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Abstract

In this paper we investigate the existence of solutions for nonlinear boundary value
problems for second order impulsive differential inclusions with integral boundary
conditions. The both case of convex as well as nonconvex valued right hand side are
considered.
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1 Introduction

This paper is concerned with the existence of solutions of second order differential inclu-
sions with integral boundary conditions. More precisely we consider the following bound-
ary value problem (BVP for short)

y′′(t) ∈ F(t,y(t)), for a.e.t ∈ J := [0,1], t 6= ti , i = 1, . . . ,m, (1.1)
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∆y|t=ti = Ii(y(t−i )), i = 1, . . . ,m, (1.2)

∆y′|t=ti = Ii(y(t−i )), i = 1, . . . ,m, (1.3)

y(0)−k1y′(0) =
Z 1

0
h1(s,y(s))ds, (1.4)

y(1)+k2y′(1) =
Z 1

0
h2(s,y(s))ds, (1.5)

whereF : [0,1]×R→ P (R) is a multivalued map,P (R) is the family of all subsets of
R, h1, h2 : J×R→ R are continuous functions,Ii , I i : R→ R, are given functions,ti ∈
J, 0 = t0 < t1 < .. . < tm < tm+1 = 1, k1, k2 are nonnegative constants,∆y|t=ti = y(t+i )−
y(t−i ), ∆y′|t=ti = y′(t+i )−y′(t−i ), y(t+i ) = limh→0+ y(ti +h) andy(t−i ) = limh→0+ y(ti−h) are
the right and left hand limits ofy(t) at t = ti , respectively.

Impulsive differential equations have become important in recent years as mathematical
models of phenomena in both the physical and social sciences. There has been a significant
development in impulsive theory especially in the area of impulsive differential equations
with fixed moments; for example we recommend the books by Benchohraet al [9], Laksh-
mikanthamet al [27] and Samoilenko and Perestyuk [30] and the references therein.

Boundary value problems with integral boundary conditions constitute a very inter-
esting and important class of problems. They include two, three, multipoint and nonlo-
cal boundary value problems as special cases. For boundary value problems with integral
boundary conditions and comments on their importance, we refer the reader to the papers
by Belarbi and Benchohra [4], Belarbiet al [5] Benchohraet al [7, 8, 10], Brykalov [12],
Denche and Marhoune [16], Gallardo [18], Jankowskii [22], Karakostas and Tsamatos [23],
Krall [26], Lomtatidze and Malaguti [29] and the references therein. Recently Ahmadet
al [1] and Khan [24] have applied the generalized method of quasilinearization to a class
of second order boundary value problem with integral boundary conditions. Benchohra
et al considered in [6] multiple solutions for impulsive differential equations with integral
conditions. Graef and Ouahab [19] studied a class of impulsive differential equations with
integral boundary conditions on times scales,

We shall provide sufficient conditions ensuring some existence results for problem
(1.1)-(1.5). In the convex case we present an existence result based on the nonlinear al-
ternative of Leray Schauder type. In the nonconvex case two results will be given. The first
one relies of the fixed point theorem due to Covitz and Nadler for contraction multivalued
maps. The second one is based on a selection theorem for lower semicontinuous maps with
closed decomposable values. Our results extend the previously cited results considered in
the absence of impulses, and to the multivalued case those considered in [6].

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts from multivalued
analysis which are used throughout this paper.
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Let C(J,R) be the Banach space of all continuous functions fromJ into R with the
norm

‖y‖∞ = sup{|y(t)| : 0≤ t ≤ 1},
and we letL1(J,R) denote the Banach space of functionsy : J −→ R that are Lebesgue
integrable with norm

‖y‖L1 =
Z 1

0
|y(t)|dt.

We consider the space

PC= {y : [0,1]→ R : yi ∈C(Ji ,R), i = 1, ...,m,
y(t−i ) andy(t+i ) existi = 1, ...,m, andy(t−i ) = y(ti)}.

PC is a Banach space with the norm

‖y‖PC = max‖yi‖Ji : i = 0, ...,m,

whereyi is the restriction ofy to Ji = [ti , ti+1]⊂ [0,1], i = 0, ...,m, and

‖y‖Ji = max
t∈Ji

|yi(t)|.

