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Abstract

In this paper we investigate the existence of solutions for nonlinear boundary value
problems for second order impulsive differential inclusions with integral boundary
conditions. The both case of convex as well as nonconvex valued right hand side are
considered.
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1 Introduction

This paper is concerned with the existence of solutions of second order differential inclu-
sions with integral boundary conditions. More precisely we consider the following bound-
ary value problem (BVP for short)

Y'(t) e F(t,y(t)), foraeteJ:=[0,1], t #t,i=1,...,m, (1.1)
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AY|t:ti = Ii(y(tii))a I = 1""7m’ (12)
Ay’|t:ti :ﬁ(y(tr))a = 17"'7m7 (13)
Zq
y(0) —kiy' (0) = . hy(s,y(s))ds (1.4)
Zq
y(1) +kay' (1) = . h2(s,y(s))ds (1.5)
whereF : [0,1] x R — P(R) is a multivalued map(R) is the family of all subsets of
R, hy, hy : Jx R — R are continuous functions;, I : R — R, are given functionst; €
J, 0=ty <ty <...<tm<tm1=1, ki, ky are nonnegative constantsy|i_, = y(t;") —

Y7, &Y [y =Y (") =Y (), Y(t") =limp_o+ y(ti +h) andy(t) = limp_o+ y(ti —h) are
the right and left hand limits of(t) att =t;, respectively.

Impulsive differential equations have become important in recent years as mathematical
models of phenomena in both the physical and social sciences. There has been a significant
development in impulsive theory especially in the area of impulsive differential equations
with fixed moments; for example we recommend the books by Bencleblaid], Laksh-
mikanthamet al[27] and Samoilenko and Perestyuk [30] and the references therein.

Boundary value problems with integral boundary conditions constitute a very inter-
esting and important class of problems. They include two, three, multipoint and nonlo-
cal boundary value problems as special cases. For boundary value problems with integral
boundary conditions and comments on their importance, we refer the reader to the papers
by Belarbi and Benchohra [4], Belarbt al [5] Benchohreet al [7, 8, 10], Brykalov [12],
Denche and Marhoune [16], Gallardo [18], Jankowskii [22], Karakostas and Tsamatos [23],
Krall [26], Lomtatidze and Malaguti [29] and the references therein. Recently Arehad
al [1] and Khan [24] have applied the generalized method of quasilinearization to a class
of second order boundary value problem with integral boundary conditions. Benchohra
et al considered in [6] multiple solutions for impulsive differential equations with integral
conditions. Graef and Ouahab [19] studied a class of impulsive differential equations with
integral boundary conditions on times scales,

We shall provide sufficient conditions ensuring some existence results for problem
(1.1)-(2.5). In the convex case we present an existence result based on the nonlinear al-
ternative of Leray Schauder type. In the nonconvex case two results will be given. The first
one relies of the fixed point theorem due to Covitz and Nadler for contraction multivalued
maps. The second one is based on a selection theorem for lower semicontinuous maps with
closed decomposable values. Our results extend the previously cited results considered in
the absence of impulses, and to the multivalued case those considered in [6].

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts from multivalued
analysis which are used throughout this paper.
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Let C(J,R) be the Banach space of all continuous functions flbinto R with the
norm

[¥lleo = supfly(t)| : 0 <t <1},

and we letL(J,R) denote the Banach space of functigns] — R that are Lebesgue

integrable with norm 7
1

IVl = . ly(t)[dt.

We consider the space

PC={y : [0,] =R:y;€C(J,R),i=1,.,m
y(t7) andy(t") existi = 1,...,m, andy(t" ) = y(ti)}.

