it is easy to see that (2.7) holds for f(z). If we assume $|f^{(s)}(z)|$ is unbounded on a some ray $\arg z = \phi_0$ where $\phi_0 \in [\theta_1, \theta_2] - E$, then using the same reasoning as in Lemma 2.7, it is easy to see that (2.8) holds. Since $|f^{(s)}(z_n)| \to \infty$ $(n \to \infty)$, we may assume that $|f^{(s)}(z_n)| \ge 1$ for all n. Hence

$$\left| \frac{F(z_n)}{f^{(s)}(z_n)} \right| \le |F(z_n)| \le \exp\left\{ o(1)|z_n|^{\delta} \right\}. \tag{2.13}$$

From (1.1), (2.6), (2.7), (2.8) and (2.13) we get

$$|A_{s}(z_{n})| \leq \left| \frac{f^{(k)}(z_{n})}{f^{(s)}(z_{n})} \right| + \left| \frac{f^{(k-1)}(z_{n})}{f^{(s)}(z_{n})} \right| |A_{k-1}| + \dots$$

$$+ \left| \frac{f^{(s+1)}(z_{n})}{f^{(s)}(z_{n})} \right| |A_{s+1}| + \left| \frac{f^{(s-1)}(z_{n})}{f^{(s)}(z_{n})} \right| |A_{s-1}| + \dots$$

$$+ \left| \frac{f(z_{n})}{f^{(s)}(z_{n})} \right| |A_{0}| + \left| \frac{F(z_{n})}{f^{(s)}(z_{n})} \right| \leq M_{2} \exp \left\{ o(1) |z_{n}|^{\delta} \right\} |z_{n}|^{M_{1}}, \qquad (2.14)$$

where $M_2 > 0$, $M_1 > 0$ are some constants. This contradicts (2.5). Therefore $|f^{(s)}(z)|$ is bounded on any arbitrary ray $\arg z = \psi_0 \in [\theta_1, \theta_2] - E$. And also using the same reasoning as in Lemma 2.7, we have $|f(z)| \le M|z|^s$ for all z in $S(\varepsilon)$ with $|z| \ge r_0 > 0$ for some constant M > 0.

Lemma 2.9. Suppose that $k \ge 2$ is a natural number and $A_0, A_1, ..., A_{k-1}$, are finite order entire functions. Suppose that there exists an A_s $(0 \le s \le k-1)$ such that for real constants α , δ , with $\alpha > 0$, $\delta > 0$, we have

$$\max \left\{ \rho \left(A_{j} \right) : j = 0, 1, ..., s - 1, s + 1, ..., k - 1 \right\} < \delta \tag{2.15}$$

and

$$\max \left\{ \rho \left(A_{j}\right) : j=1,...,s-1\right\} < \rho \left(A_{0}\right) . \tag{2.16}$$

Suppose that for any given $\varepsilon > 0$, there exist two finite collections of real numbers $\{\phi_m\}$ and $\{\theta_m\}$ that satisfy (1.2), (1.3). In $D_m = \{z : \phi_m \le \arg z \le \theta_m\}$ (m = 1,...,n) as $z \to \infty$, we have

$$|A_s(z)| \ge \exp\left\{\alpha |z|^{\delta}\right\}. \tag{2.17}$$

Then every solution f of (2.1) satisfies $\rho(f) = \infty$.

