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Abstract. We study the problem of private classification using kernel methods.
More specifically, we propose private protocols implementing the Kernel Ada-
tron and Kernel Perceptron learning algorithms, give private classification pro-
tocols and private polynomial kernel computation protocols. The new protocols
return their outputs—either the kernel value, the classifier or the classifications—
in encrypted form so that they can be decrypted only by a common agreement
by the protocol participants. We also show how to use the encrypted classifica-
tions to privately estimate many properties of the data and the classifier. The new
SVM classifiers are the first to be proven private according to the standard cryp-
tographic definitions.
Keywords: Privacy Preserving Data Mining, Kernel Methods

1 Introduction

Currently, data mining is playing an important role as vast amounts of data are being
collected in various areas of science, finance, industry and government [HMS01]. In
many applications, the data repositories are becoming increasingly shared by several
parties, which gives rise of need for privacy-preserving data mining (PPDM) protocols
that involve two or more parties.

We are interested in private classification. Classification comprises of two subtasks:
learning a classifier from data with class labels—often called a training data—and
predicting the class labels for unlabeled data using the learned classifier. For simplicity,
we assume that the data can be stored as vectors with fixed length, often called feature
vectors. As an example, consider the classification task of detecting email spam. The
training data comprises of emails with labels “spam”/“nospam”. More precisely, the
training data is constructed by converting the classified emails to word count vectors
and then the classifier is learned from this training data. The classifier could be, e.g.,
a linear threshold function on the word frequencies in the bodies of the messages. The
learned classifier is used to predict which of the unlabeled emails are spam.

Linear classifiers have been central in classifier learning since the introduction of
Rosenblatt’s Perceptron algorithm [Vap00]. Important recent improvements in learning
linear classifiers have been maximum margin classifier learning and kernel methods,
improving the classification results in theory and practice, and extending the applicabil-
ity of the linear classification techniques to virtually any kind of data [STC04]. Support
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Vector Machines (SVMs) [Vap00] are the most well-known kernelized maximum mar-
gin classifiers. The Kernel Perceptron algorithm is a kernelized version of the classical
Perceptron algorithm and the Kernel Adatron is a kernelized version of a maximum
margin linear classifier. In Sect. 2, we provide a short introduction to linear classifiers,
Support Vector Machines and private classification.

There are two fundamentally different ways a protocol run can disclose sensitive
information: (a) the protocol can leak some side information that is not specified by
protocol’s functionality, and (b) the specified protocol result itself can reveal sensitive
aspects of the data. Thus, it should first be stated which information can be revealed.
Second, a concrete PPDM protocol should be implemented so as not to reveal more
information than required.

By the classical results of cryptography, by using secure multi-party computa-
tion [Gol04], any protocol can be implemented without leakage of side information
(with “polynomial” slowdown). Thus, secure multi-party computation methods can
be applied to any data mining protocol to solve the first mentioned issue. For many
practical protocols, applying general secure multi-party computation results however in
very inefficient protocols. This is especially true in the case of data mining protocols
that handle enormous amount of data, and are often themselves on the verge of being
(im)practical.

What about the second issue, data mining result revealing sensitive information?
Clearly, there is a tradeoff between revealing sensitive information and useful knowl-
edge: in the case of data mining, one can avoid disclosing of sensitive information by
not mining the data at all, but then also one discovers no useful knowledge.

Following these general principles, also a classification protocol—that consists of
the learning and prediction protocols—can reveal (a) internal values, and (b) the classi-
fier and classification results. Any of the revealed internal values can breach the privacy
of the training data, and the output values can also breach the privacy of the classified
data. Thus, it is important to define what additional information should the participants
get after running a classification protocol. In private classification, only an authorized
party should get new information, and this information should only consist of the class
labels of the classified data. Moreover, if the classification results are too sensitive then
the authorized party should obtain only an aggregation of multiple classifications. In
Sect. 3, we describe the cryptographic tools that we need in the rest of the paper.

Our contributions In the current paper, we describe private protocols for kernel sharing,
prediction and training. Although the new protocols are specified for vector data, they
are also applicable for structured data (e.g. strings), provided that the kernel values can
be securely computed.

All our protocols are provably private in the standard semi-honest model, where it
is assumed that the participants follow the protocol but use the obtained information to
gain new knowledge. Moreover, the new protocols neither leak information about the
training data nor about the classifiers, since the data and the learned classifier will stay
encrypted or more precisely, private but available for further processing. Privacy in the
malicious model, where one is concerned about arbitrary adversaries, can be achieved
by using standard cryptographic techniques; however, the resulting protocols will often
be very inefficient in practice. Hence, we will consider only the semi-honest model.



On the other hand, we consider privacy in the cases when the data is divided hor-
izontally or vertically between two parties. These cases are conceptually different and
require different protocols.

In Sect. 4, we first show how to privately share the kernel matrix between Client
and Server. At the end of the sharing, they have random (but dependent) values that
make it later possible for them to engage in private prediction and training protocols.
The corresponding kernel sharing protocol is very efficient. In Sect. 5, we then consider
private prediction that is an important task by itself. For example, one can use private
prediction to securely filter out relevant documents from a data-stream, instead of using
private filtering based on triggering keywords [OI05] and thus get significantly more
precise results. In addition, we discuss how to privately implement cross-validation and
other aggregation methods over classification results. In Sect. 6, we propose private
versions of the Kernel Perceptron and the Kernel Adatron protocols, that both update
the weight vector by using the private prediction protocols of previous section. We
prove that these protocols only leak the number of rounds (and information that can be
deduced from it). In Sect. 7, we conclude the paper and discuss some open problems.

Related work The research on private (or “privacy-preserving”) classifi-
cation techniques has resulted protocols for learning Naı̈ve Bayes Classi-
fiers [VC04,WY04,YZW05], Decision Trees [AS00,BDMN05,DZ03,LP02], k-Nearest
Neighbors Classifiers [CL05,KC04] and Linear Discriminant Analysis [DHC04]. A
cryptographically private protocol for non-linear classification with the feed-forward
neural networks was proposed in [CL01], however, this solution is too resource
demanding to be practical. On the other hand, linear classifier learning using the
Perceptron algorithm on randomly perturbed data has led to more practical meth-
ods [BDMN05,CL05], but their notions of privacy are more liberate than ours; namely,
they guarantee only a certain amount of uncertainty about the private inputs.