PCis a Banach space with the norm
IYllpc = maxlyi[|y :i=0,...,m,
wherey; is the restriction of to J; = [ti,ti+1] € [0,1],1 =0,...,m, and

I¥lla = max|yi (t)].
e

AC((0,1),R) is the space of differentiable functiops (0,1) — R, whose first derivative
y is absolutely continuous. For a normed spaXg - |), letP(X) ={Y € P(X) :Y closed,
Po(X) ={Y € P(X) : Y bounded, P.p(X) = {Y € P(X) : Y compac} andP;pc(X) ={Y €
P(X) :Y compact and convéx A multivalued maps : X — P(X) is convex (closed) valued
if G(x) is convex (closed) for alt € X. Gis bounded on bounded sets3{B) = UygG(X)

is bounded irX for all B € By(X) (i.e. supp{sup{|y| :y € G(X)}} < «). Gis called upper
semi-continuous (u.s.c.) ofif for eachxg € X, the setG(xp) is a nonempty closed subset
of X, and if for each open s&t of X containingG(xo), there exists an open neighborhood
Np of X such thatG(Np) C N. G is said to be completely continuousGi‘B) is relatively
compact for everyB € B, (X). If the multivalued mapG is completely continuous with
nonempty compact values, thénis u.s.c. if and only ifG has a closed graph (i.&, —
Xs, Yn — Vi, Yn € G(Xn) imply vy, € G(x.)). G has a fixed point if there is € X such that

x € G(x). The fixed point set of the multivalued operatemwill be denoted byFixG. A
multivalued magG : [0,1] — Py (RR) is said to be measurable if for everg R, the function

t— d(y,G(t)) = inf{ly—27 : z€ G(t)}

is measurable.

Let A be a subset 0f0,1] x R. Ais L ® B measurable iA belongs to thes-algebra
generated by all sets of the forfnx D where is Lebesgue measurable[i 1] andD is
Borel measurable iiR. A subsetA of L1([0,1],R) is decomposable if for ali,v € A and
J C [0,1] measurableyx s +VX|o,1—s € A, wherex stands for the characteristic function.

Let G: X — P(X) a multivalued operator with nonempty closed valu€sis lower
semi-continuous (l.s.c.) if the séx € X : G(x) NB # 0} is open for any open seB in X.

For more details on multivalued maps see the books of Aubin and Cellina [2], Aubin
and Frankowska [3], Deimling [15] and Hu and Papageorgiou [21].
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Definition 2.1. A multivalued magF : [0,1] x R — P(R) is said to be_'-Caratteodory if
(i) t— F(t,u) is measurable for eaahe R;
(i) ur— F(t,u) is upper semicontinuous for almost & [0, 1];
(iiiy for eachq > 0O, there exist#q € L1([0,1],R ) such that

|F(t,u)|| =sup{|v|:ve F(t,u)} <¢q(t) forall ju <gandaete[0,1].

For eacty € C([0, 1], R), define the set of selections Bfby
Sy ={ve L}([0,1],R) : v(t) € F(t,y(t)) aete[0,1]}.

Definition 2.2. Let X be a separable metric space andNetX — P(L*([0,1],R)) be a
multivalued operator. We say has property (BC) if

1) N is lower semi-continuous (l.s.c.);
2) N has nonempty closed and decomposable values.

LetF : [0,1] x R — P(R) be a multivalued map with nonempty compact values. Assign
to F the multivalued operator

¥ :C([0,1],R) — P(L*([0,1],R))
by letting
F(y)={we LY[0,1],R) :w(t) € F(t,y(t)) foraet € [0,1]}.
The operatoff is called the Nymetzki operator associated viith

Definition 2.3. LetF : [0,1] x R — P(R) be a multivalued function with nonempty compact
values. We sa¥ is of lower semi-continuous type (l.s.c. type) if its associated Nymetzki
operator? is lower semi-continuous and has nonempty closed and decomposable values.

Let (X,d) be a metric space induced from the normed spaceé- |). ConsiderHy :
P(X) x P(X) — Ry U{e} given by

Ha(A,B) = max{supd(a, B),supd(A, b)} ,

acA beB

whered(A,b) = infaead(a,b), d(a,B) = infpegd(a,b). Then (B¢ (X),Hq) is a metric
space andP(X),Hgq) is a generalized metric space (see [25]).

Definition 2.4. A multivalued operatoN : X — P (X) is called

a) y-Lipschitz if and only if there existg > 0 such that

Ha(N(x),N(y)) <vd(x,y), foreachx, yeX,
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b) a contraction if and only if it ig-Lipschitz withy < 1.
The following lemmas will be used in the sequel.