AC1((0,1),R) is the space of differentiable functionsy : (0,1)−→R, whose first derivative
y′ is absolutely continuous. For a normed space(X, | · |), letPcl(X) = {Y∈P (X) :Y closed},
Pb(X) = {Y ∈ P (X) : Y bounded}, Pcp(X) = {Y ∈ P (X) : Y compact} andPcp,c(X) = {Y ∈
P (X) :Y compact and convex}. A multivalued mapG : X→P(X) is convex (closed) valued
if G(x) is convex (closed) for allx∈ X. G is bounded on bounded sets ifG(B) = dx∈BG(x)
is bounded inX for all B∈ Pb(X) (i.e. supx∈B{sup{|y| : y∈G(x)}}< ∞). G is called upper
semi-continuous (u.s.c.) onX if for eachx0 ∈ X, the setG(x0) is a nonempty closed subset
of X, and if for each open setN of X containingG(x0), there exists an open neighborhood
N0 of x0 such thatG(N0) ⊆ N. G is said to be completely continuous ifG(B) is relatively
compact for everyB ∈ Pb(X). If the multivalued mapG is completely continuous with
nonempty compact values, thenG is u.s.c. if and only ifG has a closed graph (i.e.xn −→
x∗, yn −→ y∗, yn ∈G(xn) imply y∗ ∈G(x∗)). G has a fixed point if there isx∈ X such that
x ∈ G(x). The fixed point set of the multivalued operatorG will be denoted byFixG. A
multivalued mapG : [0,1]→Pcl(R) is said to be measurable if for everyy∈R, the function

t 7−→ d(y,G(t)) = inf{|y−z| : z∈G(t)}

is measurable.
Let A be a subset of[0,1]×R. A is L ⊗B measurable ifA belongs to theσ-algebra

generated by all sets of the formJ ×D whereJ is Lebesgue measurable in[0,1] andD is
Borel measurable inR. A subsetA of L1([0,1],R) is decomposable if for allu,v∈ A and
J ⊂ [0,1] measurable,uχJ +vχ[0,1]−J ∈ A, whereχ stands for the characteristic function.

Let G : X → P (X) a multivalued operator with nonempty closed values.G is lower
semi-continuous (l.s.c.) if the set{x∈ X : G(x)∩B 6= /0} is open for any open setB in X.

For more details on multivalued maps see the books of Aubin and Cellina [2], Aubin
and Frankowska [3], Deimling [15] and Hu and Papageorgiou [21].
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Definition 2.1. A multivalued mapF : [0,1]×R→ P (R) is said to beL1-Carath́eodory if

(i) t 7−→ F(t,u) is measurable for eachu∈ R;

(ii) u 7−→ F(t,u) is upper semicontinuous for almost allt ∈ [0,1];

(iii) for eachq > 0, there existsϕq ∈ L1([0,1],R+) such that

‖F(t,u)‖= sup{|v| : v∈ F(t,u)} ≤ ϕq(t) for all |u| ≤ q and a.e. t ∈ [0,1].

For eachy∈C([0,1],R), define the set of selections ofF by

SF,y = {v∈ L1([0,1],R) : v(t) ∈ F(t,y(t)) a.e. t ∈ [0,1]}.

Definition 2.2. Let X be a separable metric space and letN : X → P (L1([0,1],R)) be a
multivalued operator. We sayN has property (BC) if

1) N is lower semi-continuous (l.s.c.);

2) N has nonempty closed and decomposable values.

Let F : [0,1]×R→ P (R) be a multivalued map with nonempty compact values. Assign
to F the multivalued operator

F : C([0,1],R)→ P (L1([0,1],R))

by letting

F (y) = {w∈ L1([0,1],R) : w(t) ∈ F(t,y(t)) for a.e. t ∈ [0,1]}.

The operatorF is called the Nymetzki operator associated withF.

Definition 2.3. LetF : [0,1]×R→P (R) be a multivalued function with nonempty compact
values. We sayF is of lower semi-continuous type (l.s.c. type) if its associated Nymetzki
operatorF is lower semi-continuous and has nonempty closed and decomposable values.

Let (X,d) be a metric space induced from the normed space(X, | · |). ConsiderHd :
P (X)×P (X)−→ R+∪{∞} given by

Hd(A,B) = max

{
sup
a∈A

d(a,B),sup
b∈B

d(A,b)
}

,

whered(A,b) = infa∈Ad(a,b), d(a,B) = infb∈Bd(a,b). Then (Pb,cl(X),Hd) is a metric
space and(Pcl(X),Hd) is a generalized metric space (see [25]).

Definition 2.4. A multivalued operatorN : X → Pcl(X) is called

a) γ-Lipschitz if and only if there existsγ > 0 such that

Hd(N(x),N(y))≤ γd(x,y), for eachx, y∈ X,
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b) a contraction if and only if it isγ-Lipschitz withγ < 1.

