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Abstract

In this paper, we investigate the growth and the complex oscillation theory of the
linear differential equationf (k) +Ak−1 f (k−1) + ...+A1 f

′
+A0 f = F , whereA0,A1, ...,

Ak−1,F 6≡ 0 are entire functions. We also investigate the relation between the solutions
of a pair non-homogeneous linear differential equations. We improve some results due
to the author, S. Abbas and Z. X. Chen, S. A. Gao.
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1 Introduction and statement of results

Throughout this paper, we assume that the reader is familiar with the fundamental results
and the standard notations of the Nevanlinna value distribution theory (see [7]). In addition,
we will useλ( f ) andλ( f ) to denote respectively the exponents of convergence of the zero-
sequence and the sequence of distinct zeros off , ρ( f ) to denote the order of growth of
f .

Fork≥ 2 we consider the linear differential equation

f (k) +Ak−1 f (k−1) + ...+A1 f
′
+A0 f = F, (1.1)

whereA0,A1, ...,Ak−1,F 6≡ 0 are entire functions of finite order.
It is well-known that all solutions of equation (1.1) are entire functions and if at least one

coefficientAs(z) is transcendental, then at least some of the solutions are of infinite order.
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On the other hand, there exist equations of this form that possess one or more solutions of
finite order. For examplef (z) = ez satisfiesf

′′′−ez f
′′−e−z f

′
+ez f = ez−1.

Recently the complex oscillation theory of the complex differential equations has been
investigated actively [1, 2, 3, 4]. In [4], Chen and Gao have investigated the complex
oscillation of (1.1) and have obtained the following results:

Theorem 1.1. ( [4], p. 455) Suppose thatk≥ 2 is a natural number and thatA0, A1, ...,
Ak−1, F /≡ 0 are finite order entire functions, where there exists anAs (0≤ s≤ k−1) such
that for real constantsα > 0, β > 0, we haveρ(A j) < β ( j 6= s) andρ(F) ≥ β. Suppose
that for any givenε > 0, there exist two finite collections of real numbers{ϕm} and{θm}
which satisfy

ϕ1 < θ1 < ϕ2 < θ2 < ... < ϕn < θn < ϕn+1 = ϕ1 +2π (1.2)

and

n

∑
m=1

(ϕm+1−θm) < ε, (1.3)

such that

|As(z)| ≥ exp
{
(1+o(1))α |z|β

}
(1.4)

asz→ ∞ in ϕm≤ arg(z)≤ θm (m= 1, ...,n). Then all solutions of (1.1) satisfy

λ( f ) = λ( f ) = ρ( f ) = ∞ (1.5)

with some possible finite order solutions. All of the possible finite order solutions have the
same order of growthρ (0≤ ρ < ∞) . If there exist two finite order solutionsf0, f1 ( f0 /≡ f1)
of (1.1), thenf0− f1 is a polynomial withdeg( f0− f1)≤ s−1, and f0 satisfies

ρ = ρ( f0)≤max
{

ρ(As) ,ρ(F) ,λ( f0)
}

. (1.6)

If ρ(As) 6= ρ(F) , λ( f0) < ρ, thenρ( f0) = max{ρ(As) ,ρ(F)} . Furthermore, if among
As−1, ...,A0, there exist and only existAm1, ...,Amd (s− 1 ≥ m1 > m2 > ... > md ≥ 0)
being transcendental,ρ

(
Amj

)
( j = 1, ...,d) are unequal to each other ord = 1, and if

(1) md = 0 or (2) md > 0 and polynomialsAmd−1,Amd−2, ...,A0 satisfy that deg(A j)− j
( j = md−1,md−2, ...,0) are unequal to each other, ormd = 1 andA0 /≡ 0, then all solu-
tions of (1.1) satisfy (1.5) with at most one possible finite order solution.

Theorem 1.2. ( [4], p. 455) Suppose thatA0, ..., As, ..., Ak−1, α, β, {ϕm} , {θm} and k
satisfy the hypotheses of Theorem 1.1, and thatF /≡ 0 is an entire function withρ(F) < β.
Then all solutions of (1.1) satisfy (1.5) with some possible polynomial solutions of degree
≤ s−1.