Lemma 2.5. [28]. Let X be a Banach space. L& :[0,1] x X — Pgpc(X) be anL!-
Caratheodory multivalued map and IEtbe a linear continuous mapping from ([0, 1], X)
to C([0, 1], X), then the operator

oS :C([0,1],X) — Pepc(C([0,1], X)),
y — (Mo Se)(y) =T (Sry)

is a closed graph operator i6([0, 1], X) x C([0, 1], X).

Lemma 2.6. (Nonlinear Alternative of Leray-Schauder Type, [20]). Rebe a Banach
space,C a closed, convex subset ¥f U an open subset @ and0 € X. Suppose that
N :U — Cis a continuous, compact map. Then either,

(C1) N has a fixed point itJ; or
(C2) There existd € (0,1) andx € dU (the boundary ot in C) with x = A N(X).

Lemma 2.7. [11]. LetY be a separable metric space and it Y — 2(L1([0,1],R)) be

a multivalued operator which has property (BC). ThHéras a continuous selection; i.e.,
there exists a continuous function (single-valugdy — L*(]0,1],R) such thag(x) € N(x)
for everyxeY.

Lemma 2.8.[14] Let (X,d) be a complete metric space Nf. X — P (X) is a contraction,
thenFixN # 0.

3 Main Results

In this section, we are concerned with the existence of solutions for the problem (1.1)-(1.5)
when the right hand side has convex as well as nonconvex values. Initially, we assume that
F is a compact and convex valued multivalued map.

Definition 3.1. A functiony € PCNUM (ACY((t,ti11),R) is said to be a solution of (1.1)-
(1.5) if there exists a functiome L1(]0,1],R) with v(t) € F(t,y(t)), for a.e.t € [0,1], t #
ti, i=1,...,m and for each = 1,... mAy|i—; = li(y(t")), AY|i=; = li(y(t")) and the
boundary conditions (1.4)-(1.5) are satisfied.

We need the following auxiliary result. Its proof can be found in [6]. For completeness
we present here the proof.

Lemma 3.2. Leto, p1, p2: J — R be integrable functions. if is solution of the equation
Z, m

y=pt)+ Glts)o(s)ds+ le'(t)’ 3.1)
i=

where
(ki+t)(1—s+kp), 0<t<s,

G(t’s):“{ (ki+9)(1—t+ky), s<t<i, (3.2)
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z 1 z 1

p(t) = —a {(1—t+k2) . p1(s)ds+ (kg +t) . pz(s)ds},

_ (ke +O)[=1i(y(t)) — (1 -ti+k)li(y(t))], 0<t<t,

wo = G5 S onoy cois @9
anda = m, theny is solution of the boundary value problem
Y'(t)=o0(t), aeted t#£t, i=1....m (3.4)
AY|t:ti = Ii(y(ti_))> i=1...,m, (3.5)
Ay’t:ti ZH(Y(E_))aZ' =1...m (36)
k(0= pi(sds 37)
Z

1) +ky()= " pa(9ds @9

Proof. Lety satisfy the integral equation (3.1) ahd J\ {t1,...,tm}. Then we have

y(t) [p(t) + g(,S)O(S)dSJrZ?llV\/l(t)]’
Y-+ a [ t+k) (ke +5)0(s)ds]
ol s+k2)(k1+t)o(s)ds] + MW ()
P(t) —a o(ki+9)( s)ds—at(ki +t)o(t)
a(k1+t)(1+k2) (t)+a [ (1—s+k)a(s)ds
at(1—t+kp)o(t) —aki(1—t+kp)o(t)
T W R
p(t)—a s(ki+9s)a(s)ds+a (1—s+kr)a(s)ds
Tt W (t),

where Z 1 7 1

p'(t) :a{ . p1(s)ds— . pz(s)ds}, p’(t) =0, fora.eted
L —li(y(t)) — (1-ti +ko)li(y(ti)), 0<t<t,
W.(t>——a{ iyt — (5 kR, t<t<il

+ 0+ 1+ 0+

and
W’(t) =0, i=1,..,m foreacht € J.