The following lemmas will be used in the sequel.

Lemma 2.5. [28]. Let X be a Banach space. LetF : [0,1]×X −→ Pcp,c(X) be anL1-
Carath́eodory multivalued map and letΓ be a linear continuous mapping fromL1([0,1],X)
to C([0,1],X), then the operator

Γ◦SF : C([0,1],X) −→ Pcp,c(C([0,1],X)),
y 7−→ (Γ◦SF)(y) := Γ(SF,y)

is a closed graph operator inC([0,1],X)×C([0,1],X).

Lemma 2.6. (Nonlinear Alternative of Leray-Schauder Type, [20]). LetX be a Banach
space,C a closed, convex subset ofX, U an open subset ofC and 0 ∈ X. Suppose that
N : U →C is a continuous, compact map. Then either,

(C1) N has a fixed point inU; or

(C2) There existsλ ∈ (0,1) andx∈ ∂U (the boundary ofU in C) with x = λ N(x).

Lemma 2.7. [11]. Let Y be a separable metric space and letN : Y → P (L1([0,1],R)) be
a multivalued operator which has property (BC). ThenN has a continuous selection; i.e.,
there exists a continuous function (single-valued)g :Y→ L1([0,1],R) such thatg(x)∈N(x)
for everyx∈Y.

Lemma 2.8. [14] Let (X,d) be a complete metric space. IfN : X→Pcl(X) is a contraction,
thenFixN 6= /0.

3 Main Results

In this section, we are concerned with the existence of solutions for the problem (1.1)-(1.5)
when the right hand side has convex as well as nonconvex values. Initially, we assume that
F is a compact and convex valued multivalued map.

Definition 3.1. A function y∈ PC∩∪m
i=0AC1((ti , ti+1),R) is said to be a solution of (1.1)-

(1.5) if there exists a functionv∈ L1([0,1],R) with v(t) ∈ F(t,y(t)), for a.e.t ∈ [0,1], t 6=
ti , i = 1, . . . ,m, and for eachi = 1, . . . ,m,∆y|t=ti = Ii(y(t−i )), ∆y′|t=ti = Ii(y(t−i )) and the
boundary conditions (1.4)-(1.5) are satisfied.

We need the following auxiliary result. Its proof can be found in [6]. For completeness
we present here the proof.

Lemma 3.2. Let σ, ρ1, ρ2 : J→ R be integrable functions. Ify is solution of the equation

y(t) = p(t)+
Z 1

0
G(t,s)σ(s)ds+

m

∑
i=1

Wi(t), (3.1)

where

G(t,s) = α
{

(k1 + t)(1−s+k2), 0≤ t ≤ s,
(k1 +s)(1− t +k2), s≤ t ≤ 1,

(3.2)
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p(t) =−α
{

(1− t +k2)
Z 1

0
ρ1(s)ds+(k1 + t)

Z 1

0
ρ2(s)ds

}
,

Wi(t) =−α
{

(k1 + t)[−Ii(y(ti))− (1− ti +k2)Ii(y(ti))], 0≤ t ≤ ti ,
(1− t +k2)[Ii(y(ti))− (ti +k1)Ii(y(ti))], ti ≤ t ≤ 1,

(3.3)

andα = −1
(1+k1+k2)

, theny is solution of the boundary value problem

y′′(t) = σ(t), a.e.t ∈ J, t 6= ti , i = 1, . . . ,m, (3.4)

∆y|t=ti = Ii(y(t−i )), i = 1, . . . ,m, (3.5)

∆y′|t=ti = Ii(y(t−i )), i = 1, . . . ,m, (3.6)

y(0)−k1y′(0) =
Z 1

0
ρ1(s)ds, (3.7)

y(1)+k2y′(1) =
Z 1

0
ρ2(s)ds. (3.8)

Proof. Let y satisfy the integral equation (3.1) andt ∈ J\{t1, . . . , tm}. Then we have

y′(t) = [p(t)+
R 1

0 G(t,s)σ(s)ds+∑m
i=1Wi(t)]′

= p′(t)+α
[R t

0(1− t +k2)(k1 +s)σ(s)ds
]′

+ α
[R 1

t (1−s+k2)(k1 + t)σ(s)ds
]′

+∑m
i=1W′

i (t)
= p′(t)−α

R t
0(k1 +s)(s)ds−αt(k1 + t)σ(t)

