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Abstract

In this paper, we give an extension of the classical Perron-Frobenius theorem to a
class of positive quasi-polynomial operators. Then the obtained results are applied to
show that delay-independent exponential stability and exponential stability of positive
linear delay systems are equivalent, and are characterized by a simple criterion. Next,
we show that delay-independent exponential stability radii and exponential stability
radii coincide and can be computed via simple formula. Finally, a simple example
is given to illustrate the obtained results. The obtained results are extensions of the
recentin[19].
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1 Introduction

In recent years, the stability condition problem of linear systems in finite dimensional spaces
has been paid considerable attention. There are many approaches proposed to handle this
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problem: the Perron-Frobenius theorem [19], two-variable criteria [15], matrix pencil tech-
niques [20], frequency-sweeping tests [8], infinite-dimensional LMI conditions derived by
using some appropriate quadratic Lyapunov-Krasovskii functionals [6, 7] and characteri-
zation of the delay interference phenomenon [18]. For further discussions and references,
see e.g. [9, 12, 21]. However, in our view, the principal tool for analysis of the stability of
positive systems is the Perron-Frobenius theorem, se@efy. 17, 19|.

In this paper, we study extension of the Perron-Frobenius theorem to the quasi-polynomial
operator associated with the linear delay system of the following form

{(t) = Aou(t) + Aqu(t — hg) + ...+ Agu(t —hy), t >0, (1.1)

where A are operators on a Banach spaceandh; € R := (0,+), for alli € N :=
1,2,...,N.

Recall that the quasi-polynomial operator associated with the delay system (1.1) is de-
fined by, see e.q1],

N
P(\) = Ao+_zle*“‘ipq. (1.2)

It is well known that, in the casX is a finite dimensional space, system (1.1) is expo-
nentially stable if and only if characteristic roots of equati®iP(A) = 0 lie in the open
left half of complex plane, which means that the exponential stability of system (1.1) is
controlled by the location of the spectrum of its quasi-polynomial matrix. And, in general,
this is not the case if the finite dimension assumption is dropped. Thus, it is natural to in-
vestigate for which kind of systems this is true. In this work, we show that if system (1.1)
is positive then we can get above conclusion. Then, the results obtained are used to derive
necessary and sufficient conditions for exponential stability of positive systems (1.1).

The organization of this paper is as following. In next section, we summarize some
results on Metzler operators and delay systems, and give an extension of the classical
Perron-Frobenius theorem to a class of positive quasi-polynomial operators associated with
systems (1.1). In section 3, we address some necessary and sufficient conditions for expo-
nential stability of positive linear delay systems and show that under positivity assumption
the concept of delay-independent exponential stability and exponential stability coincide.
Moreover, we also show that delay-independent exponential stability of positive linear de-
lay systems is robust and its radii can be computed via a simple formula. Finally, a simple
example is given.

2 Preliminaries

2.1 Positive operator and Metzler operators

Let X be a complex Banach space. For a closed linear opefattat o(A) denote the
spectrum ofA, p(A) := C\o(A) the resolvent set oA, andR(\,A) := (Al —A)~1 ¢ £(X)
the resolvent oA defined omp(A). The spectral radiugA) and the spectral boursdA) of
A are defined by

r(A) :==sup{|A|: A€ a(A)} s(A):=sup(OA:Aeca(A)}.
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Assume thaX,Y are complex Banach lattices, lt, andY ™ denote the positive cones
of X andY respectively; and.®(X,Y) and £L*(X,Y) denote the set of all the real and
positive linear operators frold to Y respectively. Throughout the paper, we always assume
that all spaces considered are complex Banach lattices.

Definition 2.1. [10] A closed operatoA is said to be aVetzler operatorif there exists
w € R such thatw,») C p(A) andR(t,A) is positive for allt € (w,)).

Metzler operators are also called resolvent positive operator in the literature. For an
introduction to these operators we refer to [3]. Now we recall some results related to Metzler
operator which will used in sequel.