A few methods for privacy-preserving learning of Support Vector Machines have
been proposed [CL05,YJV06] but they reveal the kernel and the Gramm matrix of the
data, that then can be easily used to expose a lot of information about the data. Recall
that the Gramm matrix consists of scalar products between all data vectors. Now, if
more than m linearly independent vectors leak out, where m is the dimensionality of
the data, then all other vectors can be restored knowing only the Gramm matrix. Hence,
these methods are unusable for horizontally partitioned data, where each participant
possess complete feature vectors. Moreover, other kernel methods like the Kernel-PCA
reveal partial information data points without any auxiliary knowledge beyond the ker-
nel matrix.

2 Classification: Preliminaries

2.1 Overview of classification methods

Let X be the set of all possible data points and Y be the set of possible classes. Let
G be a family of functions g : X → Y that we consider being potential classifiers,
and let D be a multiset of data points with class labels, i.e., D comprises of pairs



(x1, y1), . . . , (xn, yn) ∈ X × Y . Usually the pairs in D are assumed to be drawn in-
dependently at random from the same probability distribution, often referenced as i.i.d.
data. We consider only the case when vectors are real, X ⊆ Rm, and there are two
classes Y = {−1, 1}.

The classifier learning task is, given the function class G and the dataset D, to find
the best classifier g∗ ∈ G. Typically the best classifier is considered to be the one with
the smallest expected error. The expected error of a classifier g ∈ G is Pr [g(X) 6= Y ],
where X and Y are random variables with unknown joint probability distribution over
X ×Y . As the probability distribution is unknown, we must relay on an empirical error
estimate

∑
(xi,yi)∈D I [g(xi) 6= yi] instead, where I [·] is a zero-one indicator function.

The family of linear functions is particularly important in machine learning. Linear
functions can be conveniently described by the normals of the hyperplanes w ∈ Rm.
The classification of a point x ∈ Rm is then determined by the sign of the scalar product
fw(x) := 〈w,x〉 that is also known as the discriminative function. The value of fw(x)
characterizes the classification certainty.

Linear classification has been in a central role in the theory and practice of machine
learning for more than 40 years since the introduction of the Rosenblatt’s Perceptron
algorithm and Novikoff’s convergence results for the Perceptron algorithm [Vap00].
In addition to the applications in machine learning, the Perceptron algorithm has an
independent interest as a simple method for linear programming [BD02].

The idea of the Perceptron algorithm is to find a linear combination w of the points
xi such that sign 〈w,xi〉 = yi for all i = 1, . . . , n. The algorithm updates the weight
vector w (initially 0) by adding to w each data point xi that is misclassified by the
current w. (See [STC04,Vap00] for more details.)

A major drawback of the Perceptron algorithm is that it assumes that the data is
linearly separable, i.e., that there is an hyperplane w ∈ Rm that separates the positive
examples from the negative ones. A natural solution to this problem is to map the data
into a suitable Hilbert space H (i.e., a complete inner product space; see [STC04])
using some (nonlinear) mapping φ : X → H. Such a mapping is often called a feature
mapping and the Hilbert space a feature space.

A potential problem with this approach is that the space where the data is linearly
separable can have very high, even infinite dimensionality. Sometimes this problem can
be avoided by the use of kernels. A kernel of a feature map φ is a function κ such
that κ(xi,xj) = 〈φ(xi), φ(xj)〉 for all xi,xj ∈ X ; it is used to obtain the implicit
description α of the weight vector w. The use of kernels in data analysis has become
a standard practice, often providing state of the art data mining methods [STC04]. The
Perceptron algorithm can also be written using kernels, by observing that the weight
vector w can be written as

∑n
j=1 αjφ(xj) for some α ∈ Zn. Then

fw(xi) =
n∑

j=1

αj · 〈φ(xi), φ(xj)〉 =
n∑

j=1

κ(xi,xj)αj ,

i.e., it suffices to compute the kernel values κ(xi,xj) for all (xi, yi), (xj , yj) ∈ D.
Furthermore, the values κ(xi,xj) have to be computed only once for a particular D
and φ. The kernel values of data D are often represented as a kernel matrix K ∈ Rn×n,



where kij = κ(xi, xj). The Perceptron algorithm using a kernel matrix—the Kernel
Perceptron algorithm—is given as Algorithm 1. (See [STC04].)

Algorithm 1 Kernel Perceptron algorithm
Input: A kernel matrix K and class labels y ∈ {−1, 1}n.
Output: A weight vector α ∈ Zn.

Function KERNEL-PERCEPTRON(K , y)
1: α← 0
2: repeat
3: for i = 1, . . . , n do
4: if yi ·

Pn
j=1 kijαj ≤ 0 then αi ← αi + yi

5: end for
6: until convergence

end function

By Novikoff’s Theorem [Vap00], the number of misclassifications (i.e., the number
of the weight updates) can be bounded above by R2/γ2

∗ , where R is the radius of the
smallest origin-centered ball containing all data points, and γ∗ is the maximal margin.
Recall that the margin of a given weight vector w w.r.t. the dataset D is defined as

γ = min
(xi,yi)∈D

yi · 〈w,xi〉
‖w‖

and γ∗ = max {γ(w) : w ∈ Rm}. Novikoff’s Theorem emphasizes also the following
shortcoming of the Perceptron algorithm: the Perceptron algorithm finds some separat-
ing hyperplane for data (if it exists), but basically any separating hyperplane will do. In
particular, the Perceptron algorithm can return different separating hyperplanes for dif-
ferent permutations of data. A natural way to select the unique separating hyperplane is
to pick the one that maximizes the margin γ, i.e., the maximum margin hyperplane w∗.
Intuitively, the maximum margin hyperplane aims minimizing the risk of misclassifica-
tion with unknown data distribution and the maximum margin hyperplane is justified
also by the generalization error bounds [STC04,Vap00].