+ α(k1 + t)(1+k2)σ(t)+α
R 1

t (1−s+k2)σ(s)ds
− αt(1− t +k2)σ(t)−αk1(1− t +k2)σ(t)
+ ∑m

i=1W′
i (t)

= p′(t)−α
R t

0(k1 +s)σ(s)ds+α
R 1

t (1−s+k2)σ(s)ds
+ ∑m

i=1W′
i (t),

where

p′(t) = α
{Z 1

0
ρ1(s)ds−

Z 1

0
ρ2(s)ds

}
, p′′(t) = 0, for a.e.t ∈ J

W′
i (t) =−α

{ −Ii(y(ti))− (1− ti +k2)Ii(y(ti)), 0≤ t ≤ ti ,
−[Ii(y(ti))− (ti +k2)Ii(y(ti))], ti ≤ t ≤ 1,

and
W′′

i (t) = 0, i = 1, ...,m, for eacht ∈ J.

Thus

y′′(t) = p′′(t)−α
[R t

0(k1 +s)σ(s)ds
]′+α

[R 1
t (1−s+k2)σ(s)ds

]′

= −α(1+k1 +k2)σ(t) = σ(t),

then (3.4) is satisfied. Now, we show the conditions (3.5)-(3.8) hold. From (3.1), we have

y(0) = p(0)+
R 1

0 G(0,s)σ(s)ds+∑m
i=1Wi(0)

= −α(1+k2)
R 1

0 ρ1(s)ds−αk1
R 1

0 ρ2(s)ds
+ αk1

R 1
0 (1−s+k2)σ(s)ds

− α∑m
i=1k1[−Ii(y(ti))− (1− ti +k2)Ii(y(ti))],
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and
y′(0) = p′(0)+α

R 1
0 (1−s+k2)σ(s)ds

+ α∑m
i=1[Ii(y(ti))+(1− ti +k2)Ii(y(ti))]

= −α
R 1

0 ρ2(s)ds+α
R 1

0 ρ1(s)ds+α
R 1

0 (1−s+k2)σ(s)ds
+ α∑m

i=1[Ii(y(ti))+(1− ti +k2)Ii(y(ti))].

Then
y(0)−k1y′(0) = −α(1+k2)

R 1
0 ρ1(s)ds−αk1

R 1
0 ρ2(s)ds

+ k1α
R 1

0 ρ2(s)ds−αk1
R 1

0 ρ1(s)ds
=

R 1
0 ρ1(s)ds,

so (3.7) holds. Similarly, we will have

y(1)+k2y′(1) =
Z 1

0
ρ2(s)ds.

To show that (3.5) holds, we see fori = 1, . . . ,m,

y(ti) = p(ti)+
R 1

0 G(ti ,s)σ(s)ds+∑m
i=1Wi(ti)

= p(ti)+
R 1

0 G(ti ,s)σ(s)ds
− α∑m

i=1(k1 + ti)[−Ii(y(ti))− (1− ti +k2)Ii(y(ti))],

and
y(t+i ) = p(t+i )+

R 1
0 G(t+i ,s)σ(s)ds+∑m

i=1Wi(t+i )
= p(ti)+

R 1
0 G(ti ,s)σ(s)ds

− α∑m
i=1(1− ti +k2)[−Ii(y(ti))− (ti +k1)Ii(y(ti))].

Then
y(t+i )−y(t−i ) = −α∑m

i=1(k2− ti +1)[Ii(y(ti))− (ti +k1)Ii(y(ti))
+ α∑m

i=1(k1 + ti)[−Ii(y(ti))− (1− ti +k2)Ii(y(ti))]
= −α(1+k1 +k2)Ii(y(ti))
= Ii(y(ti)).

Similarly, we find

y′(t+i )−y′(t−i ) = Ii(y(ti)), for eachi = 1, . . . ,m,

so, the lemma is proved.

Let us introduce the following hypotheses which are assumed hereafter:

(H1) The functionF : [0,1]×R→ Pcp,c(R) is L1-Carath́eodory.

(H2) There exist constantsc1, c2 > 0 with M := 1− (c1+c2)(2+k1+k2)
1+k1+k2

> 0 such that

|Ii(u)| ≤ c1|u|, and|Ii(u)| ≤ c2|u|, for eachu∈ R, i = 1, . . . ,m.