Theorem 2.2.[17] Supposel € L7(X). Then
(i) r(T) € o(T);
(i) RAA, T) > 0ifand only if A € R andA > r(T).
Theorem 2.3.[10] Let A be a Metzler operator 04. Then
() s(A) € a(A) ands(A) =t —[r(R(t,A))] L, t > s(A);
(i) the functionR(+,A) is positive and decreasing for- s(A)

S(A) <1 <th,—=0< R(tl,A) < R(tz,A);

(iii) if A generates a positiv@-semigroup, then we haw(t, A) is positive if and only if
t > s(A).

2.2 Delay systems

Let (S(t))i>0 be aCo-semigroup generated by the operatarD(A)) on the Banach space
X, we consider following quantities:

— thespectral bound
S(A) :=sup{0A: A e o(A)},

— theabscissa of uniform boundedness

S(A) :=inf{loeR: {0OA>w} C p(A) and sup ||[R(A,A)|| < o},

OA>w
— thegrowth bound

w1 (A) :=inf{we R :3IM > 0 such that|S(t)x|| < Me‘*‘|\x||D(A), vt >0,xe D(A)},

— theuniform growth bound

wo(A) ;= inf{w € R : 3IM > 0 such that|S(t)|| < Me™, vt > 0}.
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We say thatS(t))>o, Or operator, is exponentially stablé w;(A) < 0. It is known that

S(A) < w1 (A) < so(A) < wo(A) < .
The inequalitys(A) < w1 (A) < s9(A) < wp(A) might be strict, that is, the exponential sta-
bility of a Co-semigroup is, in general, not controlled by the location of the spectrum of its
generator.

Remark 2.4. If A generates a uniformly continuous or eventually norm contindds
semigroup, theis(A) = wo(A), see[22, Theoren.3.2]. And if A generates a positiv&-
semigroup, thes(A) = wy(A), see[16, Proposition V11.14)].

Givenp € [1,»), non-negative real numbebs< hy < hy < ... < h, =: h, bounded linear
operatord\y, ..., Ay andAg generating &o-semigroup(T (t))i>0 on X, we rewrite the delay
system (1.1) as

N
u(t) =Aou(t) + S Au(t—h), t>0,
i=1
u(0) = x, (2.1)
u(t) = f(t), te[0,—h).
Here,x € X is the initial value andf € LP([—h,0];X) is the ‘history’ function. A mild
solution of (1.1) is the function(-) € L? ([—h, «]; X) satisfying

loc
R
T(t)x+ T(t—s) ¥ Au(s—h)ds t >0,

u(t) =
f(t), t € [—h,0).
System (1.1) is calledxponentially stablés there existM > 0 and w > 0 such that the
solution of (2.1) satisfies

Im>

[Ju®I] < Me™*(|[x]| + [ [|Lo(-nojx));t > O.

In order to study the asymptotic behavior of these solutions by semigroup method, we
introduce the product space
X =X x LP([=h,0]; X),
endowed with the nor(x, f)[| := [[X||+ || f||Le(—n0x)); @nd the operatafl on X defined
by

N
A(x, f) = (A0x+_ZlA;f(- —hy), '),
with the domain
D(4) :={(x,f) e X: f e WP([=h,0];X), f(0) =x e D(Ag)},

whereWP([—h,0]; X) denotes the space of absolutely continusuglued functions on
[—h,0] which are automatically differentiable a.e. with derivatiiég) € LP([—h,0]; X).
Then, as it has been shown in [4, 11, generates &q-semigroup(7 (t))i>0 which is
defined by

(T(1)(x f) = (u(t),w),t >0,
whereu(t) is mild solution of (1.1) andx(s) := u(t +s),s € [—h,0]. Moreover, system
(1.1) is exponentially stable if and only @y-semigroup(7 (t)):>o is exponentially stable,
i.e. w1 (A4) < 0. And the resolvent and the spectrum@tre given by following.
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Proposition 2.5. [11] We haveA € p(A4) if and only if A € p(P(A)). In this case the
resolvent of4 is given by

R(A,A) = EAR(A,P(A))HAF +Tj,
whereE, € L(X,X),H) € L(X,X),F € L(X,X) andT,, € L(X,X) are defined by

Exx:= (X, X);
Z

Recall that the spectral set, the resolvent set, and the spectral bound of quasi-polynomial
operatorP(-) are defined by

o(P(-)) :={A:Aea(P())},

P(P(-)) :=C\a(P(-)),
S(P()) :=sup{OA: A e o(P(-))},
respectively.