The purpose of this paper is to improve the above results by expressing the growth
condition of the coefficientAs(z) more explicitly without making use ofo(1). We will
prove the following theorems:
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Theorem 1.3. Suppose thatk ≥ 2 is a natural number and thatA0, A1, ..., Ak−1, F /≡ 0
are finite order entire functions, where there exists anAs (0≤ s≤ k−1) such that for real
constantsα, δ with α > 0, δ > 0, we have

max
{

ρ(A j) : j = 0,1, ...,s−1,s+1, ...,k−1,ρ(F)
}

< δ (1.7)

and either
(i) max

{
ρ(A j) : j = 1, ...,s−1,ρ(F)

}
< ρ(A0) or

(ii) max{ρ(A j) : j = 0, 1, ...,s−1}< ρ(F).
Suppose that for any givenε > 0, there exist two finite collections of real numbers{ϕm}

and{θm} which satisfy (1.2) and (1.3) such that

|As(z)| ≥ exp
{

α |z|δ
}

(1.8)

asz→ ∞ in ϕm≤ arg(z)≤ θm (m= 1, ...,n).
(a) Then every solutionf of (1.1), satisfies

λ( f ) = λ( f ) = ρ( f ) = ∞. (1.9)

(b) If ϕ is a finite order entire function, then

λ( f −ϕ) = λ( f −ϕ) = ρ( f ) = ∞. (1.10)

From Theorem 1.3, we obtain the following corollary:

Corollary 1.4. Suppose thatA0, ...,Ak−1, F /≡ 0, α,δ,ε,{φm} , {θm} and k satisfy the hy-
potheses of Theorem 1.3. Then every solutionf of (1.1) has infinitely many fixed points
and

λ( f −z) = λ( f −z) = ρ( f ) = ∞. (1.11)

Theorem 1.5. Suppose thatk ≥ 2 is a natural number and thatA0, A1, ..., Ak−1, F /≡ 0
are finite order entire functions, where there exists anAs (0≤ s≤ k−1) such that for real
constantsα, δ with α > 0, δ > 0, we have

max
{

ρ(A j) : j = 0,1, ...,s−1,s+1, ...,k−1
}

< δ (1.12)

and
max

{
ρ(A j) : j = 1, ...,s−1

}
< ρ(A0) , (1.13)

let F /≡ 0 be a finite order entire function such thatρ(F) ≥ δ. Suppose that for any given
ε > 0, there exist two finite collections of real numbers{φm} and{θm} that satisfy (1.2),(1.3)
such that(1.8) holds asz→ ∞ in φm≤ argz≤ θm (m= 1, ...,n) .

(a) Then all solutions of (1.1) satisfy (1.9), with at most one finite order solutionf0.

(b) If there exists a finite order solutionf0 in case(a), then f0 satisfies

ρ( f0)≤max
{

ρ(F) ,ρ(As) ,λ( f0)
}

. (1.14)

If λ( f0) < ρ( f0) , ρ(F) 6= ρ(As) , thenρ( f0) = max{ρ(F) ,ρ(As)} .
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(c) If f is an infinite order solution of equation (1.1) and ifϕ is a finite order entire
function which is not solution of (1.1), then

λ( f −ϕ) = λ( f −ϕ) = ρ( f ) = ∞. (1.15)

From Theorem 1.5, we obtain the following corollary:

Corollary 1.6. Suppose thatA0, ...,Ak−1, F /≡ 0, α,δ,ε,{φm} , {θm} and k satisfy the hy-
potheses of Theorem 1.5. Then

(i) If there exists a finite order solutionf0 in case(a), then for any infinite order solution
f of equation (1.1) and for any constantC 6= 1, we have

λ( f −C f0) = λ( f −C f0) = ρ( f ) = ∞. (1.16)

(ii) If f is an infinite order solution of (1.1), thenf has infinitely many fixed points and

λ( f −z) = λ( f −z) = ρ( f ) = ∞. (1.17)

In what follows, we investigate the relation between the solutions of a pair non-homogeneous
linear differential equations and we obtain the following results :