Proof. Let $f \not\equiv 0$ be a solution of (2.1) with $\rho(f) = \rho < \infty$. By the hypotheses, for any given $\varepsilon \left(0 < \varepsilon < \frac{\pi}{3(\rho + \frac{1}{4})}\right)$, there exist two finite collections of real numbers $\{\phi_m\}$ and $\{\theta_m\}$ that satisfy (1.2), (1.3). Suppose A_s satisfies (2.17) in $D_m(m = 1, ..., n)$ and $A_j(j = 0, 1, ..., s - 1, s + 1, ..., k - 1)$ satisfy

$$\left|A_{j}(z)\right| \leq \exp\left\{o\left(1\right)\left|z\right|^{\delta}\right\}.$$
 (2.18)

Then by Lemma 2.7, we have

$$|f(z)| \le M|z|^s \quad (M > 0 \text{ is some constant})$$
 (2.19)

 $\text{in } D_m^*\left(\epsilon\right) = \left\{z: \varphi_m + \epsilon \leq \arg z \leq \theta_m - \epsilon\right\} \, (m = 1, ..., n) \text{ with } |z| \geq r_1.$

On the other hand, in the sector $\theta_m - \varepsilon \le \arg z \le \phi_{m+1} + \varepsilon$ (m = 1, ..., n), from $\rho(f) = \rho < \infty$, we have $|f(z)| \le \exp\left\{r^{\rho + \frac{1}{4}}\right\}$ holds for $|z| = r > r_0 > 0$. By (1.3) and $0 < \varepsilon < \infty$

 $\frac{\pi}{3\left(\rho+\frac{1}{4}\right)}$, we have $(\phi_{m+1}+\epsilon)-(\theta_m-\epsilon)<3\epsilon<\frac{\pi}{\rho+\frac{1}{4}}$. Hence there exists $R>1+r_0$ such that for r>R, we have $r^{\rho+\frac{1}{4}}<\epsilon r^{\frac{\pi}{\left[\left(\phi_{m+1}+\epsilon\right)-\left(\theta_m-\epsilon\right)\right]}}$. Therefore, in $\theta_m-\epsilon\leq \arg z\leq \phi_{m+1}+\epsilon$ (m=1,...,n)

$$\left| \frac{f(z)}{z^{s}} \right| \le |f(z)| \le \exp\left\{ |z|^{\rho + \frac{1}{4}} \right\} < \exp\left\{ \varepsilon |z|^{\frac{\pi}{[(\phi_{m+1} + \varepsilon) - (\theta_{m} - \varepsilon)]}} \right\}$$
 (2.20)

holds for |z| = r > R. And on the rays $\arg z = \theta_m - \varepsilon$, $\arg z = \phi_{m+1} + \varepsilon$ with $|z| \ge r_1 > 0$, we have $\left| \frac{f(z)}{z^s} \right| \le M$ holds from (2.19). Hence by Lemma 2.2, $\left| \frac{f(z)}{z^s} \right| \le M$ holds in $\theta_m - \varepsilon \le \arg z \le \phi_{m+1} + \varepsilon$ (m = 1, ..., n) with |z| > R. So $|f(z)| \le M|z|^s$ holds in the whole plane from (2.19). Therefore, f(z) is a polynomial.

If f is a polynomial of $\deg f \geq s$, then $\rho\left(f^{(k)} + A_{k-1}f^{(k-1)} + ... + A_0f\right) = \rho\left(A_s\right) \geq \delta > 0$ and this contradicts (2.1). If f is a non zero polynomial of $\deg f \leq s-1$, then $\rho\left(A_{s-1}f^{(s-1)} + ... + A_0f\right) = \rho\left(A_0\right) > 0$. This contradicts (2.1). Therefore, every solution $f \equiv 0$ of (2.1) satisfies $\rho\left(f\right) = \infty$.

Lemma 2.10. Suppose that $A_0,...,A_{k-1},\alpha,\delta,\epsilon,\{\phi_m\},\{\theta_m\}$, k and D_m satisfy the hypotheses of Lemma 2.9, and that $F\not\equiv 0$ is a finite order entire function such that $\rho(F)<\delta$ and that either:

- (i) $\max \{ \rho(A_j) : j = 1, ..., s 1, \rho(F) \} < \rho(A_0) \text{ or that }$
- (ii) $\max \{ \rho(A_j) : j = 0, 1, ..., s 1 \} < \rho(F).$

Then every solution f of (1.1) satisfies $\rho(f) = \infty$.