Remark 2.6. From the above proposition, it is easy to see thal) = p(P(.)), hence
s(A4) = s(P(+)). So if 4 generates a uniformly continuous or eventually norm continuous
Co-semigroup, or a positiv€y-semigroup, as in Remagk4, then systentl.1) is exponen-
tially stable if and only ifs(P(-)) < O.

The above remark shows that studying the exponential stability of system (1.1) turns
out to be equivalent to studying the characteristics of quasi-polynomial operator (1.2) in
some cases. In next, we present some results on an extension of Perron-Frobenius theorem
to quasi-polynomial operator (1.2).

Definition 2.7. The quasi-polynomial operator (1.2) is callpdsitiveif Ag generates a
positiveCop-semigroup andy € L7 (X), for alli € N.

It is important to note that if the quasi-polynomial operator (1.2) is positive then the
delay system (1.1) is a positive system, that is, for any history fundtie.P([—h,0); X*)
and initial valuex € X*, the corresponding solutiar(t, x, f), t > 0 satisfieu(t,x, f) € X*
forallt > 0.

By the representation &(-, 4) in Proposition 2.5, we obtain the following result.

Proposition 2.8. Let the quasi-polynomial operator (1.2) be positive. ThenAfgh, € R,
the following statements are equivalent:
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(i) R(A1,P(A1)) > R(A2,P(A2)) > 0;
(i) RO\, ) > R\, 4) > 0.

Proof: Due to the fact tha, ,H,, F, andT, are positive operators fare R, we get the
(i) = (ii). On the other hand, leét= 0, for all x € X, we get

R(A,4)(x,0) = R(A,P(A))(X).
This implies(ii) = (i). O

Note that4 is a generator of a positiv€-semigroup ifAg generates a positiv€y-
semigroup andy € L (X), for alli € N, see [11]. Using Theore®3 and Propositior2.8,
we get a Perron-Frobenius theorem for the positive quasi-polynomial operators (1.2).

Theorem 2.9. Let the quasi-polynomial operator (1.2) be positive. Then
() s(P(-)) € o(P(-));
(i) for A € R, we haveR(A,P(A)) € L1 (X) if and only if A > s(P(-));
(i) R(A1,P(A1)) > R(A2,P(A2)) for A2 > A1 > s(P(+)).

It is remarkable that Theorem 2.9 generalizes results in [19] to Perron-Frobenius theo-
rem for positive quasi-polynomial operators in Banach spaces.

3 Main results

In this section, we apply the results obtained in the previous section to derive some nec-
essary and sufficient conditions for the exponential stability of the positive delay system
(1.1). We say that systerfil.1) is positiveif its associated quasi-polynomial operator is
positive, i.e.Ag generates a positiv&-semigroup andy € L7 (X) for alli € N.

Theorem 3.1. Let system (1.1) be positive. Then the following statements are equivalent:
(i) System (1.1) is exponentially stable;
(i) s(Ao+A1+...+AN) <O;
(iii) s(Ag) < Oandr(—Ag (AL +...+AN)) < 1;
(iv) (—Ao—A1—...—Av) L >0,

Proof. Assume that systermi.(l) is exponentially stable. Then, singegenerates a positive
Co-semigroup, this is equivalent &.4) = s(P(:)) < 0. By Theorem2.9, the previous
statement happens if and only if the operatey — A; — ... — Ay) ™! exists and—Ag —
Ap—...—Ay)"t e LH(X). Thus,(i) < (iv). Moreover, the operatoky + A + ... + Ay
generates a positiv&-semigroup, se€l6 Corollary VI1.1.11]. Thus, by Theoren2.3, we
get(iv) < (ii).
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Now, we show thatii) = (iii ). Using Theoren2.3 (i), we also get
S(Ao) = to— [r(R(to, Ao))] . ¥to > S(Ao),
S(Ao+ ...+ An) =to— [r(R(to, Ao+ ... + An))] 1, Vto > S(Ag + ... + An).