Theorem 1.7. Suppose thatA0, ...,Ak−1, α,δ,ε,{φm} , {θm} andk satisfy the hypotheses of
Theorem 1.5, and thatF1 /≡ 0, F0 /≡ 0 are finite order entire functions such thatρ(F1) < δ,
ρ(F0)≥ δ. If the equation

f
(k)

+Ak−1 f
(k−1)

+ ...+A0 f = F1 (1.18)

has a solutionf1, then equation

f
(k)

+Ak−1 f
(k−1)

+ ...+A0 f = F0 (1.19)

has at most one infinite order solutionf0 that satisfies

ρ( f1−C f0)≤max
{

ρ(F0) ,ρ(As) ,λ( f1−C f0)
}

(1.20)

and all other solutionsf2 of (1.19) satisfy

λ( f1−C f2) = λ( f1−C f2) = ρ( f1−C f2) = ∞ (1.21)

for any constantC.

Theorem 1.8. Suppose thatA0, ...,Ak−1, α,δ,ε,{φm} , {θm} andk satisfy the hypotheses of
Theorem 1.5, and thatF1 /≡ 0, F0 /≡ 0 are finite order entire functions such thatF1 /≡CF0 for
any constantC. Suppose that

max
{

ρ(A j) : j = 0,1, ...,s−1,s+1, ...,k−1,ρ(F0) ,ρ(F1)
}

< δ (1.22)

and

max
{

ρ(A j) : j = 1, ...,s−1,ρ(F0) ,ρ(F1)
}

< ρ(A0) . (1.23)

Then all solutions of (1.18) and (1.19) satisfy (1.21).
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Remark1.9. In Theorem 1.3, if we don’t suppose the additional conditions

max
{

ρ(A j) : j = 1, ...,s−1,ρ(F)
}

< ρ(A0)

or
max

{
ρ(A j) : j = 0,1, ...,s−1

}
< ρ(F) ,

then equation (1.1) may have polynomial solution. For example the equation

f (4) +sinhz3 f (3) +z2ez2
f
′′−zez2

f
′
+z f = z3 (1.24)

has a polynomial solutionf (z) = z2. The equation (1.24) satisfies the other additional
hypotheses of Theorem 1.3 but does not satisfies

max{ρ(A j) : j = 1,2,ρ(F)}< ρ(A0)

or
max{ρ(A j) : j = 0,1,2}< ρ(F) .

2 Preliminary Lemmas

Lemma 2.1. ( [4]) Suppose thatA0, A1, ..., Ak−1, F /≡ 0 are entire functions with at least
oneAs (0≤ s≤ k−1) being transcendental. Let the equation

f (k) +Ak−1 f (k−1) + ...+A1 f
′
+A0 f = 0 (2.1)

be the corresponding homogeneous differential equation of (1.1). Then both (1.1) and (2.1)
must have infinite order solutions.

Lemma 2.2. (Phragmen-Lindel̈of Theorem,see [9], p. 214). Letf (z) be analytic in the
regionD = {z : α1 < argz< β1, r0 < |z|< ∞} and continuous onD = D∪Γ, whereΓ is the
boundary ofD. If for any given smallε > 0, there existsr1(ε) > 0 such that for|z| ≥ r1(ε) ,
z∈ D, we have

| f (z)|< exp
{

ε |z| π
β1−α1

}
, (2.2)

and for z∈ Γ, we have| f (z)| ≤ M (M > 0 is a constant), then| f (z)| ≤ M for all z∈ D.
| f (z)|= M if and only if f is a constant.

Remark2.3. ( [4]) Now suppose thatg(z) is analytic in the regionD = {z : α1 < argz<
β1, r0 ≤ |z| < ∞} and |g(z)| ≤ exp

{|z|σ}
for some constant0 ≤ σ < ∞. If a subset

E ⊂ (α1,β1) has linear measure zero and for anyψ0 ∈ (α1,β1)−E, |g(z)| is bounded
for all z satisfyingargz = ψ0 and |z| ≥ r0, then for any given smallε > 0, there exists

r1(ε) > r0 such that |g(z)| ≤ exp
{

ε |z|σ+1
}

for |z| = r > r1. We may choose pointsθ j ∈
(α1,β1)−E ( j = 1, ...,n) such thatθ1 < θ2 < ... < θn (α1 < θ1 ≤ α1 + ε, β1− ε≤ θn < β1)
and max{θ j+1− θ j : 1 ≤ j ≤ n− 1} < π