Thus
R R ’
y'(t) = p'(t)—al {(ka+90(s)dd +a [ 11— s+ko)a(s)ds
= —0(l+ki+ko)o(t) =o(t),
then (3.4) is satisfied. Now, we show the conditions (3.5)-(3.8) hold. From (3.1), we have
y(0) = pO)+ olego s)ds+ 3T W (0)
—O(Fgl‘f‘ k2) ¢ p1( s)ds— 0‘kl o P2(s)ds

+ akg 0(1 s+ky)o(s)ds
— ayike[—li(y(t)) — (1=t + k)l (y(t))],



66 M. Benchohra, F. Berhoun, and J. Henderson

and R
y(©0) = p(0)+a 01(1 S+k2) (s)ds
+ agelliy®)) + E( ti + ko)l (Y(&))]
= —a gpa(9)ds+a 4 pi(s)dsta o(1—s+ks)o(s)ds
+ ayt[li(yt)) + (1t +k)li(y(t)))-
Then

—a(d+ kz)RO1 pl(s)d§—ak1Rol p2(s)ds
5110( sp2(s)ds—aky o pi(s)ds

o P1(9)ds

so (3.7) holds. Similarly, we will have

y(0) —k1y'(0)

I+

Z,
1) +kay' (1) = . p2(s)ds

To show that (3.5) holds, we see fioe 1,...,m,

ylti) = p(t.)+ G(th s)o(s)ds+ 30, Wi(t)
= p(t|)+ o G(ti;s)o(s)ds B
— aymy (ke +t)[=liy(t)) — (T—ti+ka)Ti(y(t))],

and
V&) = P4 g "LG(t". 9o(9ds+ TP W)
= pt)+ (G(ti,s)o (S) B
— oy (I—ti+ ko) [—li(y(t) — (6 +K)Ti(y(t))]-
Then

—a 3ity( z—t.+1)[ (y(t) — (i +ko)Ti(y(ti))
oy (ke + 1) [—li(y(ti) — (1=t + k)i (y(ti))]
—a(1+ke+ka)li(y(t))

li(y(t)).

I+l

Similarly, we find

Y () =y (&) =Tli(y(t)), foreachi=1,....m,

so, the lemma is proved. O

Let us introduce the following hypotheses which are assumed hereafter:

(H1) The functionF : [0,1] x R — Pgpc(R) is L1-Caratteodory.
(H2) There exist constantg, ¢, > 0withM :=1— % > 0 such that

[li(u)] < cz]ul, and|lj(u)| < cy|ul, foreachue R, i=1,...,m

(H3) There exist functiongs, gz : [0,0) — [0,) continuous, nondecreasing amd g €
L(J,R*) such that

lha(t,u)] < on(t)ga(|u]) for eachue Rand fort € J,
lha(t,u)| < g2(t)gz(|ul) for eachu € R and fort € J.
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(H4) There exist a continuous non-decreasing funcgofD, ) — (0,) and a function
q e LY([0,1],R,) such that

|F(t,u)]] <q(t)g(|u]) for each(t,u) € [0,1] x R.

(H5) There exists a numb&i > 0 such that

M Im]
n

. > 1, (3.9)
Oz(s)ds+G*g(M) 5 q(s)ds

D
n

g1(M) o ta(s)ds+gz(M)

oI

where
G" = sup |G(t,9)|.
(t,5)€3?

Theorem 3.3. Suppose that the hypotheses (H1)-(H5) are satisfied, then the problem (1.1)-
(1.5) has at least one solution.

Proof. Transform the problem (1.1)-(1.5) into a fixed point one. Consider the operator

z m
N(y) ={f e PC: f(t)=P(t)+ olG(t,S)V(S)dS+ ,le'(t)’ VE Syt

where
Z, Z,
P(t):—a{(l—t+k2) . hi(s,y(s))ds+ (ki +1) . hl(s,y(s))ds}, (3.10)

G(t,s) andWi(t), i = 1,...,mare the functions defined by (3.2) and (3.3), respectively.
Clearly, from Lemma 3.2, the fixed points Nfare solutions to (1.1)—(1.5). We shall
show thatN satisfies the assumptions of the nonlinear alternative of Leray-Schauder type.

The proof will be given in several steps.

Step 1:N(y) is convex for eacly € PC.