Moreover, fortg large enough, we have

(3.1)

(o)

R(to, Ao+ ... +An) = R(to, Ao) Z)[R(to,Ao)(Aw A"
So, we getR(to,Ag + ... + An) > R(to,Ag) > 0. This impliesr[R(to,Ag + ... + Ax)] >
r[R(to,Ao)]. Hence, from 8.1), we haves(Ag) < s(Ap+ As... +Ay). Then(ii) implies
S(Ag) < 0. And, by the same arguments, we also obtiy + F(As... +Ay)) < O for all
t > 1. Moreover,

tl— (—Ao) A1+ ... +AN) :tAgl[Ao+%(A1+...+AN)],

which implies[1;0) C p((—Ag) }(A1 + ...+ AN)). By Theorem 2.2¢[(—Ag) "1 (Ar +... +
Av)] < 1.
The remaingiii ) = (iv) of the proof is obvious by following equation
—Ao—Ar— ... — Ay = (—Ao)[l — (—A0) H(Ar+ ...+ A)].
a

From the above theorem, it is easy to see that the exponential stability of positive lin-
ear delay systems does not depend on delay parameters arg tiexterates a exponen-
tially stableCyp-semigroup is the necessary condition for exponential stability of the posi-
tive system (1.1). Next, we address some remarks about the relationship between delay-
independent exponential stability and exponential stability of system (1.1).

Definition 3.2. System(1.1) is delay-independently exponentially staiilé is exponen-
tially stable for eaclthy, ...,hy) € (RN,

The concept of delay-independent exponential stability, has interested many researchers
asin [6, 7, 8, 13, 18] and references therein. In fact, if the system is delay-independently
exponentially stable then it is exponential stable, but the converse is not true. However, in
the case of a positive system, both concepts are the same. This is stated in implications
following corollary of Theorem 3.1.

Theorem 3.3. Let system(1.1) be positive. Then the following statements are equivalent:
(i) System(1.1) is exponentially stable;
(i) System(1.1) is delay-independently exponentially stable.
Example 3.4. Consider the scalar equation
u(t) = apu(t) + agu(t — hy) + ... + anu(t — hy),

whereag € R, g; € [0,0),i € N. By Theorem 3.3, this system is exponentially stable as well
as delay-independently exponentially stable if and ondgif a1 +... + an < 0.
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Suppose that all operatots, i € N, are subjected to perturbations of the form
A — A +DiAE;,i €N, (3.2)

whereD; € L(U;,X),E € L(X,Y;),i € N, are given operators determining structure of per-
turbations andy; € £(Y;,U;),i € N are unknown operators. Then the perturbed system has
a form N
u(t) = (Ao+ DoloEo)u(t) + zl(A, +DiAE)u(t — hy),t >0,
1=

u(0) = x, (3.3)
u(t) = f(t),t € [-h,0).

Definition 3.5. Let system(1.1) be exponentially stable. The complex, real and positive
exponential stability radii of1.1) under perturbation of the forif8.2) are defined by
N
rc = inf{Z)HAiH (0 € L(Y;,U),i =0,1,...,N and(3.3) is not exponentially stable
i=
N
R = inf{%HAiH - A € £R(Y;,U)),i =0,1,...,N and(3.3) is not exponentially stabje
i=

N
ry= inf{Z}HAﬂ\ O € L7(Y;,Up),i =0,1,...,N and(3.3) is not exponentially stabje
i=

respectively, where we sitf @ = co.

In [1], the robust exponential stability of system (1.1) is studied via a concept of com-
plex exponential stability radii. Especially, for positive system, the complex, real and posi-
tive exponential stability radii coincide and can be computed via simple formulae.

Theorem 3.6. [1] Suppose that systelfi.1) is positive and exponentially stable, and all
operatord; andE; are positivej € N. If D; = Dj or E; = Ej for alli, j € N, then

1

frce=Ip=I, = .
ORI T Tmax [|E(—Ac—Ai—...— Ay) D]
i€{0,1,...,N}

(3.4)

However, the delay-independent exponential stability property is not robust to perturba-
tions of the paramete®s. In particular, the set of delay-independently exponentially stable
systems is not open as well as closed for the product topology, even in finite dimension,
such as in following examples witk = R.