Proof. Let f be a solution of (1.1) with $\rho(f) = \rho < \infty$. Using the same reasoning as in Lemma 2.9 and together with Lemma 2.8, it easy to see that $|f(z)| \le M|z|^s$ for some constant M > 0 in

$$D_m^*(\varepsilon) = \{z : \phi_m + \varepsilon \le \arg z \le \theta_m - \varepsilon\} \ (m = 1, ..., n)$$

with $|z| \ge r_1$. Similarly in $\theta_m - \varepsilon \le \arg z \le \phi_{m+1} + \varepsilon$ (m = 1, ..., n), also using the same reasoning as in Lemma 2.9, we see that $|f(z)| \le M|z|^s$ in $D_m^{**}(\varepsilon) = \{z : \theta_m - \varepsilon \le \arg z \le \phi_{m+1} + \varepsilon\}$ (m = 1, ..., n) with |z| > R. Hence f is a polynomial.

If f is a polynomial with deg $f \ge s$, then

$$\rho\left(f^{(k)}+A_{k-1}f^{(k-1)}+\ldots+A_{0}f\right)=\rho\left(A_{s}\right)\geq\delta>\rho\left(F\right).$$

This contradicts (1.1). If f is a non zero polynomial with deg $f \le s - 1$, then if

$$\max\left\{ \rho\left(A_{j}\right) : j=1,...,s-1,\rho\left(F\right)\right\} < \rho\left(A_{0}\right),$$

we have $\rho(A_{s-1}f^{(s-1)}+...+A_0f)=\rho(A_0)>\rho(F)$. This contradicts (1.1). If $\max\{\rho(A_j):j=0,1,...,s-1\}<\rho(F)$, then

$$\rho\left(f^{^{(k)}}+A_{k-1}f^{^{(k-1)}}+\ldots+A_{0}f\right)\leq\max\left\{\rho\left(A_{j}\right):j=0,1,\ldots,s-1\right\}<\rho\left(F\right).$$

This contradicts (1.1). Therefore, every solution f of (1.1) has infinite order.

3 Proof of Theorem 1.3.

(a) From f(z) is a solution of (1.1) and Lemma 2.10, we know that $\rho(f) = +\infty$. Together with Lemma 2.4, we know that f(z) satisfies (1.9).

(b) Set $g = f - \varphi$. Since f is a solution of (1.1), then we have $\rho(g) = \rho(f) = \infty$. Substituting $f = g + \varphi$ into equation (1.1), we get

$$g^{(k)} + A_{k-1}g^{(k-1)} + \dots + A_0g = F - \left(\varphi^{(k)} + A_{k-1}\varphi^{(k-1)} + \dots + A_0\varphi\right). \tag{3.1}$$

By $\rho(\phi) < +\infty$, then ϕ is not a solution of (1.1). Thus, we have

$$F - \left(\varphi^{(k)} + A_{k-1}\varphi^{(k-1)} + \dots + A_0\varphi\right) \not\equiv 0 \tag{3.2}$$

and by Lemma 2.4, we know that

$$\lambda(f - \varphi) = \overline{\lambda}(f - \varphi) = \rho(f) = \infty. \tag{3.3}$$

4 Proof of Theorem 1.5.

- (a) Assume that f_0 is a solution of (1.1) with $\rho(f_0) = \rho < \infty$. If f_1 is another finite order solution of (1.1), then $\rho(f_1 f_0) < \infty$, and $f_1 f_0$ is a solution of the corresponding homogeneous equation (2.1) of (1.1), but $\rho(f_1 f_0) = \infty$ from Lemma 2.9. This is a contradiction. Hence (1.1) has at most one finite order solution f_0 and all other solutions f_1 of (1.1) satisfy (1.9) by Lemma 2.4.
- (b) Assume that f_0 is a solution of (1.1) with $\rho(f_0) < \infty$. By (1.1) we can write

$$\frac{1}{f_0} = \frac{1}{F} \left(\frac{f_0^{(k)}}{f_0} + A_{k-1} \frac{f_0^{(k-1)}}{f_0} + \dots + A_1 \frac{f_0'}{f_0} + A_0 \right). \tag{4.1}$$