Indeed, iffy, f, belong toN(y), then there existy, v» € S-y such that for eache [0, 1]
we have z,

fi(t) =P(t)+ . G(t,s)vj(s)ds+ _iw.(t), j=12

Let0<d < 1. Then, for each € [0, 1], we have
Z 1 m
(dfi+(1—d)f2)(t) =P(t) + . G(t,s)[dvi(s) + (1 —d)vz(s)]ds+ le. (t).
i=
SinceS:y is convex (becauseé has convex values), then

dfy+(1—d)fo e N(y).

Step 2 N maps bounded sets into bounded sef8n
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Let B = {y € PC: |ly|l~ < r} be a bounded set iRC andy € B,. Then for each
f € N(y), there existy € S such that
z 1
f(t)=P(t)+ s)ds+ ZW

From (H2)-(H4) we have

R
M) < [PM)[+ ol\ﬁ(f s)Iv( )\dSkJrZo<t<t.\W()\+Zt<t<1!W()!
S pf1+kG*g( ) O ( )dS+ 1+i:r+kzcl‘y(tl)|+ 1+k1+k202|y(t|)|
+ megsClyt) + S caly(t)]
<

1+k1+k2 &1 c r(2+k +k ) c I'(Z-I—k 1k )
1 1+ko 73 1+ke) .
pr+G*g(r) ¢a(s)ds+ Trkitke T tktke  — l

where
Z, Z,

: {<1+kz>gl<r> G (S)ds+ (14 kn)ga(r) q2<s>ds}.
0 0

A R

Step 3 N maps bounded sets into equicontinuous seBMf

Letty,T2 € [0,1], 11 < T2, By be a bounded set &fC as in Step 2 angl € B,. For each
feN(y):

|f(12) - f(11)] (12) — P(ta))|

0 1G(12,5) — G(11,9)||V(s)|ds

ST W (T2) W (1)

~a(t-To) [ o [hu(s.y(9)lds+ ¢ [ha(s.y(s)|ds
g(r) ¢ d(s)|G(t2,s) — G(11,9)[ds

S W(T2) —WH(T1)].

The right-hand side of the above inequality tends to zemp ast; — O.
As a consequence of Steps 1 to 3 together with the Arzela-Ascoli theorem, we can conclude
that N : PC — PCis completely continuous.

+ + IN + + A

Step 4 N has a closed graph.

Letyn — Yi, hn € N(yn) and f, — f.. We need to show thdt. € N(y.).
fn € N(yn) means that there exists € Sy, such that, for eache [0,1],
Z 1 m
fa(t) =Pa(t)+  G(t,s)vn(s)ds+ ZW”‘ (t)
i=

0

where
Z 4 Zq
pn(t):—a{(l—t+k2) . h1(S,¥n(S))ds+ (kg +1) . hz(s,yn(s))ds},

and

_ (k ‘H)[ li(Yn(ti)) — (L—ti + ko)l (Yn(tl))]a 0<t <,
W”i(”““{ (ot h) — (6 kTG, 4 <t<1
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We must show that there existse Sy, such that, for eache [0,1],
Z 1 m
f.(t) =P.(t)+ . G(t,s)Vi(s)ds+ ZW(t,y*(ti)).
i=

Clearly we have

||(fn — Pn —Wni) - (f* - P* _W*i ||oo e Oasn — 00,
Consider the continuous linear operator

r:L%([0,1],R) —C([0,1],R)
defined by 7
1
— (MTv)(t) =  G(t,s)v(s)ds
0

From Lemma 2.5, it follows thdi o S is a closed graph operator. Moreover, we have

(falt) = Palt)) € T (Seyn):
Sincey, — Vs, it follows from Lemma 2.5 that
Z 1 m
f.(t) =P.(t) + . G(t,s)V.(s)ds+ le'(t’y*(ti))
for somev, € &y, .
Step 5: A priori bounds on solutions.