Example 3.7. Consider following systems:

X(t) = —X(t) +ix(t — 1), (3.5)

and 1
X(t) =—(1+ H)x(t)—x(t—T). (3.6)
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Using the Theorem 9.[114], we can check that syste(8.5) is delay-independently expo-
nentially stable, but the system@) = —(1— 2)x(t) +ix(t — 1) are not delay-independently
exponentially stable for anp € N. This means the set of delay-independently expo-
nentially stable systems is not open. And we also check that syst@@)sare delay-
independently exponentially stable for any¥ N, but system(t) = —x(t) —x(t — 1) is

not delay-independently exponentially stable. This means the set of delay-independently
exponentially stable systems is not closed.

In the rest of paper, we will prove that under the positivity assumption, the delay-
independent exponential stability is robust even in the context of infinite dimension. We
do this via the following quantities, which estimate the distance from a equation to the set
of systems which are not delay-independently exponentially stable, saréys.

Definition 3.8. Suppose that syste(t.1) is delay-independently exponentially stable. The
complex, real and positive delay-independent exponential stability radlii bf under per-
turbations of the forng3.2) is defined by

) N
rdies — inf{Z}HAiH O € £(Y,U;),i=0,1,...,N and(3.3) is not d.i.e.s},

rdies — mf{ZHA.H A e £L2(Y,U;),i=0,1,...,Nand(3.3) is not d.i.e.s},
d'es—lnf{Z)HA.H A € £7(Y,Up),i=0,1,...,N and(3.3) is not d.i.e.s},

respectively.
From the definition, we get the inequality
r(téiesg r%iesg riiesg M. (3_7)

Theorem 3.9. Suppose thatl.1) is positive and exponentially stable, and all operalrs
andE; of the perturbation, € N, are positive. ID; = Dj (or E = Ej) for all i, j € N, then

dies __ 1 0

=r = >
o max  ||E(—Ag—Ar—...— Ay) 1D
i€{0,1,...,N}

dies

dies __
=TIR

r'c

Proof. By inequality (3.7), we need only to provg®s>r_.. Indeed, letyf € L(Y;,U;), i €N

such thatyN o [|A/|| < r. and(h,,...,hy) € RN, by Theorem (3.1) the equation with delay
parameteth, ..., hy) is also positive and exponentially stable. Hence, by Theorem 3.6, the
perturbed equatlons with delay parametdr, ..., hy) and perturbed operatof,i € N, is

also exponentially stable. And this completes the proof. a0

The above theorem not only shows that delay-independent exponential stability radii
and exponential stability radii coincide, but also proves the robustness of delay-independent
exponential stability for the class of positive systems.
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4 An example

Let X = I2(R), consider the following linear delay system
u(t) = Aou(t) +Aqu(t — 1) + Apu(t —2), t >0, (4.2)
in the form of systenfl.1) with N =2, h; =1, h, = 2, and
Ao(X1,%2, X3, ...) = (—3X1, —4Xp, —5X3, —6X4,...), A=Ay =1d.

SinceA generates a positivey-semigroup andy € £ (X), system(4.1) is positive. Ap-
plying Theorem3.3 and Theoren8.1, from s(Ag+ A1 + A2) = —1 < 0, we can get that
system(4.1) is delay-independently exponentially stable.

Now suppose that all operatofs, i = 0,1,2, are subjected to perturbations of the
form (3.2) with Eg = E; = E, = E are the left shift operators defined Byx;,x2,Xs,...) =
(X2,X3,Xa,...), Do = Id, D1(X1,%2,X3,...) = (0,X1,X2, X3, ...) IS the right shift operator, and
Da(X1,X2,X3,...) = (0,0,X1,X2, X3, ...) IS the twice right shift operator. Then

_ 1 1 1
E(—Ao —A]_ —Az) 1D0(X1,X2,X3, ) = (7X2, =X3, X4, ),
277374
1 1 1
E(—Ag— A1 —Ap) D1 (X1, X2, X3, -.) = (X1, 5 X2, > X35 --),
2 7374
_ 1 1 1
E(—Ao—A1—A2) 'Da(x1, 00, %, ) = (0, 3%, 7%, £, )

So, by Theoren3.9, we get

fc=rg=r, = r(%ies: rIqRieS: riies: 2
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