It follows that if f_0 has a zero at z_0 of order d > k, then F must have a zero at z_0 of order d - k. Hence

$$n\left(r, \frac{1}{f_0}\right) \le k\overline{n}\left(r, \frac{1}{f_0}\right) + n\left(r, \frac{1}{F}\right) \tag{4.2}$$

and

$$N\left(r, \frac{1}{f_0}\right) \le k\overline{N}\left(r, \frac{1}{f_0}\right) + N\left(r, \frac{1}{F}\right). \tag{4.3}$$

Applying the Lemma of the logarithmic derivative [7]

$$m\left(r, \frac{f_0^{(j)}}{f_0}\right) = O(\ln r) \ (j = 1, ..., k) \ (\rho(f_0) < +\infty).$$
 (4.4)

From (4.1) we have

$$m\left(r, \frac{1}{f_0}\right) \le m\left(r, \frac{1}{F}\right) + \sum_{j=0}^{k-1} m\left(r, A_j\right) + \sum_{j=1}^{k} m\left(r, \frac{f_0^{(j)}}{f_0}\right) + O(1).$$
 (4.5)

Then we get from (4.3), (4.4) and (4.5)

$$T\left(r,f_{0}\right)=T\left(r,\frac{1}{f_{0}}\right)+O\left(1\right)$$

$$\leq k\overline{N}\left(r,\frac{1}{f_0}\right) + T\left(r,F\right) + \sum_{j=0}^{k-1} T\left(r,A_j\right) + O\left(\log r\right). \tag{4.6}$$

Now set $\alpha = \max \{ \rho(A_s), \rho(F) \}$. Then for given small $\varepsilon > 0$ and sufficiently large r, we have

$$T(r,F) < r^{\alpha+\epsilon}, T(r,A_i) < r^{\alpha+\epsilon} \ (i = 0,...,k-1).$$
 (4.7)

So, by (4.6), (4.7)

$$T(r, f_0) \le k \, \overline{N}\left(r, \frac{1}{f_0}\right) + (k+1) \, r^{\alpha + \varepsilon} + O(\log r) \tag{4.8}$$

holds for a sufficiently large r. Therefore,

$$\rho(f_0) \le \max\left\{\alpha, \, \overline{\lambda}(f_0)\right\} = \max\left\{\rho(A_s), \, \rho(F), \, \overline{\lambda}(f_0)\right\}. \tag{4.9}$$

If $\overline{\lambda}(f_0) < \rho(f_0)$, $\rho(A_s) \neq \rho(F)$, then by (4.9) we have

$$\rho(f_0) \le \max\{\rho(A_s), \rho(F)\} \tag{4.10}$$

and by (1.1), we get

$$\rho(f_0) \ge \max\left\{\rho(A_s), \, \rho(F)\right\}. \tag{4.11}$$

Therefore,

$$\rho(f_0) = \max \{ \rho(A_s), \, \rho(F) \}. \tag{4.12}$$

(c) Set $g = f - \varphi$. If f is a solution of (1.1) with $\varphi(f) = \infty$, then we have $\varphi(g) = \varphi(f) = \infty$. Substituting $f = g + \varphi$ into equation (1.1) we get

$$g^{(k)} + A_{k-1}g^{(k-1)} + \dots + A_0g = F - \left(\varphi^{(k)} + A_{k-1}\varphi^{(k-1)} + \dots + A_0\varphi\right). \tag{4.13}$$