Lety be such thay € AN(y) for A € (0,1). Then there exists € Sy such that, for each

te0,1], ,
1

y(t) =M | p(t)+ . G(t,s)v(s)ds+ivv.(t)],
S0 z, ) .
y®)| < |pt)|+G’ . a(s)g(ly(s))ds+ _;IVV'(t)

(H3) implies that

pt) < -a <1+kz>R&q1<s>glé|y<s>|>ds+<k1+1>R01q2<s>gz<4y<s>|>ds}
< {1 +kmlylee) ¢ ta(s)dst (ki + )ga(lylec) ¢ ce(s)ds]
< au(lyllee) o au(S)ds+ga(llyllec) o Ga(s)ds
Using hypothesis (H2), we have

Tt [V (L y(t)))] Zoctzy WL Y(6))] e WACE, y(ti))|

ki +
1+k1+k2 Caly(ti)] + 1+k1+k2 Ca|y(t)|
T caly(t)| + mied Caly ()]
Tk 1k, CLIY (i Tk +k, C21Y (Ui
H H C1(2+ki+ko) + Co(2+ki+ko)
y 1Kok 1k ke

IN 4+ INIA
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Then R R
Iyl < u(lyllpe) ¢ au()ds+([lyllec) o G(s)ds

+ Gg(lyllec) o a(s)ds+ |Yllec [%] 7

this implies that

)

- My .
gu(llyllec) o cu(s)ds+ga(llyllrc) o Ge(s)ds+ G g(|lyllec) o a(s)ds

then by (H5), we can affirm that there a constisint- O such that
lyllpc # M.

Set
U ={yePC: |ylpc <M}.

N :U — PCis continuous and completely continuous. From the choidg,ahere is no

y € 0U such thay € AN(y), for A € (0,1). As a consequence of the nonlinear alternative of
Leray-Schauder type [20], we deduce thlhas a fixed point it which is a solution to
problem (1.1)-(1.5). O

We present now a result for the problem (1.1)-(1.5) with a nonconvex valued right hand
side. Our considerations are based on the fixed point theorem for multivalued map given by
Covitz and Nadler [14]. We need the following hypotheses:

(H6) F :[0,1] x R — P;p(RR) has the property thét(-,u) : [0,1] — P;p(R) is measurable
for eachu € PC.

(H7) There exists € L1([0,1],R*) such that
Ha(F(t,u),F(t,0)) <I(t)lu—1| fora.et € [0,1] andu, te R

and
d(0,F(t,0)) <I(t) fora.et € [0,1].

(H8) There exist constants T > 0 such that
lhy(t,u) —hy(t,v)| < clu—v], for eachu, v € R, and each € J,
|ho(t,u) — ha(t,v)| <Tlu—v|, for eachu, ve R and each € J.
(H9) There exist constanty d > 0 such that
[li(u) = I;(v)| < d|u—v]| for eachu, ve R,

Ili(u) —Ti(v)| < dju—v] for eachu, v € R.
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Theorem 3.4. Assume that (H6)-(H9) are satisfied. If

C(1+k2)+6(1—|—k1) *Z 1 (d+a)(2—|—k1+k2)
[( 1+ ki +ko >+G o '(S)d5+< >] <1, (3.11)

1+ki+ko

then the BVP (1.1)-(1.5) has at least one solution.

Proof. For eacly € PC, the setS:y is nonempty since by (H6l; has a measurable selection
(see [13], Theorem III.6). We shall show thdtsatisfies the assumptions of Lemma 2.8.
The proof will be given in two steps.

Step I N(y) € Py (PC) for eachy € PC.
Indeed, let(yn)n>0 € N(y) such thaty, — § in PC. Then,§ € PC and there exists
Vn € Sy such that, for eache [0, 1],

yn(t) =P(t)+  G(t,s)vn(s)ds+ iw.(t).
0 is

Using the fact thaF has compact values and from (H7), we may pass to a subsequence if
necessary to get thag converges tos in L},([0,1],R) (the space endowed with the weak
topology). An application of Mazur’s theorem ([31]) implies thatconverges strongly to

vin L1([0,1],R) and hence € . Then, for each € [0, 1],

Z 1 m
Yo(t) —¥(t) =p(t) + Gt 9v(s)ds+ ZlW.(U-
i=
So,¥ € N(y).
Step 2 There existy < 1 such that

Ha(N(y),N(¥)) <vlly—Yllrc for eachy,y c PC.

Lety,y € PC and f; € N(y). Then, there exists;(t) € F(t,y(t)) such that for each

te[0,1] z,

fi(t) =P(t) + . G(t,s)vi(s)ds+ iW.(t).

