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Abstract

In this paper, we investigate the growth and the complex oscillation theory of the
linear differential equationf ® + A 1 f&kD 4+ + A f +Agf =F, whereAg, Aq, ...,
Ac_1,F # 0are entire functions. We also investigate the relation between the solutions
of a pair non-homogeneous linear differential equations. We improve some results due
to the author, S. Abbas and Z. X. Chen, S. A. Gao.
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1 Introduction and statement of results

Throughout this paper, we assume that the reader is familiar with the fundamental results
and the standard notations of the Nevanlinna value distribution theory (see [7]). In addition,
we will useA (f) andA (f) to denote respectively the exponents of convergence of the zero-
sequence and the sequence of distinct zerof @f( f) to denote the order of growth of
f.

Fork > 2 we consider the linear differential equation

fO A Y LA A =F, (1.1)

whereAg, Ay, ...,Ax_1,F # 0 are entire functions of finite order.
Itis well-known that all solutions of equation (1.1) are entire functions and if at least one
coefficientAs(2) is transcendental, then at least some of the solutions are of infinite order.
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On the other hand, there exist equations of this form that possess one or more solutions of
finite order. For examplé (z) = € satisfiesf” —e*f' —e 2f +&f =e#— 1.

Recently the complex oscillation theory of the complex differential equations has been
investigated actively [1, 2, 3, 4]. In [4], Chen and Gao have investigated the complex
oscillation of (1.1) and have obtained the following results:

Theorem 1.1. ( [4], p. 455 Suppose thak > 2 is a natural number and thad, Ay, ...,
A1, F= 0 are finite order entire functions, where there existsfa{0 < s< k—1) such
that for real constantst > 0, B > 0, we havep (A;) < B (j #s) andp(F) > B. Suppose
that for any givere > 0, there exist two finite collections of real numbéts,} and {6}
which satisfy

P1<01<P2<B2<... <O <O <Opr1=01+2m 1.2)
and
> (@mi1—6m) <&, (1.3)
m=1
such that
As(2)] = exp{ (1+0(1)a |z} (1.4)

asz— o in ¢y, < arg(z) < Om (m=1,...,n). Then all solutions of (1.1) satisfy

N(f)=A(f)=p(f)=o (15)

with some possible finite order solutions. All of the possible finite order solutions have the
same order of growtp (0 < p < ). If there exist two finite order solutiorfg, f1 ( fo=# f1)
of (1.1), thenfp — f1 is a polynomial withdeg( fo — f1) < s— 1, and fp satisfies

p=p(fo) <max{p(A).p(F).A(fo)}. (L6)
If p(As) # p(F), N(fo) < p, thenp(fo) = max{p(As),p(F)}. Furthermore, if among
As_1,...,Ao, there exist and only exifm,,...,Am, (S—1>m >mp > .. >mg > 0)
being transcendental) (Am]) (j=1,...,d) are unequal to each other at = 1, and if
(1) mg =0or (2) my > 0 and polynomialsAy, 1, Am;—2, ..., Ag Satisfy that deg(Aj) — j
(j=mg—1,my—2,...,0) are unequal to each other, ong = 1 and Ag= 0, then all solu-
tions of (1.1) satisfy (1.5) with at most one possible finite order solution.

Theorem 1.2. ( [4], p. 455 Suppose thaby, ..., As, ..., A1, a, B, {dm}, {Bm} and k
satisfy the hypotheses of Theorem 1.1, and Eat0 is an entire function witlp (F) < .

Then all solutions of (1.1) satisfy (1.5) with some possible polynomial solutions of degree
<s—1.

The purpose of this paper is to improve the above results by expressing the growth
condition of the coefficienfs(z) more explicitly without making use a(1). We will
prove the following theorems:
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Theorem 1.3. Suppose thak > 2 is a natural number and thatg, A, ..., Ak-1, F=# 0
are finite order entire functions, where there existsAar{0 < s < k— 1) such that for real
constantsx, d witha > 0, d > 0, we have

max{p(Aj):j=0,1,..,s—1s+1,. . k—=1p(F)} <d (1.7)

and either
(i) max{p(Aj) : j=1,...s— Lp(F)} < p(Ao) or
(i) max{p(Aj):j=0,1,..s—1} < p(F).
Suppose that for any given> 0, there exist two finite collections of real numbégs, }
and{6m} which satisfy (1.2) and (1.3) such that

|As(2)| > exp{a |z\5} (1.8)

asz— o indpy<arg(z) < On(m=1,...,n).
(a) Then every solutioffi of (1.1), satisfies