σ+1. Now from Lemma 2.1,|g(z)| ≤ M in the
sectors{z : θ j ≤ argz≤ θ j+1, |z| ≥ r0} ( j = 1, ...,n−1) . Hence|g(z)| ≤ M in the sector
{z : α1 + ε≤ argz≤ β1− ε, |z| ≥ r0}.
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Lemma 2.4. ( [4]) Let A0, A1, ..., Ak−1, F /≡ 0 be finite order entire functions. Iff is a
solution of(1.1) with ρ( f ) = ∞, thenλ( f ) = λ( f ) = ρ( f ) = ∞.

Lemma 2.5. [5] Let f be a transcendental entire function of finite orderρ, let

Γ = {(k1, j1) ,(k2, j2) , ...,(km, jm)}

denote a finite set of distinct pairs of integers that satisfyki > j i ≥ 0 (i = 1, ...,m) , and let
ε > 0 be a given constant. Then there exists a setE ⊂ [0,2π) that has linear measure zero,
such that ifψ0 ∈ [0,2π)−E, then there is a constantR0 = R0(ψ0) > 1 such that for all
z satisfyingargz= ψ0 and |z| ≥ R0, and for all (k, j) ∈ Γ, we have

∣∣∣∣∣
f (k) (z)
f ( j) (z)

∣∣∣∣∣≤ |z|
(k− j)(ρ−1+ε) . (2.3)

Lemma 2.6. ([8], [6], Lemma 3) Letf (z) be an entire function and suppose that
∣∣ f (k) (z)

∣∣ is
unbounded on some rayargz= θ. Then there exists an infinite sequence of pointszn = rnei θ

(n = 1,2, ...) , wherern →+∞ such thatf (k) (zn)→ ∞ and

∣∣∣∣∣
f ( j) (zn)
f (k) (zn)

∣∣∣∣∣≤
1

(k− j)!
(1+o(1)) |zn|k− j ( j = 0, ...,k−1) . (2.4)

Lemma 2.7. Suppose thatk≥ 2 is a natural number and thatA0,A1, ...,Ak−1 are entire
functions. For real constantsα,δ,θ1,θ2 such thatα > 0, δ > 0, θ1 < θ2, we have for some
As (0≤ s≤ k−1)

|As(z)| ≥ exp
(

α |z|δ
)

(2.5)

asz→ ∞ in S= {z : θ1 ≤ argz≤ θ2} and

max
{

ρ(A j) : j = 0,1, ...,s−1,s+1, ...,k−1
}

< δ. (2.6)

If f /≡ 0 is a solution of equation (2.1) withρ( f ) = ρ < ∞, then for any given smallε > 0,
there is a constantM > 0 such that| f (z)| ≤M |z|s for all z in S(ε) = {z : θ1 + ε ≤ argz≤
θ2− ε} with |z| ≥ r0 > 0.

Proof. Setρ( f ) = ρ < ∞. Then by Lemma 2.5 there exists a setE ⊂ [0,2π) with linear
measure zero such that ifψ0 ∈ [0,2π)−E, then there is a constantR0 = R0(ψ0) > 1 such
that for all j = s+1, ...,k

∣∣∣∣∣
f ( j) (z)
f (s) (z)

∣∣∣∣∣≤ |z|
( j−s)(ρ−1+ε) ≤ |z|(k−s)ρ (0 < ε < 1) (2.7)

as|z| ≥ R0 alongargz= ψ0.
Now suppose that

∣∣ f (s) (z)
∣∣ is unbounded on some rayargz= φ0, whereφ0 ∈ [θ1,θ2]−

E. Then by Lemma 2.6, there exists an infinite sequence of pointszn = rneiφ0, wherern→∞
such thatf (s) (zn)→ ∞ and
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∣∣∣∣∣
f ( j) (zn)
f (s) (zn)

∣∣∣∣∣≤
1

(s− j)!
(1+o(1)) |zn|s− j ≤ 2|zn|s ( j = 0, ...,s−1) (2.8)

aszn → ∞. By (2.1) and (2.6)-(2.8), we have aszn → ∞

|As(zn)| ≤
∣∣∣∣∣

f (k) (zn)
f (s) (zn)

∣∣∣∣∣+
∣∣∣∣∣

f (k−1) (zn)
f (s) (zn)

∣∣∣∣∣ |Ak−1|+ ...