(H3) There exist functionsg1, g2 : [0,∞)→ [0,∞) continuous, nondecreasing andq1, q2 ∈
L1(J,R+) such that

|h1(t,u)| ≤ q1(t)g1(|u|) for eachu∈ R and for t ∈ J,

|h2(t,u)| ≤ q2(t)g2(|u|) for eachu∈ R and for t ∈ J.
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(H4) There exist a continuous non-decreasing functiong : [0,∞)−→ (0,∞) and a function
q∈ L1([0,1],R+) such that

‖F(t,u)‖ ≤ q(t)g(|u|) for each(t,u) ∈ [0,1]×R.

(H5) There exists a numberM > 0 such that

MM

g1(M)
R 1

0 q1(s)ds+g2(M)
R 1

0 q2(s)ds+G∗g(M)
R 1

0 q(s)ds
> 1, (3.9)

where
G∗ = sup

(t,s)∈J2
|G(t,s)|.

Theorem 3.3. Suppose that the hypotheses (H1)-(H5) are satisfied, then the problem (1.1)-
(1.5) has at least one solution.

Proof. Transform the problem (1.1)-(1.5) into a fixed point one. Consider the operator

N(y) = { f ∈ PC : f (t) = P(t)+
Z 1

0
G(t,s)v(s)ds+

m

∑
i=1

Wi(t), v∈ SF,y},

where

P(t) =−α
{

(1− t +k2)
Z 1

0
h1(s,y(s))ds+(k1 + t)

Z 1

0
h1(s,y(s))ds

}
, (3.10)

G(t,s) andWi(t), i = 1, . . . ,mare the functions defined by (3.2) and (3.3), respectively.
Clearly, from Lemma 3.2, the fixed points ofN are solutions to (1.1)–(1.5). We shall

show thatN satisfies the assumptions of the nonlinear alternative of Leray-Schauder type.
The proof will be given in several steps.

Step 1: N(y) is convex for eachy∈ PC.

Indeed, if f1, f2 belong toN(y), then there existv1,v2 ∈ SF,y such that for eacht ∈ [0,1]
we have

f j(t) = P(t)+
Z 1

0
G(t,s)v j(s)ds+

m

∑
i=1

Wi(t), j = 1,2.

Let 0≤ d≤ 1. Then, for eacht ∈ [0,1], we have

(d f1 +(1−d) f2)(t) = P(t)+
Z 1

0
G(t,s)[dv1(s)+(1−d)v2(s)]ds+

m

∑
i=1

Wi(t).

SinceSF,y is convex (becauseF has convex values), then

d f1 +(1−d) f2 ∈ N(y).

Step 2: N maps bounded sets into bounded sets inPC.
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Let Br = {y ∈ PC : ‖y‖∞ ≤ r} be a bounded set inPC and y ∈ Br . Then for each
f ∈ N(y), there existsv∈ SF,y such that

f (t) = P(t)+
Z 1

0
G(t,s)v(s)ds+

m

∑
i=1

Wi(t).

From (H2)-(H4) we have

| f (t)| ≤ |P(t)|+ R 1
0 |G(t,s)|v(s)|ds+∑0≤t≤ti |Wi(t)|+∑ti≤t≤1 |Wi(t)|

≤ pr +G∗g(r)
R 1

0 q(s)ds+ k1+1
1+k1+k2

c1|y(ti)|+ k2+1
1+k1+k2

c2|y(ti)|
+ 1+k2

1+k1+k2
c1|y(ti)|+ 1+k1

1+k1+k2
c2|y(ti)|

≤ pr +G∗g(r)
R 1

0 q(s)ds+ c1r(2+k1+k2)
1+k1+k2

+ c2r(2+k1+k2)
1+k1+k2

=: l ,

where

pr =
1

1+k1 +k2

{
(1+k2)g1(r)

Z 1

0
q1(s)ds+(1+k1)g2(r)

Z 1

0
q2(s)ds

}
.

Step 3: N maps bounded sets into equicontinuous sets ofPC.

Let τ1,τ2 ∈ [0,1], τ1 < τ2, Br be a bounded set ofPC as in Step 2 andy∈ Br . For each
f ∈ N(y) :

| f (τ2)− f (τ1)| ≤ |P(τ2)−P(τ1)|
+

R 1
0 |G(τ2,s)−G(τ1,s)||v(s)|ds

+ ∑m
i=1 |Wi(τ2)−Wi(τ1)|

≤ −α(τ1− τ2)
[R 1

0 |h1(s,y(s))|ds+
R 1

0 |h2(s,y(s))|ds
]

+ g(r)
R 1

0 q(s)|G(τ2,s)−G(τ1,s)|ds
+ ∑m

i=1 |Wi(τ2)−Wi(τ1)|.
The right-hand side of the above inequality tends to zero asτ2− τ1 → 0.
As a consequence of Steps 1 to 3 together with the Arzela-Ascoli theorem, we can conclude
that N : PC−→ PC is completely continuous.