M) =A(f)=p(f) =w. (1.9)
(b) If ¢ is a finite order entire function, then
A(f—¢)=A(f—¢)=p(f)=o. (1.10)

From Theorem 1.3, we obtain the following corollary:

Corollary 1.4. Suppose thaky,...,A«_1, F= 0, a,0,&,{¢n}, {6m} andk satisfy the hy-
potheses of Theorem 1.3. Then every solufimf (1.1) has infinitely many fixed points
and

ANf—2)=A(f-2)=p(f)=w. (1.11)

Theorem 1.5. Suppose thak > 2 is a natural number and thaty, A, ..., Ac1, F=# 0
are finite order entire functions, where there existsAarf0 < s < k— 1) such that for real
constantsx, dwitha > 0, & > 0, we have

max{p(Aj):j=0,1,..,s—1,s+1,. . k—1} <3 (1.12)

and
max{p(Aj): j=1,...s—1} <p(Ag), (1.13)

let F=£ 0 be a finite order entire function such thatF) > 8. Suppose that for any given
€ > 0, there exist two finite collections of real numbégs, } and{6,} that satisfy (1.2),(1.3)
such that(1.8) holds asz— o in @, < argz< 6, (m=1,...,n).

(a) Then all solutions of (1.1) satisfy (1.9), with at most one finite order soludtjon

(b) If there exists a finite order solutiofy in case(a), thenfy satisfies

p(fo) < max{p(F).p(A9) A (fo) | (1.14)
IfA(fo) < p(fo). p(F) # P (As). thenp (fo) = max{p(F).p (A}
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(c) If fis an infinite order solution of equation (1.1) anddifis a finite order entire
function which is not solution of (1.1), then

A(f =) =A(f—) =p(f) = . (1.15)

From Theorem 1.5, we obtain the following corollary:

Corollary 1.6. Suppose thay,...,Ax_1, F=£ 0, a,d,&,{@n}, {Om} andk satisfy the hy-
potheses of Theorem 1.5. Then

(i) If there exists a finite order solutiofy in case(a), then for any infinite order solution
f of equation (1.1) and for any consta@t~ 1, we have

A(f—Cfo) =A(f —Cfo) = p(f) = w. (1.16)

(i) If f is an infinite order solution of (1.1), theihhas infinitely many fixed points and
AMNf—2)=A(f-2)=p(f)=co. (1.17)
In what follows, we investigate the relation between the solutions of a pair non-homogeneous
linear differential equations and we obtain the following results :

Theorem 1.7. Suppose thady, ..., A1, 0,0,€, {¢®n}, {Om} andk satisfy the hypotheses of
Theorem 1.5, and that = 0, Fo=£ 0 are finite order entire functions such thatF;) < 9,
p(Fo) > o. If the equation

9 A T A =R (1.18)

has a solutionfy, then equation

At T A =R (1.19)
has at most one infinite order solutidp that satisfies
p(f1~Cfo) < max{p(Fo),p(As) A(f1~Cfo) | (1.20)
and all other solutiond; of (1.19) satisfy
A(fi—Cf) =A(f1—Ch)=p(f1—Cfh) = (1.21)

for any constanC.

Theorem 1.8. Suppose thady, ..., A1, 0,0,€,{¢n}, {Om} andk satisfy the hypotheses of
Theorem 1.5, and thdk = 0, Fy=£ 0 are finite order entire functions such thigd=% Ck for
any constan€. Suppose that

max{p(Aj):j=0,1,..,s—1s+1,...k—1,p(F),p(F1)} <d (1.22)
and

max{p(Aj):j=1,...s—1,p(Fo),p(F1)} < p(Ao). (1.23)
Then all solutions of (1.18) and (1.19) satisfy (1.21).
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Remarkl.9. In Theorem 1.3, if we don’t suppose the additional conditions
max{p(Aj):j=1,....s—1,p(F)} <p(Ao)

or
max{p(Aj):j=0,1,...s—1} <p(F),

then equation (1.1) may have polynomial solution. For example the equation

@ 1 sinhBt® 1 281" —z2& f +2f =2 (1.24)

has a polynomial solutionf (z) = Z2. The equation (1.24) satisfies the other additional
hypotheses of Theorem 1.3 but does not satisfies

max{p(Aj): j=1,2,p(F)} < p(Ao)

or
max{p(A;j):j=0,1,2} <p(F).