+

∣∣∣∣∣
f (s+1) (zn)
f (s) (zn)

∣∣∣∣∣ |As+1|+
∣∣∣∣∣

f (s−1) (zn)
f (s) (zn)

∣∣∣∣∣ |As−1|+ ...

+
∣∣∣∣

f (zn)
f (s) (zn)

∣∣∣∣ |A0| ≤M0exp
{

o(1) |zn|δ
}
|zn|M1 , (2.9)

whereM0 > 0, M1 > 0 are some constants. Thus (2.9) contradicts (2.5). Therefore,f (s) (z)
is bounded on any arbitrary rayargz= ψ0 ∈ [θ1,θ2]−E. From Remark 2.3, it is easy to see
that ∣∣∣ f (s) (z)

∣∣∣≤M2 (2.10)

in S(ε) = {z : θ1 + ε≤ argz≤ θ2− ε} for some constantM2 > 0. By s-fold iterated integra-
tion along the line segment[0,z], we obtain

f (z) = f (0)+ f
′
(0)

z
1!

+ ...+
1

(s−1)!
f (s−1) (0)zs−1

+
Z z

0
...
Z z

0

Z z

0
f (s) (t)dt...dt. (2.11)

Therefore, by an elementary triangle inequality and (2.10), we obtain from (2.11) for an
arbitrary pointz in S(ε) with |z| ≥ r0 > 0

| f (z)| ≤ | f (0)|+
∣∣∣ f

′
(0)

∣∣∣ |z|
1!

+
∣∣∣ f

′′
(0)

∣∣∣ |z|
2

2!
+ ...+M2

|z|s
s!
≤M |z|s, (2.12)

whereM > 0 is some constant.

Lemma 2.8. Suppose thatA0, ...,Ak−1,α,δ,ε,θ1,θ2,S,S(ε) andk satisfy the hypotheses of
Lemma 2.7 andF /≡ 0 is an entire function withρ(F) < δ. Then every solutionf of (1.1)
with ρ( f ) = ρ < ∞, satisfies| f (z)| ≤ M |z|s for all z in S(ε) with |z| ≥ r0 > 0 for some
constantM > 0.

Proof. Let ρ( f ) = ρ < ∞. Using the same reasoning as in Lemma 2.7, it is easy to see that
(2.7) holds for f (z) . If we assume

∣∣ f (s) (z)
∣∣ is unbounded on a some rayargz= φ0 where

φ0 ∈ [θ1,θ2]−E, then using the same reasoning as in Lemma 2.7, it is easy to see that (2.8)
holds. Since

∣∣ f (s) (zn)
∣∣→ ∞ (n→ ∞) , we may assume that

∣∣ f (s) (zn)
∣∣≥ 1 for all n. Hence

∣∣∣∣
F (zn)
f (s) (zn)

∣∣∣∣≤ |F (zn)| ≤ exp
{

o(1) |zn|δ
}

. (2.13)
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From (1.1), (2.6), (2.7), (2.8) and (2.13) we get

|As(zn)| ≤
∣∣∣∣∣

f (k) (zn)
f (s) (zn)

∣∣∣∣∣+
∣∣∣∣∣

f (k−1) (zn)
f (s) (zn)

∣∣∣∣∣ |Ak−1|+ ...

+

∣∣∣∣∣
f (s+1) (zn)
f (s) (zn)

∣∣∣∣∣ |As+1|+
∣∣∣∣∣

f (s−1) (zn)
f (s) (zn)

∣∣∣∣∣ |As−1|+ ...