Step 4: N has a closed graph.

Let yn → y∗, hn ∈ N(yn) and fn → f∗. We need to show thatf∗ ∈ N(y∗).
fn ∈ N(yn) means that there existsvn ∈ SF,yn such that, for eacht ∈ [0,1],

fn(t) = Pn(t)+
Z 1

0
G(t,s)vn(s)ds+

m

∑
i=1

Wni (t),

where

pn(t) =−α
{

(1− t +k2)
Z 1

0
h1(s,yn(s))ds+(k1 + t)

Z 1

0
h2(s,yn(s))ds

}
,

and

Wni (t) =−α
{

(k1 + t)[−Ii(yn(ti))− (1− ti +k2)Ii(yn(ti))], 0≤ t ≤ ti ,
(1− t +k2)[Ii(yn(ti))− (ti +k1)Ii(yn(ti))], ti ≤ t ≤ 1.
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We must show that there existsf∗ ∈ SF,y∗ such that, for eacht ∈ [0,1],

f∗(t) = P∗(t)+
Z 1

0
G(t,s)v∗(s)ds+

m

∑
i=1

Wi(t,y∗(ti)).

Clearly we have

‖( fn−Pn−Wni )− ( f∗−P∗−W∗i‖∞ −→ 0 asn→ ∞.

Consider the continuous linear operator

Γ : L1([0,1],R)→C([0,1],R)

defined by

v 7−→ (Γv)(t) =
Z 1

0
G(t,s)v(s)ds.

From Lemma 2.5, it follows thatΓ◦SF is a closed graph operator. Moreover, we have
(

fn(t)−Pn(t)
)
∈ Γ(SF,yn).

Sinceyn → y∗, it follows from Lemma 2.5 that

f∗(t) = P∗(t)+
Z 1

0
G(t,s)v∗(s)ds+

m

∑
i=1

Wi(t,y∗(ti))

for somev∗ ∈ SF,y∗ .

Step 5: A priori bounds on solutions.

Let y be such thaty∈ λN(y) for λ ∈ (0,1). Then there existsv∈ SF,y such that, for each
t ∈ [0,1],

y(t) = λ

[
p(t)+

Z 1

0
G(t,s)v(s)ds+

m

∑
i=1

Wi(t)

]
,

so

|y(t)| ≤ |p(t)|+G∗
Z 1

0
q(s)g(|y(s)|)ds+

m

∑
i=1

|Wi(t)|.

(H3) implies that

|p(t)| ≤ −α
{
(1+k2)

R 1
0 q1(s)g1(|y(s)|)ds+(k1 +1)

R 1
0 q2(s)g2(|y(s)|)ds

}

≤ −α
{
(1+k2)g1(‖y‖PC)

R 1
0 q1(s)ds+(k1 +1)g2(‖y‖PC)

R 1
0 q2(s)ds

}

≤ g1(‖y‖PC)
R 1

0 q1(s)ds+g2(‖y‖PC)
R 1

0 q2(s)ds.

Using hypothesis (H2), we have

∑m
i=1 |Wi(t,y(ti))| ≤ ∑0≤t≤ti |Wi(t,y(ti))|+∑ti≤t≤1 |Wi(t,y(ti))|

≤ k1+1
1+k1+k2

c1|y(ti)|+ k2+1
1+k1+k2

c2|y(ti)|
+ 1+k2

1+k1+k2
c1|y(ti)|+ 1+k1

1+k1+k2
c2|y(ti)|

≤ ‖y‖PC

[
c1(2+k1+k2)

1+k1+k2
+ c2(2+k1+k2)

1+k1+k2

]
.
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Then
‖y‖PC ≤ g1(‖y‖PC)

R 1
0 q1(s)ds+g2(‖y‖PC)

R 1
0 q2(s)ds

+ G∗g(‖y‖PC)
R 1

0 q(s)ds+‖y‖PC

[
(c1+c2)(2+k1+k2)

1+k1+k2

]
,

this implies that

M‖y‖PC

g1(‖y‖PC)
R 1

0 q1(s)ds+g2(‖y‖PC)
R 1

0 q2(s)ds+G∗g(‖y‖PC)
R 1

0 q(s)ds
≤ 1,

then by (H5), we can affirm that there a constantM > 0 such that

‖y‖PC 6= M.