2 Preliminary Lemmas

Lemma 2.1. ( [4]) Suppose thakyg, Ay, ..., A1, F= 0 are entire functions with at least
oneAs (0 < s< k-—1) being transcendental. Let the equation

f0 A f&D L LA+ Af=0 (2.1)

be the corresponding homogeneous differential equation of (1.1). Then both (1.1) and (2.1)
must have infinite order solutions.

Lemma 2.2. (Phragmen-Lindebf Theorem,see [9], p. 214). Lef () be analytic in the
regionD = {z: 0y < argz < B, ro < |z < «} and continuous o® = DUT, wherel is the
boundary oD. If for any given smalt > 0, there exists; (¢) > 0 such that forlz| >r4 (g),
z< D, we have

If (2)| < exp{s|z|ﬁ}, 2.2)

and forze I, we havelf (z)] <M (M > 0 is a constant), thetf (z)| < M for all z€ D.
|f (z)] =M ifand only if f is a constant.

Remark2.3. ( [4]) Now suppose thaj(z) is analytic in the regiod = {z: a1 < argz <

B1, o < |7 < »} and |g(2)| < exp{|Z°} for some constand < o < «. If a subset
E C (a1,B1) has linear measure zero and for apy € (a1,B1) — E, |g(2)| is bounded
for all z satisfyingargz = Y and |z| > ro, then for any given smalt > 0, there exists

r1(g) > ro such that|g(z)| < exp{s|z\(Hl for |z =r > r1. We may choose point3; ¢

(a1,B1)—E(j=1,...,n)suchthaB; <0, <...<Bp (01 <81 <a;+¢€ P1—€< 0B, <P1)
andmax{0j,1 —0;:1<j <n-1} < g% Now from Lemma 2.1)g(z)| < M in the
sectors{z: 8; < argz < 0,1,|2] > ro} (j=1,...,n—1). Hence|g(2)| < M in the sector

{z:a1+e<argz<Pi1—c¢, |7 > ro}.
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Lemma 2.4. ([4]) Let Ao, Ay, ..., Ac_1, F= O be finite order entire functions. If is a
solution of(1.1) with p(f) = o, thenA (f) =A(f) =p(f) = co.

Lemma 2.5. [5] Let f be a transcendental entire function of finite orgetet

M= {(ku,j1), (K2, j2) e, (Km, jm) }

denote a finite set of distinct pairs of integers that satisfy j; >0 (i =1,...,m), and let

€ > 0 be a given constant. Then there exists aEset [0, 2m) that has linear measure zero,
such that ifyig € [0,2m) — E, then there is a constay = Ry (Yo) > 1 such that for all
z satisfyingargz = Yo and |zl > Ro, and for all (k, j) € ', we have

e

(k=j)(p—1+e)

Lemma 2.6. ([8], [6], Lemma 3) Letf (z) be an entire function and suppose tihh@() (z)\ is
unbounded on some raygz = 6. Then there exists an infinite sequence of paints r,e'®
(n=1,2,...), wherer, — 4o such thatf (z,) — o and

_ 1
— (k=)

Lemma 2.7. Suppose thak > 2 is a natural number and thadg, A1, ...,Ax_1 are entire
functions For real constantsi, ,01, 0, such thatx > 0, 8 > 0, 0; < 62, we have for some
As (0<s<k-1)

!(1+0(1))|zn|k‘j (j=0,...k—1). (2.4)

|As(2)| > exp(a \z\5> (2.5)

asz— o in S={z:6; <argz< 6} and

max{p(Aj):j=0,1,...,s—1s+1,.. k—1} <& (2.6)

If f=£ Ois a solution of equation (2.1) with(f) = p < o, then for any given smadl > 0,
there is a constan¥ > 0 such thati f (z)] <M |z°for all zin S(g) = {z: 8; + € < argz <
0, — 8} with |z| >rg > 0.

Proof. Setp(f) =p < . Then by Lemma 2.5 there exists a §etC [0, 2m) with linear
measure zero such thatib € [0, 2m) — E, then there is a constaRy = Ry (Y)g) > 1 such
thatforallj=s+1,....k

< |7U79P=1+8) < 1zk9P (0 < g < 1) (2.7)

as|z > Rp alongargz = .