+
∣∣∣∣

f (zn)
f (s) (zn)

∣∣∣∣ |A0|+
∣∣∣∣

F (zn)
f (s) (zn)

∣∣∣∣≤M2exp
{

o(1) |zn|δ
}
|zn|M1 , (2.14)

whereM2 > 0, M1 > 0 are some constants. This contradicts (2.5). Therefore
∣∣ f (s) (z)

∣∣ is
bounded on any arbitrary rayargz= ψ0 ∈ [θ1,θ2]−E. And also using the same reasoning
as in Lemma 2.7, we have| f (z)| ≤M |z|s for all z in S(ε) with |z| ≥ r0 > 0 for some constant
M > 0.

Lemma 2.9. Suppose thatk≥ 2 is a natural number andA0,A1, ...,Ak−1, are finite order
entire functions. Suppose that there exists anAs(0≤ s≤ k−1) such that for real constants
α, δ, with α > 0, δ > 0, we have

max
{

ρ(A j) : j = 0,1, ...,s−1,s+1, ...,k−1
}

< δ (2.15)

and
max

{
ρ(A j) : j = 1, ...,s−1

}
< ρ(A0) . (2.16)

Suppose that for any givenε > 0, there exist two finite collections of real numbers{φm}
and{θm} that satisfy (1.2), (1.3). InDm = {z : φm≤ argz≤ θm} (m= 1, ...,n) asz→ ∞,
we have

|As(z)| ≥ exp
{

α |z|δ
}

. (2.17)

Then every solutionf of (2.1) satisfiesρ( f ) = ∞.

Proof. Let f /≡ 0 be a solution of (2.1) withρ( f ) = ρ < ∞. By the hypotheses, for any

givenε
(

0 < ε < π
3(ρ+ 1

4)

)
, there exist two finite collections of real numbers{φm} and{θm}

that satisfy (1.2), (1.3). SupposeAs satisfies (2.17) inDm(m= 1, ...,n) andA j ( j = 0,1,
...,s−1,s+1, ...,k−1) satisfy

∣∣A j (z)
∣∣≤ exp

{
o(1) |z|δ

}
. (2.18)

Then by Lemma 2.7, we have

| f (z)| ≤M |z|s (M > 0 is some constant) (2.19)

in D∗
m(ε) = {z : φm+ ε≤ argz≤ θm− ε} (m= 1, ...,n) with |z| ≥ r1.
On the other hand, in the sectorθm− ε ≤ argz≤ φm+1 + ε (m= 1, ...,n), from ρ( f ) =

ρ < ∞, we have| f (z)| ≤ exp
{

rρ+ 1
4

}
holds for |z| = r > r0 > 0. By (1.3) and0 < ε <
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π
3(ρ+ 1

4)
, we have(φm+1 + ε)− (θm− ε) < 3ε < π

ρ+ 1
4
. Hence there existsR > 1+ r0 such

that for r > R, we haverρ+ 1
4 < εr

π
[(φm+1+ε)−(θm−ε)] . Therefore, inθm− ε ≤ argz≤ φm+1 + ε

(m= 1, ...,n)
∣∣∣∣

f (z)
zs

∣∣∣∣≤ | f (z)| ≤ exp
{
|z|ρ+ 1

4

}
< exp

{
ε |z|

π
[(φm+1+ε)−(θm−ε)]

}
(2.20)

holds for|z| = r > R. And on the raysargz= θm− ε, argz= ϕm+1 + ε with |z| ≥ r1 > 0,

we have
∣∣∣ f (z)

zs

∣∣∣≤M holds from (2.19). Hence by Lemma 2.2,
∣∣∣ f (z)

zs

∣∣∣≤M holds inθm− ε≤
argz≤ ϕm+1 + ε (m= 1, ...,n) with |z| > R. So | f (z)| ≤ M |z|s holds in the whole plane
from (2.19). Therefore,f (z) is a polynomial.

If f is a polynomial ofdegf ≥ s, then ρ
(

f
(k)

+Ak−1 f
(k−1)

+ ...+A0 f
)

= ρ(As) ≥
δ > 0 and this contradicts (2.1). Iff is a non zero polynomial ofdegf ≤ s− 1, then

ρ
(

As−1 f
(s−1)

+ ...+A0 f
)

= ρ(A0) > 0. This contradicts (2.1). Therefore, every solutionf

/≡ 0 of (2.1) satisfiesρ( f ) = ∞.