There exist many variants of the Perceptron algorithm that maximize the mar-
gin [FS99,FCC98,STC04]. Learning algorithms finding a maximum margin separating
hyperplane are called Support Vector Machines (SVM-s in short) [Vap00]. A particu-
larly flexible and simple Support Vector Machine is the Adatron algorithm [STC04],
depicted by Algorithm 2. The Adatron algorithm has several nice properties. First, it
is based on iterative gradient descent and has a simple structure. Therefore, it is a per-
fect starting point as a privacy-preserving learning algorithm, since there are only a
few operations that require complex cryptographic solutions. Second, the Adatron al-
gorithm allows to implement both hard and soft margin Support Vector Machines with
few changes.

A hard margin SVM finds the separating hyperplane that maximizes the margin γ,
given that the data is linearly separable. For linearly non-separable datasets, the hard



margin SVM returns a solution where outliers—points that cause non-separability—
have large impact on classification results. Therefore, it is advantageous to use soft mar-
gin SVM-s that bound the disturbances caused by potential outliers. Soft margin SVM-s
come in two flavors: either a constraint αj ∈ [0, C] is added for each i ∈ {1, . . . , n},
or a regularizing term C > 0 is added to the main diagonal of the kernel matrix. The
first gives a rise to `1-norm and the second to `2-norm soft margin SVM [STC04]. Al-
gorithm 2 implements the `1-norm soft margin SVM, which is the most popular SVM.
We get the a margin SVM by setting C to be∞.

Algorithm 2 Kernel Adatron algorithm
Input: A kernel matrix K, class labels y ∈ {−1, 1}n and

the soft margin parameter C.
Output: A weight vector α ∈ Zn

+.

Function KERNEL-ADATRON(K , y, C)
1: α← 0
2: repeat
3: for i = 1, . . . , n do
4: αi ← αi + yi ·

`
1− yi ·

Pn
j=1 kijαjyj

´
5: if αi > C then αi ← C
6: if αi < 0 then αi ← 0
7: end for
8: until convergence

end function

2.2 Private classification

We assume that the sample data is divided between two parties with possibly conflict-
ing interests and in particular, that they are not willing to reveal their data. On the other
hand, we assume that the parties are still willing to train a common classifier provided
that none of them can use it without others and that their data remains private. Such
examples are quite common in the case of medical studies, e.g., when finding out risk
groups for a diseases without leaking the identities of infected patients and the medical
data. Other similar examples include military surveillance [OI05] and identity-specific
content providing services. There is a conceptual distinction between the cases where
the data is owned by two or more parties. In the multi-party scenario, it is traditional in
cryptography to assume the existence of a honest majority. In this case, there are rela-
tively efficient solutions for arbitrary private computation [BOGW88,CCD88,GRR98].
In the two-party scenario, one cannot assume the existence of ha honest majority (unless
both parties are honest, which makes the problem trivial) and then one has to use more
elaborate and time-consuming methods to achieve security. In this paper, we consider
the conceptually more difficult two-party case.

There are three basic scenarios depending on how the feature vectors are divided
between parties: restricted and general vertical split and horizontal split. In the case of



restricted vertical split, the data is divided between Client and Server so that Client
possesses the label vector y and Server has the corresponding feature vectors xi. As
the vectors xi correspond to the real life objects, it is quite plausible that Client can
still classify the objects although the features xi are not known. This means that the
requirements are not too restrictive. In the case of general vertical split, Client and
Server possess different coefficient of feature vectors xi. The horizontal split means
that different parties own different feature vectors.

Data sharing model determines the complexity of different classification phases,
kernel matrix computation, prediction and training. Restricted vertical split is the sim-
plest case: in this case, the kernel matrix computation is trivial as Server owns all feature
vectors. In other cases, Client and Server must additionally use cryptographic methods
to share K so that neither of them learns nothing about K. This complicates also the
private training and prediction algorithms.

In the training phase, parties privately update similarly shared weight vector α.
Finally, parties use shared knowledge of α to securely predict labels, i.e., to privately
compute sign fw(x). Note that if the predicted labels leak and Server possesses the
corresponding vectors, then he can train a new approximate classifier and privacy is
compromised, however, corresponding countermeasures are out of our scope.

3 Cryptographic tools

In the current paper, we introduce three basic cryptographic techniques: homomorphic
encryption, secret sharing and secure circuit evaluation. Since all these techniques can
natively handle only integer inputs, classification algorithms must be discretized, i.e.,
fixed point arithmetics must be used instead of floating point calculations.

Notation For a distribution X , let x← X denote the assignment of x according to X .
We often identify sets with the uniform distributions on them, and algorithms with their
output distributions, assuming that the algorithm that outputs this distribution is clear
from the context or just straightforward to construct. Let k be the security parameter.
A function f(k) is negligible if f(k) = k−ω(1), i.e., if f(k) decreases asymptotically
faster than k−c for any c > 0. A function f(k) is poly(k) if f(k) has a polynomial
bound.

3.1 Formal security model

Let Πf denote a well-specified distributed algorithm (protocol) between Client and
Server for computing the functionality f = (f1, f2). Let % be Client’s private input
and σ Server’s private input. Intuitively, the protocol Πf preserves privacy if Client
learns nothing but f1(%, σ), and Server learns nothing but f2(%, σ). This intuitive notion
is usually formalized by using the non-uniform polynomial security model [Gol04, p.
620–624, 626–631]. A protocol is private if any probabilistic polynomial-time honest-
but-curious adversary (that follows the protocol) can succeed in obtaining any addi-
tional information with a negligible probability in security parameter k (e.g., the key



length). That means that in this case, one can choose a sufficiently small security pa-
rameter k, such that the protocol is still efficient but the adversarial success probability
is reasonably small, say 2−80. See Appendix A for further references.

Cryptographic security proofs are often very technical. The next (sequential) com-
position property allows to simplify security proofs and omit unnecessary details. Let
Πg|f denote a sequential protocol for computing functionality g, where parties can ac-
cess a trusted third party TTP that computes functionality f . In other words, parties
can send their arguments to the incorruptible TTP that privately replies with the an-
swers f1 and f2. Now, let Πf |g ◦ Πf denote the protocol, where parties execute Πg|f

but instead of TTP use Πf to compute f . Then the following sequential composition
theorem [Gol04, p. 637] holds.