Since φ is not a solution of (1.1), then we have

$$F - \left(\varphi^{(k)} + A_{k-1}\varphi^{(k-1)} + \dots + A_0\varphi\right) \not\equiv 0 \tag{4.14}$$

and by Lemma 2.4, we know that

$$\lambda(f - \varphi) = \overline{\lambda}(f - \varphi) = \rho(f) = \infty. \tag{4.15}$$

5 Proof of Theorem 1.7

Suppose that f_1 is a solution of equation (1.18) and f_2 is a solution of equation (1.19). Set $g = f_1 - Cf_2$. Then g is a solution of equation $g^{(k)} + A_{k-1}g^{(k-1)} + ... + A_0g = F_1 - CF_0$. By $\rho(F_1 - CF_0) = \rho(F_0) \ge \delta$ and Theorem 1.5 the equation $g^{(k)} + A_{k-1}g^{(k-1)} + ... + A_0g = F_1 - CF_0$ has at most one finite order solution $g_0 = f_1 - Cf_0$ that satisfies

$$\rho(g_0) \le \max\left\{\rho(F_0), \rho(A_s), \overline{\lambda}(g_0)\right\}$$
(5.1)

and all other solutions $g = f_1 - Cf_2$ of $g^{(k)} + A_{k-1}g^{(k-1)} + ... + A_0g = F_1 - CF_0$ satisfy

$$\lambda(f_1 - Cf_2) = \overline{\lambda}(f_1 - Cf_2) = \rho(f_1 - Cf_2) = \infty.$$
 (5.2)

6 Proof of Theorem 1.8

Suppose that f_1 is a solution of equation (1.18) and f_2 is a solution of equation (1.19). Set $g = f_1 - Cf_2$. Then g is a solution of equation $g^{(k)} + A_{k-1}g^{(k-1)} + ... + A_0g = F_1 - CF_0$. By $F_1 - CF_0 \not\equiv 0$, $\rho(F_1 - CF_0) < \delta$ and Theorem 1.3, we have $\rho(g) = \infty$. Thus, by Lemma 2.4, we know that

$$\lambda(f_1 - Cf_2) = \overline{\lambda}(f_1 - Cf_2) = \rho(f_1 - Cf_2) = \infty. \tag{6.1}$$

Acknowledgement. The author would like to thank the referee for his/her helpful remarks and suggestions.

References

- [1] B. Belaïdi and S. Abbas, Growth and oscillation theory of non-homogeneous complex differential equations with entire coefficients, *Int. Math. Forum* **1** (2006), no. 37-40, 1849–1860.
- [2] T. B. Cao and H. X. Yi, On the complex oscillation of higher order linear differential equations with meromorphic functions, *J. Syst. Sci. Complex.* **20**(2007), no. 1, 135–148.
- [3] Z. X. Chen and S. A. Gao, The complex oscillation theory of certain non-homogeneous linear differential equations with transcendental entire coefficients, *J. Math. Anal. Appl.* 179 (1993), 403–416.
- [4] Z. X. Chen and S. A. Gao, Entire solutions of differential equations with finite order transcendental entire coefficients. A Chinese summary appears in Acta Math. Sinica 40 (1997), no. 6, 951. *Acta Math. Sinica* (N.S.) **13** (1997), no. 4, 453–464.
- [5] G. G. Gundersen, Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates, *J. London. Math. Soc.* (2) **37** (1988), pp. 88-104.
- [6] G. G. Gundersen and E. M. Steinbart, Finite order solutions of non-homogeneous linear differential equations, *Ann. Acad. Sci. Fenn. A. I. Math.* **17**, (1992), pp. 327-341.

- [7] W. K. Hayman, Meromorphic functions, Clarendon Press, Oxford, 1964.
- [8] I. Laine and R. Yang, Finite order solutions of complex linear differential equations. *Electron. J. Differential Equations* **2004** (2004), no. 65, 8 pp.
- [9] A. I. Markushevich, Theory of functions of a complex variable, Vol. II, translated by R. A. Silverman, Prentice-Hall, Englewood Cliffs, New Jersey, 1965.