Set
U = {y∈ PC : ‖y‖PC < M}.

N : U → PC is continuous and completely continuous. From the choice ofU , there is no
y∈ ∂U such thaty∈ λN(y), for λ ∈ (0,1). As a consequence of the nonlinear alternative of
Leray-Schauder type [20], we deduce thatN has a fixed point inU which is a solution to
problem (1.1)-(1.5).

We present now a result for the problem (1.1)-(1.5) with a nonconvex valued right hand
side. Our considerations are based on the fixed point theorem for multivalued map given by
Covitz and Nadler [14]. We need the following hypotheses:

(H6) F : [0,1]×R−→ Pcp(R) has the property thatF(·,u) : [0,1]→ Pcp(R) is measurable
for eachu∈ PC.

(H7) There existsl ∈ L1([0,1],R+) such that

Hd(F(t,u),F(t,u))≤ l(t)|u−u| for a.e.t ∈ [0,1] andu, u∈ R

and
d(0,F(t,0))≤ l(t) for a.e.t ∈ [0,1].

(H8) There exist constantsc, c > 0 such that

|h1(t,u)−h1(t,v)| ≤ c|u−v|, for eachu, v∈ R, and eacht ∈ J,

|h2(t,u)−h2(t,v)| ≤ c|u−v|, for eachu, v∈ R and eacht ∈ J.

(H9) There exist constantsd, d > 0 such that

|Ii(u)− Ii(v)| ≤ d|u−v| for eachu, v∈ R,

|Ii(u)− Ii(v)| ≤ d|u−v| for eachu, v∈ R.
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Theorem 3.4. Assume that (H6)-(H9) are satisfied. If

[(
c(1+k2)+c(1+k1)

1+k1 +k2

)
+G∗

Z 1

0
l(s)ds+

(
(d+d)(2+k1 +k2)

1+k1 +k2

)]
< 1, (3.11)

then the BVP (1.1)-(1.5) has at least one solution.

Proof. For eachy∈PC, the setSF,y is nonempty since by (H6),F has a measurable selection
(see [13], Theorem III.6). We shall show thatN satisfies the assumptions of Lemma 2.8.
The proof will be given in two steps.

Step 1: N(y) ∈ Pcl(PC) for eachy∈ PC.

Indeed, let(yn)n≥0 ∈ N(y) such thatyn −→ ỹ in PC. Then, ỹ ∈ PC and there exists
vn ∈ SF,y such that, for eacht ∈ [0,1],

yn(t) = P(t)+
Z 1

0
G(t,s)vn(s)ds+

m

∑
i=1

Wi(t).

Using the fact thatF has compact values and from (H7), we may pass to a subsequence if
necessary to get thatvn converges tov in L1

w([0,1],R) (the space endowed with the weak
topology). An application of Mazur’s theorem ([31]) implies thatvn converges strongly to
v in L1([0,1],R) and hencev∈ SF,y. Then, for eacht ∈ [0,1],

yn(t)−→ ỹ(t) = p(t)+
Z 1

0
G(t,s)v(s)ds+

m

∑
i=1

Wi(t).

So,ỹ∈ N(y).

Step 2: There existsγ < 1 such that

Hd(N(y),N(y))≤ γ‖y−y‖PC for eachy,y∈ PC.

Let y,y ∈ PC and f1 ∈ N(y). Then, there existsv1(t) ∈ F(t,y(t)) such that for each
t ∈ [0,1]

f1(t) = P(t)+
Z 1

0
G(t,s)v1(s)ds+

m

∑
i=1

Wi(t).

From (H7) it follows that

Hd(F(t,y(t)),F(t,y(t)))≤ l(t)|y(t)−y(t)|.

Hence, there existsw∈ F(t,y(t)) such that

|v1(t)−w| ≤ l(t)|y(t)−y(t)|, t ∈ [0,1].