Composition Theorem 1 Let protocols Πg|f and Πf be a private in the semi-honest
model. Then the combined protocol Πg = Πf |g ◦ Πf is also private in the semi-honest
model.

If the protocol Πg|f contains many invocations of f , then all of them can be safely
replaced by an invocation of Πf , provided that TTP always computes a single value of
f . That is, we cannot run two instances of Πf in parallel since otherwise the composi-
tion theorem might not hold.

Now, we can formally specify security goals for private classification. In the matrix
evaluation and training phase, Client and Server must learn nothing new, i.e., fi = ⊥. In
the prediction phase, Client must learn only the predicted label f1 = fα(x) and Server
must learn nothing.

3.2 Homomorphic encryption

A public-key cryptosystem is a triple Π = (G,E,D), where the key generation algo-
rithm G with input 1k returns a secret key sk and a public key pk corresponding to the
security parameter k, E is the encryption algorithm, and D is the decryption algorithm.
For a fixed secret key sk, let P and C denote the plaintext and ciphertext space. Then
encryption with key pk implements a function Epk : P ×R → C, whereR denotes the
randomness space used by the encryption algorithm. For the sake of brevity, we denote
Epk(x) := Epk(x; r) for a uniformly chosen r ← R. It is required that for all valid sk,
x ∈ P and r ∈ R, Dsk(Epk(x; r)) = x.

Security of a cryptosystem is defined as follows. Consider two experiments EXP0

and EXP1. In experiment EXPi, i ∈ {0, 1}, G(1k) is first executed to generate a new
key pair (sk, pk). Then an adversary A, given pk, computes two messages x0, x1 ∈ P .
Next, A receives Epk(xi). A cryptosystem is IND-CPA secure, if for any polynomial-
time non-uniform algorithm A, the next difference is negligible:

Adv(A) =
∣∣Pr

[
A = 1

∣∣EXP0

]
− Pr

[
A = 1

∣∣EXP1

]∣∣ .

Here, the probability is taken over the random choices of G, E and A. The next straight-
forward result allows to simplify some of the following security proofs.



Fact 1 Let Π be an IND-CPA secure cryptosystem. Assume Server is a polynomial-
time non-uniform algorithm. If during a protocol execution, Server sees only pk and
Epk(xi)

poly(k)
i=1 then Server learns no new information.

A cryptosystem is (additively) homomorphic if for all valid key pairs (sk, pk), mes-
sages x1, x2 ∈ P and random nonces r1, r2 ∈ R,

Epk(x1; r1) · Epk(x2; r2) = Epk(x1 + x2; r1 ◦ r2) ,

where + is a group operation in P = ZN , for a large integer N , and ◦ is such that
R = r ◦ R = R ◦ r for any r (this enables rerandomization of ciphertexts). Several
homomorphic cryptosystems (e.g., [DJ01,Pai99]) are proven to be IND-CPA secure
under reasonable complexity assumptions. For such cryptosystems, we can compute on
ciphertexts by using the following three identities:

Epk(x) · Epk(y) = Epk(x + y mod N) ∀x, y ∈ P ,

Epk(x)y = Epk(x · y mod N) ∀x ∈ P,∀y ∈ Z ,

Epk(x; r) · Epk(0) = Epk(x) ∀x ∈ P,∀r ∈ R .

We need a two-party version of such cryptosystems, where the secret key is divided into
two subkeys sk1 and sk2, such that there is a symmetric decryption algorithm D with

Dsk1(Dsk2(Epk(m))) = Dsk2(Dsk1(Epk(m))) = m ,

but where the knowledge of a single key ski does not help to distinguish between
Epk(m0) and Epk(m1). Such two-party homomorphic cryptosystems were proposed
by Damgård and Jurik [DJ01]. In the semi-honest case, key-generation becomes more
complicated, encryption remains unaltered and decryption becomes only twice more
resource-consuming compared to the original cryptosystem.

3.3 Secret sharing and share conversion

Algorithms 1 and 2 contain variables that leak information about data points. Therefore,
neither Client or Server must learn the values of these variables, however, together they
must be able to manipulate with them. We use additive and multiplicative sharing for
such variables. Let N be a modulus. If (s1, s2) are chosen uniformly from the set{

(s1, s2) ∈ Z2
N : s1 + s2 = x mod N

}
then the knowledge of si reveals nothing about x, as si has uniform distribution. We
call it the additive sharing of x. One can similarly define multiplicative sharing for
invertible elements Z∗

N = {a ∈ ZN : a · b = 1 mod N} by using the set{
(s1, s2) ∈ (Z∗

N )2 : s1 · s2 = x mod N
}

.



3.4 Conditional oblivious transfer

To efficiently implement all operations needed for private classification, we have to rely
on the generic method called secure circuit evaluation. Secure circuit evaluation has
evolved dramatically from early proposals by Yao [Yao82,Yao86] to the modern and
practical approaches [BMR90,NPS99]. We next briefly describe a two-party protocol
popularized by Naor, Pinkas and Sumner [NPS99], that is based on the multi-party
solution of [BMR90]. The solution itself can be viewed as a generalization of the con-
ditional oblivious transfer (COT) protocol [COR99].

We specify the conditional oblivious transfer protocol by a public predicate π, that
can be say the “greater than” (GT) predicate). Client has an input % and Server’s input
is a triple (σ, r0, r1). At the end of the protocol, Client learns r0 if π(%, σ) = 0. Oth-
erwise, Client learns r1. Server learns nothing. (This generalizes the original definition
of [COR99].) If Sender sets r0 = −s2 mod N and r1 = 1− s2 mod N for random
s2 ∈ ZN , and Client stores the output of COT as s1 then they have additively shared
s1+s2 = π(%, σ) mod N . As any function can be computed bit by bit, secure function
evaluation can be based on COT.

In 1-out-of-2 oblivious transfer (OT), Server holds a two-element database (r0, r1)
and Client holds an index %. At the end of the protocol, Client learns r% if % ∈ {0, 1}
and nothing otherwise. Server learns nothing. This can be seen as a special case of
COT. The protocol must be secure even if Client is malicious (deviates arbitrarily from
the protocol). For efficiency reasons, the OT protocol must remain secure even if n1

instances of it are run in parallel and still have low amortized complexity, e.g. like the
protocols based on homomorphic encryption [AIR01,Lip05,LL05].