Now suppose thdtf (s) (z)\ is unbounded on some raygz = @, whereqy € [01,62] —
E. Then by Lemma 2.6, there exists an infinite sequence of pgjats,€%®, wherer, — o
such thatf(® (z,) — « and
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()|~ 51

asz, — . By (2.1) and (2.6)-(2.8), we have gs— oo

[ (L+0(D) [zl <2z (j=0,...5-1) (2.8)

f¥ (z0)
f) (z0)

f(k—l) (Zn)

|As(zn)] < @ (z)

_l’_

Al + ...

f(S+l) (Zn)

f(s—l) (Zn)

f(zn) > M
< 1
| 1 ol < Moexp{o(1) 2} ™ 29
whereMg > 0, M; > 0 are some constant§hus (2.9) contradicts (2.5). Thereforé? (2)
is bounded on any arbitrary raygz = Yo € [01,02] — E. From Remark 2.3, it is easy to see
that

]f<5> (z)’ <M, (2.10)

inS(e) = {z: 61+ ¢ < argz< 6, — £} for some constaril, > 0. By s-fold iterated integra-
tion along the line segmei, z|, we obtain

1

f(2)=f(0)+f (0)=+ -1

z
TR
Z, 2,2,

+ .. £ (t)dt...dt. (2.11)
0 0 O

Therefore, by an elementary triangle inequality and (2.10), we obtain from (2.11) for an
arbitrary pointzin S(g) with [z > ro >0

+ S ()P

2 S
z " z
| ’+‘f (0) L +...+M2L | <M|z®, (2.12)

f@I<IfO)+]f 0|5

/ z
ro 2’! sl

whereM > 0 is some constant

Lemma 2.8. Suppose thady, ...,Ax_1,0,9d,€, 01,02, S S(€) andk satisfy the hypotheses of
Lemma 2.7 andr= 0 is an entire function wittp (F) < 8. Then every solutiori of (1.1)
with p(f) = p < oo, satisfies|f (z)] < M|z® for all zin S(¢) with |2 > ro > O for some
constantM > 0.

Proof. Letp(f) = p < . Using the same reasoning as in Lemma 2.7, it is easy to see that
(2.7) holds for f (z). If we assumd f(¥ (z)| is unbounded on a some raygz = g where

@ € [61,02] — E, then using the same reasoning as in Lemma 2.7, it is easy to see that (2.8)
holds. Sincg ) (z;)| — e« (N — ), we may assume that ® (z,)| > 1 for all n. Hence

’ F(z)
F) (z0)

' < IF (z0)| < exp{o(1) |z} (2.13)
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From (1.1), (2.6), (2.7), (2.8) and (2.13) we get

Y (z)
1 (z0)

Y (z0)

|AS(Zn)| S f(S) (Zn)

+ Acal+ .

FEH (z0)
£ (z0)

f (zn)
£ (z0)

whereM, > 0, M; > 0 are some constant3his contradicts (2.5). Therefotd® (z)| is
bounded on any arbitrary rargz = Yo € [61,62] — E. And also using the same reasoning
asin Lemma 2.7, we haVé ()| < M|z°*for all zin S(€) with |z > ro > 0 for some constant
M > 0.

f(sfl) (Zn)
+ |Asi1|+ f(T(Zn) |As 1|+ ...

F(z0)
£ (z0)

+‘ ‘1A0|+' ‘ <Mzexp{o(1) [z} 12", (2.14)

Lemma 2.9. Suppose thak > 2 is a natural number and\y, Ay, ..., Ac_1, are finite order
entire functionsSuppose that there exists Ag(0 < s < k— 1) such that for real constants
a, d, witha > 0, 6 > 0, we have

max{p(Aj):j=0,1,...,s—1,s+1,.,k—1} <3 (2.15)
and
max{p(Aj):j=1..,5—1} <p(Ay). (2.16)
Suppose that for any givem> 0, there exist two finite collections of real numbeg,}
and {6y} that satisfy (1.2), (1.3). IDm={z: @n < argz< 6y} (M=1,...,n) asz— oo,
we have
|As(z)| > expqa \z|6}. (2.17)
Then every solutior of (2.1) satisfiep (f) = .