Lemma 2.10.Suppose thatA0, ...,Ak−1,α,δ,ε,{φm},{θm} , k andDm satisfy the hypotheses
of Lemma 2.9, and thatF /≡ 0 is a finite order entire function such thatρ(F) < δ and that
either:

(i) max
{

ρ(A j) : j = 1, ...,s−1,ρ(F)
}

< ρ(A0) or that

(ii) max
{

ρ(A j) : j = 0,1, ...,s−1
}

< ρ(F).

Then every solutionf of (1.1) satisfiesρ( f ) = ∞.

Proof. Let f be a solution of (1.1) withρ( f ) = ρ < ∞. Using the same reasoning as in
Lemma 2.9 and together with Lemma 2.8, it easy to see that| f (z)| ≤M |z|s for some con-
stantM > 0 in

D∗
m(ε) = {z : φm+ ε≤ argz≤ θm− ε} (m= 1, ...,n)

with |z| ≥ r1. Similarly in θm− ε ≤ argz≤ φm+1 + ε (m= 1, ...,n), also using the same
reasoning as in Lemma 2.9, we see that| f (z)| ≤ M |z|s in D∗∗

m (ε) = {z : θm− ε ≤ argz≤
φm+1 + ε} (m= 1, ...,n) with |z|> R. Hencef is a polynomial.

If f is a polynomial withdegf ≥ s, then

ρ
(

f
(k)

+Ak−1 f
(k−1)

+ ...+A0 f
)

= ρ(As)≥ δ > ρ(F) .

This contradicts (1.1). Iff is a non zero polynomial withdegf ≤ s−1, then if

max
{

ρ(A j) : j = 1, ...,s−1,ρ(F)
}

< ρ(A0) ,

we haveρ(As−1 f
(s−1)

+ ...+A0 f ) = ρ(A0) > ρ(F) . This contradicts (1.1). Ifmax{ρ(A j) :
j = 0,1, ...,s−1}< ρ(F) , then

ρ
(

f
(k)

+Ak−1 f
(k−1)

+ ...+A0 f
)
≤max

{
ρ(A j) : j = 0,1, ...,s−1

}
< ρ(F) .

This contradicts (1.1). Therefore, every solutionf of (1.1) has infinite order.
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3 Proof of Theorem 1.3.

(a) From f (z) is a solution of (1.1) and Lemma 2.10, we know thatρ( f ) = +∞. Together
with Lemma 2.4, we know thatf (z) satisfies (1.9).

(b) Setg = f −ϕ. Since f is a solution of(1.1) , then we haveρ(g) = ρ( f ) = ∞. Sub-
stituting f = g+ϕ into equation (1.1), we get

g
(k)

+Ak−1g
(k−1)

+ ...+A0g = F−
(

ϕ
(k)

+Ak−1ϕ
(k−1)

+ ...+A0ϕ
)

. (3.1)

By ρ(ϕ) < +∞, thenϕ is not a solution of (1.1). Thus, we have

F−
(

ϕ
(k)

+Ak−1ϕ
(k−1)

+ ...+A0ϕ
)

/≡0 (3.2)

and by Lemma 2.4, we know that

λ( f −ϕ) = λ( f −ϕ) = ρ( f ) = ∞. (3.3)

4 Proof of Theorem 1.5.

(a) Assume thatf0 is a solution of (1.1) withρ( f0) = ρ < ∞. If f1 is another finite order
solution of (1.1), thenρ( f1− f0) < ∞, and f1− f0 is a solution of the corresponding
homogeneous equation (2.1) of (1.1), butρ( f1− f0) = ∞ from Lemma 2.9. This is
a contradiction. Hence (1.1) has at most one finite order solutionf0 and all other
solutionsf1 of (1.1) satisfy (1.9) by Lemma 2.4.