A COT protocol, based on the circuit evaluation protocol of [NPS99], is depicted by
Protocol 1. We omit precise implementation details, as these are completely described
and analyzed in [NPS99]; the protocol has even a freeware Java implementation Fair-
play [MNPS04a,MNPS04b]. The full COT protocol has two rounds and is private in
semi-honest model, given that the used pseudorandom function and the used OT proto-
col are secure. Recent extensions [Lin01,KO04] to this protocol provide security against
malicious participants, though at the cost of performance degradation. We emphasize
that the malicious model is out of our scope.

Protocol 1 Two round COT protocol for the predicate π

Client’s Input: n1-bit string %.
Server’s Input: n2-bit string σ and r0, r1 ∈ {0, 1}m.
Let Cπ be a circuit for π : {0, 1}n1 ×{0, 1}n2 → {0, 1} and f : {0, 1}k−1×{0, 1} → {0, 1}k
be a pseudorandom function.

1. Server sends a special garbled circuit E(Cπ) to Client.
2. Client makes n1 OT calls to get inputs for E(Cπ).
3. Client emulates computations in E(Cπ) and obtains:

a) k-bit string r0 if π(µ, σ) = 0,
b) k-bit string r1 if π(µ, σ) = 1.



The following facts follow from the construction of [NPS99]. (Note that we do not
need unary gates, since they can be combined into binary or ternary gates.)

Fact 2 Let the circuit Cπ consist of `2 binary or duplication gates and `3 ternary gates.
Then the size of garbled circuit E(Cπ) is (4`2 +8`3 +4 log2(

m
k ))k bits. Computational

complexity is linear in the size of circuit: both parties evaluate f at most (4`2 + 8`3 +
4 log2(

m
k ))k times and carry out a parallel execution of n1 1-out-of-2 OT protocols.

Fact 3 If the function f is chosen from a family of pseudorandom functions that are se-
cure against non-uniform adversaries, and ΠOT is a secure oblivious transfer protocol
then Protocol 1 is private in the semi-honest model.

Fact 4 Several instances of Protocol 1 can be run in parallel without loosing privacy
in the semi-honest model.

Essentially, Facts 2 and 3 assure that Protocol 1 can be used to efficiently implement
any function with simple structure (i.e., small circuit complexity), since there exist ef-
ficient and reasonably secure candidates for 80-bit pseudorandom functions, and thou-
sands of OT protocols can be executed in parallel per second (at least, using dedicated
hardware). Therefore, private comparison between n-bit integers is efficient, as latter
can be done with n ternary gates. The main bottleneck is the OT protocol and therefore
we will consider several techniques how to decrease the bit-size of inputs of the OT
protocol.

4 Private kernel sharing

Kernel methods are typically applied to continuous data, and therefore most kernels
operate over the real domain, except the discrete kernels that are used for text classifi-
cation. As cryptographic methods natively support discrete ranges, we have to embed
kernel values in ZN = {−L, . . . , L}, where the odd integer N = 2L + 1 is sufficiently
large to prevent overflows in computations.

If data points contain non-integer values then we need to map data vectors into
the discrete domain. Let toint : Rm → Zm be the corresponding embedding that say
multiplies its arguments by some large constant and then rounds them to the nearest
integer value. Let κ̂ : Zm × Zm → ZN be the corresponding kernel approximation.
We say that kernel approximation is δ-precise with respect to scaling factor c > 0 and
domain X , if for all x,y ∈ X ,

|c · κ̂(toint(x), toint(y))− κ(x,y)| ≤ δ .

Obviously, approximation errors can change classification results. On the other hand,
numerical approximation errors emerge also in floating-point implementations. More-
over, it is reasonable to assume that if approximation is sufficiently precise then mod-
eling error, made by the choice of kernel, has much larger impact on the classifica-
tion errors. We assume that 64-bit precision, with δ ≈ 2−64, is sufficient, as it cor-
responds roughly to float precision provided that the matrix entries are in the range
(1.52 · 10−5, 65536). Such precision is achievable with a 64 bit modulus N .



In the case of restricted vertical split, Server owns all feature vectors xi and thus
can locally compute K. In the other two cases, Client and Server have to privately share
K. We consider only polynomial kernels; private evaluation of more complex kernels
is an independent research topic. Evaluation of the scalar product kernel κ(xi,xj) =
〈xi,xj〉, widely used in the text classification, reduces to private evaluation of shared
scalar product for which several solutions are known [GLLM04,WY04].

Higher-degree polynomial kernels κ(xi,xj) = 〈xi,xj〉d can be evaluated by using
a share conversion algorithm, as depicted by Protocol 2. Here, we assume that ZN is the
message space of the underlying additively homomorphic cryptosystem and that Client
has a secret key sk. Alternatively, Client and Server can use two-party cryptosystem, as
described in Section 3.2, then Server must help Client to decrypt (similarly to Prot. 4
and 7).

Protocol 2 Evaluation of degree-d polynomial kernels
Client’s Input: a vector x ∈ Zm

N .
Server’s Input: a vector y ∈ Zm

N .
Output: Additive shares t1 + t2 = 〈x, y〉d mod N .
Client knows (sk, pk)← G(1k) and Server knows pk.

1. Client and Server privately share s1 · s2 = 〈x, y〉 mod N :
a) Client sends ci ← Epk(xi), i ∈ {1, . . . , m}.
b) Server sends c′ ←

`Qm
i=1 cyi

i

´s−1
2 · Epk(0) for s2 ← Z∗

N .

c) Client sets s1 ← Dsk(c
′).

2. Client and Server convert shares t1 + t2 = sd
1 · sd

2 mod N :
a) Client sends e← Epk(s

d
1) to Server.

b) Server replies with e′ ← esd
2 · Epk(−t2), where t2 ← ZN .

c) Client sets t1 ← Dsk(e
′).

Theorem 1. Assume that for all x,y ∈ X , 〈x,y〉 ∈ Z∗
N and that the underlying homo-

morphic cryptosystem is IND-CPA secure. Then Protocol 2 is a correct, computationally
Client-private and perfectly Server-private kernel evaluation protocol.