From (H7) it follows that
Ha(F (t,y(1), F(t, (1)) < I{®)Iy(t) —y()].
Hence, there exists € F (t,y(t)) such that
[va(t) —wl < 1()]y(t) —y(t)], t € [0,1].
ConsidelU : [0,1] — P(R) given by

U(t) ={weR:|vi(t) —w| < I(t)|y(t) —y(1)[}-
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Since the multivalued operatui(t) = U (t) NF(t,y(t)) is measurable (see Proposition I11.4
in [13]), there exists a functiom(t) which is a measurable selection fér So,vs(t) €
F(t,y(t)), and for each € [0, 1],

Va(t) = v2(O)] < 1(t]ly(t) = y(t)]-

Let us define for eache [0, 1]
1 m o _
fa(t) = P(t) + . G(t,s)vo(s)ds+ ZW.(t)
i=

where
Z, Z,

;T(t):—a{(l—tJrkz) . hi(s,y(s))ds+ (kg +1) . hz(s,y(s))ds},

and
o (D) - (-t kL)), 0<t<t,
W'“)““{ O IO (6 et 6 <t

Then we have
[f2(t) = fa(t) < [p(t) —p(t)[+ oIG(t s)[[vi(s) —va(s)[ds
+ ST W) — TR W)
By (H8) we have

|p(t) — p(t)] < <C(1+1kj)i:lr i(i; kl)) ly—9llec,

and from (H9)
(d+d)(2+ ks + ko)

5 w0 - 3 W) < (RO )y g

It follows then

[f2(t) — f2(t)]

C(14+-ko)+c(1+ks)
() 1)uy Ylec

Iy —YllpcG* ¢l(s)ds
(d-+d)(2+ky+kz2)
(e 2)||y Tk

( (14-ko)+c( 1+k1>f+G* 1|( )ds
\

IN + + IA

1+ki+ko
<d+d)(2+k1+k2> ly—Yllpc.

14k +ko

_l’_

By an analogous relation, obtained by interchanging the rolgsofly, it follows that

R
Ha(N(y) =N(5)) < [(Wf +G d(s)ds

d+d)(2+kg +k _
+ (gl |y - yilec.

So, by (3.11)N is a contraction and thus, by Lemma 2Mhas a fixed poiny which is
solution to (1.1)—(1.5). The proof is complete. O
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In this part, by using the nonlinear alternative of Leray Schauder type combined with the
selection theorem of Bresssan and Colombo for semi-continuous maps with decomposable
values, we shall establish an existence result for the problem (1.1)-(1.5). We need the
following hypothesis:

(H10) F :[0,1] x R — P(R) is a nonempty compact-valued multivalued map such that:
a) (t,u) — F(t,u) is L® B measurable;
b) u— F(t,u) is lower semi-continuous for eatke [0, 1].

The following lemma is of great importance in the proof of our next result.

Lemma 3.5. [17] Let F : [0,1] x R — P(R) be a multivalued map with nonempty compact
values. Assum@H4) and (H10) hold. TherF is of |.s.c. type.

Theorem 3.6. Assume that (H2)-(H5) and (H10) hold. Then the BVP (1.1)—(1.5) has at
least one solution.

Proof. Note that (H4), (H10) and Lemma 3.5 imply thatis of |.s.c. type. Then from
Lemma 2.7, there exists a continuous functfarPC — L1([0, 1], R) such thatf (y) € F (y)
for all y € PC. Consider the problem

y'(t)=f(y)(t), foraeteJ:=1[0,1, t#t,i=1,...,m (3.12)
y(tiJr) _y(ti) = Ii(y(tii))v i = 17' --,m, (313)
y(tiJr)_y(ti) :7(y(ti7))v I :1""7m’ (314)

z

YO kYO = hu(sy(s)ds .15)
z

YU ey (1) = ha(sy(s))ds 3.16)

It is clear that ify € PCNACY((0,1),R) is a solution of (3.12)—(3.16), thenis a solution
to the problem (1.1)—(1.5). Consider the operdoPC — PC defined by:
Z,

NI =P+ | Gt 3 WD

We can easily show that is continuous and completely continuous. The remainder of the
proof is similar to that of Theorem 3.1. O
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