Proof. Let f= 0 be a solution of (2.1) wittp(f) = p < . By the hypotheses, for any
givene <O <e< ?@11)> , there exist two finite collections of real numbéms,} and{6m}

2
that satisfy (1.2), (1.3). Suppoge satisfies (2.17) iDm(m=1,...,n) andA;(j =0,1,
,8—1s+1 ...,k—1) satisfy

A (2)] < exp{o(l) yz|5}. (2.18)
Then by Lemma 2.7, we have

If (2] <M|Z° (M > 0is some constait (2.19)

inD;,(e) ={z:on+e<argz<On—¢€} (m=1,....n) with |z| > r;.
On the other hand, in the secy — &€ < argz< @nr1+€ (m=1,....n), fromp(f) =
p < oo, we have|f (z)| < exp{r‘”%} holds for|zl =r >rg > 0. By (1.3) and0 < € <
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—T~ we have(@ni1+¢€) — (Bm—€) < 3e < —;. Hence there existR > 1+ ro such
3(pt3) Ptz

that forr > R, we haverP+i < gr[4n179)-@m-2]  Therefore, infn— & < argz < @ny1 + €
(m=1,...,n)

’ 1@
z

<lf(z)| < exp{\z|p+%} < exp{s|z| (e 70)-om-] } (2.20)

holds for|zl =r > R And on the raysargz= 6y, — €, argz= ¢ms1 + € with |zl >r1 > 0,
we have’@‘ < M holds from (2.19). Hence by Lemma 2‘2‘%‘ < M holds inB,—€ <
argz < dm:1+€ (Mm=1,...,n) with |z > R So|f (2)| < M|z® holds in the whole plane
from (2.19). Thereforef (z) is a polynomial

If f is a polynomial ofdegf > s, thenp(f(k>+Ak,1f( +...+Aof) =p(As) >
0 > 0 and this contradicts (2.1). If is a non zero polynomial oflegf < s— 1, then
p (As_lf@*l) +... +Aof) = p(Ao) > 0. This contradicts (2.1). Therefore, every solutibn
= 0 of (2.1) satisfiep (f) = .
Lemma 2.10. Suppose th&y, ..., Ax_1,0,d,&, {®n},{Bm}, kandDp, satisfy the hypotheses

of Lemma 2.9, and th& = 0 is a finite order entire function such thatF) < & and that
either:

(i) max{p(Aj):j=1,..,s—1p(F)} <p(Ao)orthat
(i) max{p(Aj):j=0,1,...,s—1} <p(F).
Then every solutioffi of (1.1) satisfiep () = co.

k—1)

Proof. Let f be a solution of (1.1) witlp(f) = p < ». Using the same reasoning as in
Lemma 2.9 and together with Lemma 2.8, it easy to see|fh@| < M |z® for some con-
stantM > 0in

Dn(e)={z:pn+e<argz<Oym—e} (m=1,..,n)

with |z| > ry. Similarly in 8 —€ < argz < @n1+€ (M=1,...,n), also using the same
reasoning as in Lemma 2.9, we see tHfatz)| < M|z®in Dji (¢) = {z: 6p—€e < argz <
Pm+1+ €} (m=1,...,n) with |zl > R Hencef is a polynomial.

If fis a polynomial withdegf > s, then

P (f<k) P A +...+Aof> = p(As) >35> p(F).
This contradicts (1.1). If is a non zero polynomial witdegf < s—1, then if
max{p(Aj):j=1,....s-1p(F)} <p(Ao),

we havep(As,lfM) +...+Aof) =p(Ao) > p(F). This contradicts (1.1). inax{p (A;) :
j=0,1,....s—1} < p(F), then

p(f(k) A +...+A0f> <max{p(Aj)):j=0,1,..,s-1} <p(F).

This contradicts (1.1). Therefore, every solutibof (1.1) has infinite order.
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3 Proof of Theorem 1.3.

(a) Fromf (z) is a solution of (1.1) and Lemma 2.10, we know th&f ) = +. Together
with Lemma 2.4, we know thatt (z) satisfies (1.9).