Proof. Correctness: First, note since 2 |Z∗
N | ≥ |ZN | and computing the greatest com-

mon divisor can be done efficiently then one can efficiently sample from Z∗
N with-

out knowing the factorization of N . Now, the homomorphic properties of the cryp-
tosystem assure that c′ = Epk

(
s−1
2 ·

∑m
i=1 xiyi

)
, and thus Client and Server first ob-

tain uniformly random multiplicative shares (s1, s2), s.t. s1 · s2 = 〈x,y〉. Similarly
e′ = Epk(sd

1 · sd
2 − t2), and thus in Step 2, Client and Server obtain uniformly random

shares (t1, t2) s.t. t1 + t2 = 〈x,y〉d mod N .
Client-privacy follows straightforwardly from Fact 1, since Server sees only m + 1

ciphertexts.



Server-privacy: Server’s replies are encryptions of either multiplicative or additive
shares. Therefore, even a computationally unbounded Client gains no additional infor-
mation except s2 ∈ Z∗

N and t2 ∈ ZN . ut

The assumption that 〈x,y〉 and N are coprime is essential for the privacy of Client.
Namely, if 〈x,y〉 6∈ Z∗

N then also s1 6∈ Z∗
N . As the nontrivial factors of N are at least

512-bit integers for cryptosystems [Pai99,DJ01], then 〈x,y〉 /∈ Z∗
N ⇒ 〈x,y〉 = 0 for

all “reasonable” input ranges X . For many interesting cases, x1, . . . , xm ≥ 0 for all
x ∈ X and a different polynomial kernel κ(xi,xj) = (〈xi,xj〉 + 1)d can be used
instead.

What if we cannot assume that 〈x,y〉 ∈ Z∗
N ? One possible solution is as follows.

One first computes additive shares of 〈x,y〉 modulo a small modulus N , and then uses
circuit evaluation to map additive shares of 0 to shares of special value ζ and then
resumes to Protocol 2. Finally, one uses circuit evaluation again to map shares of ζd

back to shares of 0. This is quite resource-consuming and hence it is more advantageous,
whenever it is possible, to use spaces X for which 〈x,y〉 ∈ Z∗

N .

5 Private prediction

Private prediction has several interesting applications even if the classifier is
directly provided by Client, e.g., in finding potential patients without reveal-
ing private medical data. Then Client has to send encrypted weight vector
Epk(α) = (Epk(α1), . . . ,Epk(αm)) to Server before the protocol. For brevity, de-
note κ := (κ(x1,x), . . . , κ(xn,x)), where κ has integer coordinates. Then fα(x) =∑n

j=1 αjκj .
A private prediction protocol that works in the case of restricted vertical split is

depicted by Protocol 3. There, the parties first privately compute the additive shares of
a scalar product and then use circuit evaluation to determine the shares of class label.
(Note that Prot. 3 and 4 can be modified so that Client learns the predicted label.)

Protocol 3 Private prediction for restricted split
Common parameters: Π with plaintext space ZN .
Client’s input: secret key sk.
Server’s input: public key pk, feature vectors x, x1, . . . , xn,

vector κ, and encrypted weight vector
Epk(α).

Output: Client and Server share a predicted class label.

1. Server sends c ← Epk(−s2) ·
Qn

j=1 Epk(αj)
κj , for s2 ← ZN . Client sets s1 ← Dsk(c). //

I.e., they share s1 + s2 =
P

αjκj .
2. Client and Server use circuit evaluation to share t1 + t2 = sign(s1 + s2) mod N .



Theorem 2. Assume that Π is an IND-CPA secure additively homomorphic cryptosys-
tem and that the circuit evaluation step is private. Then Protocol 3 is correct and pri-
vate.

Proof. Correctness is straightforward. Privacy follows from the composition theorem,
as Step 1 privately implements additive sharing of s1 + s2 = fα(x) mod N .

The general case (see Prot. 4) is slightly more complicated, since Client and Server have
to first share the kernel vector κ, and then to repeat the same steps as in Prot. 3.

Protocol 4 Private prediction protocol in general case
Common inputs: two-party Π with plaintext space ZN ,

public key pk, encrypted weight vector
Epk(α).

Input data: Client has some coordinates of x, x1, . . . , xn,
Server has the remaining coordinates.

Other private inputs: Client knows a secret subkey sk1,
Server knows a secret subkey sk2.

Output: Client and Server share a predicted class label.

Client and Server jointly do:
1. Share a1 + a2 = κ mod N .
2. Share s1 + s2 = fα(x) mod N .
3. Use circuit evaluation to share t1 + t2 = sign(s1 + s2) mod N .

Step 1 of Prot. 4 can be implemented by using the techniques from Sect. 4. Im-
portantly, one of the subkeys of a two-party cryptosystem reveals nothing about sk;
for example, in the case of the two-party versions of cryptosystems [Pai99,DJ01] (see
Sect. 3.2), ski are additive shares of sk w.r.t. a properly chosen modulus, and thus nei-
ther Client nor Server can decrypt Epk(α). Therefore, Client and Server can locally
compute and then exchange the encryptions c1 and c2 of randomized shares

ci = Epk

( m∑
j=1

aijαj − ri

)
= Epk(−ri) ·

m∏
j=1

Epk(αj)aij ,

where ri ← ZN . More precisely, Client sends d1 ← Dsk1(c1) and Server replies with
d2 ← Dsk2(c2). Next, Client sets s1 ← Dsk1(d2) + r1 mod N and Server sets s2 ←
Dsk2(d1) + r2 mod N . Then, the sharing of fα(x) is complete since

s1 + s2 =
m∑

j=1

a1jαj +
m∑

j=1

a2jαj =
m∑

j=1

κjαj mod N .

Since c1 and c2 are random encryptions of random values, then the described protocol
for sharing fα(x) is private, provided that Π is a secure two-party IND-CPA cryptosys-
tem.



Theorem 3. Assume that Steps 1, 2 and 3 are computed correctly and privately and
that Π is an IND-CPA secure two-party additively homomorphic cryptosystem. Then
Protocol 4 is correct and private.

Proof. Correctness is straightforward. Privacy follows from the composition theorem,
since Epk(α) reveals nothing to either party.