(b) Assume thatf0 is a solution of (1.1) withρ( f0) < ∞. By (1.1) we can write

1
f0

=
1
F

(
f (k)
0

f0
+Ak−1

f (k−1)
0

f0
+ ...+A1

f
′
0

f0
+A0

)
. (4.1)

It follows that if f0 has a zero atz0 of orderd > k, thenF must have a zero atz0 of
orderd−k. Hence

n

(
r,

1
f0

)
≤ kn

(
r,

1
f0

)
+n

(
r,

1
F

)
(4.2)

and

N

(
r,

1
f0

)
≤ kN

(
r,

1
f0

)
+N

(
r,

1
F

)
. (4.3)

Applying the Lemma of the logarithmic derivative [7]

m

(
r,

f ( j)
0

f0

)
= O(ln r) ( j = 1, ...,k) (ρ( f0) < +∞) . (4.4)

From (4.1) we have

m

(
r,

1
f0

)
≤m

(
r,

1
F

)
+

k−1

∑
j=0

m(r,A j)+
k

∑
j=1

m

(
r,

f ( j)
0

f0

)
+O(1) . (4.5)
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Then we get from (4.3), (4.4) and (4.5)

T (r, f0) = T

(
r,

1
f0

)
+O(1)

≤ kN

(
r,

1
f0

)
+T (r,F)+

k−1

∑
j=0

T (r,A j)+O(logr) . (4.6)

Now setα = max{ρ(As) ,ρ(F)} . Then for given smallε > 0 and sufficiently larger,
we have

T (r,F) < rα+ε, T (r,A j) < rα+ε ( j = 0, ...,k−1) . (4.7)

So, by (4.6), (4.7)

T (r, f0)≤ k N

(
r,

1
f0

)
+(k+1) rα+ε +O(logr) (4.8)

holds for a sufficiently larger. Therefore,

ρ( f0)≤max
{

α, λ( f0)
}

= max
{

ρ(As) , ρ(F) , λ( f0)
}

. (4.9)

If λ( f0) < ρ( f0) , ρ(As) 6= ρ(F) , then by (4.9) we have

ρ( f0)≤max{ρ(As) , ρ(F)} (4.10)

and by(1.1) , we get

ρ( f0)≥max{ρ(As) , ρ(F)} . (4.11)

Therefore,

ρ( f0) = max{ρ(As) , ρ(F)} . (4.12)

(c) Setg= f −ϕ. If f is a solution of(1.1) with ρ( f ) = ∞, then we haveρ(g) = ρ( f ) =
∞. Substitutingf = g+ϕ into equation (1.1) we get

g
(k)

+Ak−1g
(k−1)

+ ...+A0g = F−
(

ϕ
(k)

+Ak−1ϕ
(k−1)

+ ...+A0ϕ
)

. (4.13)

Sinceϕ is not a solution of (1.1), then we have

F−
(

ϕ
(k)

+Ak−1ϕ
(k−1)

+ ...+A0ϕ
)

/≡ 0 (4.14)

and by Lemma 2.4, we know that

λ( f −ϕ) = λ( f −ϕ) = ρ( f ) = ∞. (4.15)
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5 Proof of Theorem 1.7

Suppose thatf1 is a solution of equation (1.18) andf2 is a solution of equation (1.19).
Setg = f1−C f2. Theng is a solution of equationg

(k)
+Ak−1g

(k−1)
+ ...+A0g = F1−CF0.

By ρ(F1−CF0) = ρ(F0) ≥ δ and Theorem 1.5 the equationg
(k)

+Ak−1g
(k−1)

+ ...+A0g =
F1−CF0 has at most one finite order solutiong0 = f1−C f0 that satisfies

ρ(g0)≤max
{

ρ(F0) ,ρ(As) ,λ(g0)
}

(5.1)

and all other solutionsg = f1−C f2 of g
(k)

+Ak−1g
(k−1)

+ ...+A0g = F1−CF0 satisfy

λ( f1−C f2) = λ( f1−C f2) = ρ( f1−C f2) = ∞. (5.2)

6 Proof of Theorem 1.8

Suppose thatf1 is a solution of equation (1.18) andf2 is a solution of equation (1.19). Set
g = f1−C f2. Theng is a solution of equationg

(k)
+Ak−1g

(k−1)
+ ...+A0g = F1−CF0. By

F1−CF0 /≡ 0, ρ(F1−CF0) < δ and Theorem 1.3, we haveρ(g) = ∞. Thus, by Lemma 2.4,
we know that

λ( f1−C f2) = λ( f1−C f2) = ρ( f1−C f2) = ∞. (6.1)
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