(b) Setg= f —¢. Sincef is a solution of(1.1), then we have (g) = p(f) = . Sub-
stituting f = g+ ¢ into equation (1.1), we get

g" +Acag" g =F - (07 A" T A). (3

By p(¢) < +oo, thend is not a solution of (1.1). Thus, we have

Fo (¢<k’ A" +Ao¢) =0 (3.2)
and by Lemma 2.4, we know that
Af—9)=A(f—0)=p(f) =00, (3.3)

4 Proof of Theorem 1.5.

(a) Assume thaff is a solution of (1.1) withp (fp) = p < . If f; is another finite order
solution of (1.1), them (f; — fg) < o, and f1 — fp is a solution of the corresponding
homogeneous equation (2.1) of (1.1), putf; — fo) = c from Lemma 2.9. This is
a contradiction. Hence (1.1) has at most one finite order soldgand all other
solutionsf; of (1.1) satisfy (1.9) by Lemma 2.4.

(b) Assume thaff is a solution of (1.1) witlp (fp) < . By (1.1) we can write

1 1t ) )
?OZE TO‘FAkfl o +...+A1?O+AO . (4-1)

It follows that if fg has a zero aty of orderd > k, thenF must have a zero aj of

orderd — k. Hence
1 1 1
— ) < kn — — .
n(r, fo) _kn(r, f0>+n<r,F> (4.2)

N (r, flo) <kN (r, f10> +N <r, é) . (4.3)

Applying the Lemma of the logarithmic derivative [7]

and

(i)
m(r,f?O) =0O(Inr) (j=1,...,k) (p(fo) < +). (4.4)

From (4.1) we have

1 1 k—1 k féj)
m<r, f0> <m <r, F) + J;m(r,Aj) + J;m (r, f0> +0(2). (4.5)
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Then we get from (4.3), (4.4) and (4.5)
1
Tt =T (rg ) +0W
0
. 1 k—1
<KN(r—|+T(rF)+y T(r,A;)+O(logr). (4.6)
fo =
Now seta = max{p (As),p (F)}. Then for given smalt > 0 and sufficiently large,
we have
T(nF) <r®*& T(rA) <r®® (j=0,..,k—1). (4.7)
So, by (4.6), (4.7)
T(r,fo) < kN(r,%) + (k+1)r®* + O(logr) (4.8)
0
holds for a sufficiently large Therefore,
p(fo) <max{a, A(fo) } =max{p(A)), p(F), A(fo)}.  (4.9)
If A(fo) < p(fo), p(As) # p(F), then by (4.9) we have
p(fo) <max{p(As), p(F)} (4.10)
and by(1.1), we get
p(fo) = max{p(As), p(F)}. (4.11)
Therefore,
p(fo) =max{p(As), p(F)}. (4.12)

Setg= f —¢. If f isa solution of 1.1) with p(f) =, then we have (g) =p(f) =
oo, Substitutingf = g+ ¢ into equation (1.1) we get

o' +Ac1g 4 Aog=F - (8" +Ac0" T+ A). (4.13)
Sinced is not a solution of (1.1), then we have
F— (0" +Ac10" " +..+Ab) %0 (4.14)
and by Lemma 2.4, we know that

AMf—¢)=A(f-¢)=p(f) =w. (4.15)

23



24 B. Belddi
5 Proof of Theorem 1.7

Suppose thaf; is a solution of equation (1.18) anfd is a solution of equation (1.19).
Setg= f; — Cf,. Thengis a solution of equatiorg(k) +Ak719(k71) +...+Ag=F—-Chk.

By p(F1 —Ch) = p(Fy) > 0 and Theorem 1.5 the equatigﬁ) +Ak,1g<k_l) +...+Ag=
F1 — Cky has at most one finite order solutign= f; — C fg that satisfies
p(00) < max{p (Fo) ,p (A9 A (Qo) | (5.1)

and all other solutiong = f; — Cf; of g(k> + Ak_lgwl> + ...+ Apg = F; — Chy satisfy

A(fi—Cfh) =A(f1—Cf) =p(f1 —Cf) = o. (5.2)

6 Proof of Theorem 1.8

Suppose that; is a solution of equation (1.18) arfd is a solution of equation (1.19). Set
g= f; —Cf,. Thengis a solution of equatiorg(k) +Ak719(k71) +...+Apg=F —Chk. By
F1—CR=0, p(F1—Ck) < dand Theorem 1.3, we haygg) = «. Thus, by Lemma 2.4,
we know that

A(fi—Cf) =X (f1—Ch) =p(f1—Cfp) = . (6.1)
Acknowledgement.The author would like to thank the referee for his/her helpful remarks
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