5.1 Circuit evaluation: targeted optimizations

Protocol 3 and 4 rely on circuit evaluation. We can use Protocol 1 to evaluate say the
GT predicate, but additional share conversion can significantly increase the efficiency.
For example, to guarantee the security of homomorphic encryption, N must usually be
at least a 1024-bit integer. On the other hand, if we use 64-bit precision for κ and α
then the shared values fit roughly into 140 bits. Hence, it is advantageous to convert
random shares s1 + s2 = x mod N to random shares r1 + r2 = x mod M where M
is of proper size, say M ≈ 2140.

For clarity, Protocol 5 is depicted for the representation ZN = {0, . . . , N − 1}. The
same result applies for the signed representation ZN = {−L, . . . , L} where N = 2L+
1. If M < N and in the signed representation−M

4 < x < M
4 , then 0 ≤

⌊
M
4

⌋
+x < M

2 ,
and the parties can directly apply Protocol 5 and then subtract the public value 2 ·

⌊
M
2

⌋
from the result. Similar techniques can be used for M > N .

Protocol 5 Share conversion algorithm.
Input: Additive shares s1 + s2 = x mod N , N is odd.
Output: Additive shares r1 + r2 = 2x mod M .
We assume ZN = {0, . . . , N − 1}, 0 ≤ x < M

2
and M < N .

1. Parties locally compute ti ← 2si mod N, i = {1, 2}.
2. Server prepares an OT-table (m0, m1) for r2 ← ZM :

a) If t2 is even then
m0 ← t2 − r2 mod M and m1 ← t2 − r2 −N mod M .

b) If t2 is odd then
m0 ← t2 − r2 −N mod M and m1 ← t2 − r2 mod M .

3. Client uses a 1-out-of-2 OT protocol to set r1 ← mb + t1 where b denotes the parity of t1.

Theorem 4. Protocol 5 is private and correct, provided that the oblivious transfer pro-
tocol is private and correct, N is odd, 0 ≤ x < M

2 and M < N .

Proof. Correctness: if 2x = t1 + t2−N then the parities of the shares ti differ and thus
r1 + r2 = t1 + t2 − N = 2x mod M . Otherwise, t1 + t2 = 2x and the correctness
follows similarly. Security: if the oblivious transfer protocol is ideal then Client sees
a random mi ∈ ZM and thus Client’s view is perfectly simulatable. As the oblivious
transfer protocol is assumed to be secure, the security follows from the composition
theorem.



If r1 + r2 = 2x mod 2` then the sign of x is determined by the highest bit of
the sum and latter can be evaluated using ` ternary gates. Therefore, Step 2 can be
implemented with ` ternary gates for Protocol 3 and 4 and the size of the garbled circuit
is roughlyO(`). Moreover, we need only `+1 invocations of OT counting also the one
needed for share conversation. To summarize, the communicational and computational
costs decrease at least by a factor of 10.

5.2 Aggregated statistics and KKT violators

Note that if Client and Server locally add together shares for different feature vec-
tors, they can straightforwardly count the number of positive examples. Recall that the
class labels are ±1, and that the sum of shares reveals difference between positive and
negative examples. Moreover, Fact 4 allows to parallelize all substeps. The resulting
protocol takes four rounds (i.e., all protocol messages can be combined into four larger
ones).

One can straightforwardly modify Protocol 3 and 4 so that the parties obtain the
shares t1 + t2 = 0 mod N , if predicted value corresponds to the true label y, and 1,
otherwise. Then the sum of the shares counts the number of misclassified data points
and we can do privately estimate training and validation error or even do private cross-
validation.

Finally, one can also extend Protocol 3 and 4 to count the number of Karush-Kuhn-
Tucker violators. Recall that a feature vector xi is a KKT violator if one of the next
three conditions does not hold:

αi = 0⇔ fα(xi)yi ≥ 1
0 < αi < C ⇔ fα(xi)yi = 1

αi = C ⇔ fα(xi)yi ≤ 1

and one can build a similar circuit for detecting the KKT violators. Usually people use
the number of the KKT violators as an indicator for stopping: algorithm has converged
if there are no KKT violators. Alternatively, one can stop if the number of the KKT vio-
lators is below some threshold or has not significantly changed during several iterations.
However, private counting of the KKT violators or training error is resource consum-
ing, and should be done after several iterations of the Kernel Adatron or Perceptron
algorithm.

6 Private training algorithms

Private training algorithms have the same structure as private prediction algorithms.
Whenever possible, we use homomorphic properties of the cryptosystem to compute
shares directly. If this is not possible, we use circuit evaluation to circumvent the prob-
lem. Protocol 6 and 7, presented next, are private in the sense that Client and Server
learn nothing except the number of iterations. The latter is unavoidable in practice,
since the amount of computations always provides an upper bound to the number of it-
erations. One can achieve better privacy by doing extra rounds but this would seriously
affect the efficiency.



For the ease of presentation, Protocol 6 is formulated for the restricted vertical split
and Protocol 7 is formulated for the general case. It is straightforward to modify the
protocols to cover the remaining cases.

Protocol 6 Private Kernel Perceptron
Common parameters: Π with plaintext space ZN . Client’s input: secret key sk and labels y.
Server’s input: public key pk and vectors x1, . . . , xn.
Server’s Output: An encrypted weight vector c = Epk(α).
Allowed side information: the number of iterations.

1. Server sets c = Epk(0).
2. Client and Server execute the next cycle:

for i = 1 to n do
a) They compute shares s1 + s2 = fα(xi) mod N.
b) They use circuit evaluation to compute shares

t1 + t2 =

(
yi, if yi(s1 + s2) ≤ 0

0, if yi(s1 + s2) > 0
mod N .

c) Client sends d = Epk(t1), Server sets ci ← cid · Epk(t2).
end for

3. If not converged then repeat Step 2.

Theorem 5. Protocol 6 is a correct and private implementation of the kernel Percep-
tron algorithm (Algorithm 1) provided that (1) the cryptosystem is additively homomor-
phic and IND-CPA secure; (2) all substeps are implemented correctly and privately; (3)
the constraints |fα(xi)| < N

2 and |αi| < N
2 always hold.