ConsiderU : [0,1]→ P (R) given by

U(t) = {w∈ R : |v1(t)−w| ≤ l(t)|y(t)−y(t)|}.
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Since the multivalued operatorV(t) = U(t)∩F(t,y(t)) is measurable (see Proposition III.4
in [13]), there exists a functionv2(t) which is a measurable selection forV. So,v2(t) ∈
F(t,y(t)), and for eacht ∈ [0,1],

|v1(t)−v2(t)| ≤ l(t‖y(t)−y(t)|.
Let us define for eacht ∈ [0,1]

f2(t) = P̄(t)+
Z 1

0
G(t,s)v2(s)ds+

m

∑
i=1

W̄i(t),

where

p̄(t) =−α
{

(1− t +k2)
Z 1

0
h1(s,y(s))ds+(k1 + t)

Z 1

0
h2(s,y(s))ds

}
,

and

W̄i(t) =−α
{

(k1 + t)[−Ii(y(ti))− (1− ti +k2)Ii(y(ti))], 0≤ t ≤ ti ,
(1− t +k2)[Ii(y(ti))− (ti +k1)Ii(y(ti))], ti ≤ t ≤ 1.

Then we have

| f1(t)− f2(t) ≤ |p(t)− p̄(t)|+ R 1
0 |G(t,s)||v1(s)−v2(s)|ds

+ |∑m
i=1Wi(t)−∑m

i=1W̄i(t)|.
By (H8) we have

|p(t)− p̄(t)| ≤
(

c(1+k2)+c(1+k1)
1+k1 +k2

)
‖y−y‖PC,

and from (H9)

|
m

∑
i=1

Wi(t)−
m

∑
i=1

W̄i(t)| ≤
(

(d+d)(2+k1 +k2)
1+k1 +k2

)
‖y−y‖PC.

It follows then

| f1(t)− f2(t)| ≤
(

c(1+k2)+c(1+k1)
1+k1+k2

)
‖y−y‖PC

+ ‖y−y‖PCG∗ R 1
0 l(s)ds

+
(

(d+d)(2+k1+k2)
1+k1+k2

)
‖y−y‖PC

≤
[(

c(1+k2)+c(1+k1)
1+k1+k2

)
+G∗ R 1

0 l(s)ds

+
(

(d+d)(2+k1+k2)
1+k1+k2

)]
‖y−y‖PC.

By an analogous relation, obtained by interchanging the roles ofy andy, it follows that

Hd(N(y)−N(y)) ≤
[(

c(1+k2)+c(1+k1)
1+k1+k2

)
+G∗ R 1

0 l(s)ds

+
(

(d+d)(2+k1+k2)
1+k1+k2

)]
‖y−y‖PC.

So, by (3.11),N is a contraction and thus, by Lemma 2.8,N has a fixed pointy which is
solution to (1.1)–(1.5). The proof is complete.
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In this part, by using the nonlinear alternative of Leray Schauder type combined with the
selection theorem of Bresssan and Colombo for semi-continuous maps with decomposable
values, we shall establish an existence result for the problem (1.1)-(1.5). We need the
following hypothesis:

(H10) F : [0,1]×R−→ P (R) is a nonempty compact-valued multivalued map such that:
a) (t,u) 7→ F(t,u) is L⊗B measurable;
b) u 7→ F(t,u) is lower semi-continuous for eacht ∈ [0,1].

The following lemma is of great importance in the proof of our next result.

Lemma 3.5. [17] Let F : [0,1]×R→ P (R) be a multivalued map with nonempty compact
values. Assume(H4) and(H10) hold. ThenF is of l.s.c. type.

Theorem 3.6. Assume that (H2)-(H5) and (H10) hold. Then the BVP (1.1)–(1.5) has at
least one solution.

Proof. Note that (H4), (H10) and Lemma 3.5 imply thatF is of l.s.c. type. Then from
Lemma 2.7, there exists a continuous functionf : PC→ L1([0,1],R) such thatf (y) ∈ F (y)
for all y∈ PC. Consider the problem

y′′(t) = f (y)(t), for a.e.t ∈ J := [0,1], t 6= ti , i = 1, . . . ,m, (3.12)

y(t+i )−y(ti) = Ii(y(t−i )), i = 1, . . . ,m, (3.13)

y′(t+i )−y′(ti) = Ii(y(t−i )), i = 1, . . . ,m, (3.14)

y(0)−k1y′(0) =
Z 1

0
h1(s,y(s))ds, (3.15)

y(1)−k2y′(1) =
Z 1

0
h2(s,y(s))ds. (3.16)

It is clear that ify∈ PC∩AC1((0,1),R) is a solution of (3.12)–(3.16), theny is a solution
to the problem (1.1)–(1.5). Consider the operatorÑ : PC→ PC defined by:

Ñ(y)(t) = P(t)+
Z 1

0
G(t,s) f (y)(s)ds+

m

∑
i=1

Wi(t).

We can easily show that̃N is continuous and completely continuous. The remainder of the
proof is similar to that of Theorem 3.1.
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