Proof. Correctness is straightforward, since the substeps 2a)–2c) implement Step 4 in
Algorithm 1 and values of fα(xi) and αi are in ZN . Privacy follows, as either Server
sees encrypted values or both parties obtain random shares.

In the Kernel Adatron algorithm, it is advantageous to define a coefficient vector
β = (αiyi)n

i=1. Then the predictor has a new form fβ(xi) =
∑n

i=1 kijβi and there
is no need to use labels y directly in the computation. Note that the update Step 3
has a form βi ← βi + 1 − yifβ(xi) and correction Steps 4-5 in Algorithm 2 imply
0 ≤ yiβi ≤ C.

Theorem 6. Protocol 7 is a correct and private implementation of the Kernel Adatron
algorithm (Algorithm 2) provided that (1) the cryptosystem is additively homomorphic
and IND-CPA secure; (2) all substeps are implemented correctly and privately; (3)
constraints |βi + 1− fβ(xi)| < N

2 and |βi| ≤ N
2 always hold.

Proof. Analogous to Theorem 5 and thus omitted.

Exact implementation of Substeps 2a) and 2b) is completely analogous to treatment
given in Section 5, and thus we omit the details. Still, there is one important detail:



Protocol 7 Privacy-preserving Kernel Adatron
Common inputs: two-party Π with plaintext space ZN .
Input data: Client has some coordinates of x, x1, . . . , xn, Server has the remaining coordinates.
Other private inputs: Client knows a secret subkey sk1 and Server knows a secret subkey sk2.
Both know pk.
Server’s Output: An encrypted weight vector c = Epk(β).
Allowed side information: the number of iterations.

1. Server sets c = Epk(0) and Client sets c = Epk((0)).
2. Client and Server execute next cycle:

for i = 1 to n do
a) They compute shares s1 + s2 = βi + 1− fβ(xi) mod N .
b) They use circuit evaluation to compute shares of βi

t1 + t2 =

8><>:
0, if yi(s1 + s2) < 0

yiC, if yi(s1 + s2) > C

s1 + s2, otherwise

mod N .

c) Client sends Epk(t1), Server replies with Epk(t1).
Both parties set ci ← Epk(t1)Epk(t2).

end for
3. If not converged then repeat Step 2.

Substep 2b) can be implemented with 2` + 1 ternary gates and the size of the garbled
circuit is roughly O(2`) for both algorithms and parties have to do ` + 1 invocations of
OT counting also the one needed for share conversation.

Batch processing Both algorithms are instances of stochastic gradient descent method,
as the update changes a single coordinate of α. Alternatively, one can use a full gradient
descent step instead, i.e., compute all values fα(xi) simultaneously and the update all
coordinates of α also simultaneously. In general, such batch updates tend to stabilize
gradient descent methods but they also decrease the number of rounds. Fact 4 allows
to execute Substeps 2a) and 2b) parallel for all i = 1, . . . , n and the number of rounds
decreases from 6n to 6 per iteration.

7 Concluding remarks

In this paper, we have described cryptographically secure protocols for Kernel Percep-
tron and kernelized Support Vector Machines. We have also provided cryptographically
secure protocols for evaluating polynomial kernels, for kernelized linear classification
and for aggregation of encrypted classification results. However, there are still many
open problems in private SVM classification and learning.

An interesting question is how to securely hide the convergence speed of the Kernel
Perceptron and the Kernel Adatron algorithms. Recall that our private implementations
did not leak anything but the number of rounds (and everything that can be computed
from this number). Analyzing the convergence speed of these algorithms seems to be



quite difficult. For example, although Novikoff’s theorem gives a bound for the number
of iterations, the computation of the bound requires private information about the data:
namely, the margin of the data. To achieve complete privacy, one might instead need to
implement a private polynomial-time convex programming algorithm, such as ellipsoid
or interior point methods.

Another interesting and practical question is whether there are any iterative private
linear classification methods that need no circuit evaluation. The Widrow-Hoff classifi-
cation algorithm is a good candidate, as it contains only addition and multiplication op-
erations. Unfortunately, there one has to also round the values, so it is not clear whether
one can escape relatively costly circuit evaluation.

The proposed classification and classifier learning protocols are not limited to data
represented as feature vectors, but can be used on any data with secure kernel evalua-
tion. Hence, another relevant issue is private computation of encrypted kernel matrices
for say kernels for structured data. Real-life data analysis using such kernels is com-
putationally demanding even in the non-private case, but the corresponding techniques
are developed fast, and kernels for structured data are becoming increasingly common
in various applications.
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A Polynomial security model

We formalize the intuitive notion in the ideal vs real world paradigm [Gol04]. All ad-
versaries are assumed to be polynomial-size non-uniform algorithms (i.e., circuit fam-
ilies). As we consider security against honest-but-curious adversaries, the ideal world
model is simple: Client learns (%, f1(%, σ)) and Server learns (σ, f2(%, σ)). Denote by
A(σ) a probabilistic honest-but-curious Server with an input σ that interacts with hon-
est Server. Let Sim be a non-uniform algorithm that given (σ, f2(%, σ)) tries to mimic
output of A(σ). Then a distinguisher B achieves advantage

Adv(B) = max
%,σ
|Pr [B = 1|EXP1]− Pr [B = 1|EXP0]|

where in experiment EXP1 the output of A(σ) is given as input of B and in EXP0

the output of Sim(σ, f2(%, σ)) is used instead. The protocol is Client-private, if for all
polynomial-time non-uniform adversaries A there exist a non-uniform polynomial-time
simulator SimA such that all polynomial-time non-uniform distinguishers B achieve
negligible advantage. More precisely, there are actually a family of protocol implemen-
tations indexed by security parameter k and all working times must be polynomial in k
and the advantage Adv(B) = kω(1). Server-privacy is defined dually.

Note that if there is no desired output, i.e., f1(%, σ) = ⊥, then Client-privacy has
equivalent formulation: for any two inputs %0 and %1, the honest-but-curious Server A
cannot distinguish the inputs, i.e.,

max
%,σ0,σ1

|Pr [A = 1|EXP0]− Pr [A = 1|EXP1]|

is negligible in k, where in EXPi Client’s input is %i.


