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Simple M CD-Graphs on 28 Vertices

Shi Yongbing
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Abstract Let S, be the set of simple graphs on = vertices in which no two cycles
have the same length. A graph G is called a simple MCD-graph if there exists no graph
G’ in S, with |[E(G ") |>|E(G)|. A simple MCD-graph G is called a 2-connected sim-
ple MCD-graph if G is a 2-connected graph. In this paper we prove that there does not
exist a 2-connected simple MCD-graph on 28 vertices containing a subgraph homeomor-
phic to K,. Consequently the following theorem stated in Discrete Math. 126 (1994)
325~ 338 is flawless: “There exists a 2-connected simple MCD-graph on » vertices
containing a subgraph homeomorphic to K, if and only if n € {10, 11, 14, i5, 18, 2!,
22}. ”
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1 Intro:{uctir;n

Let S, b« the set of simple graphs on = vertices in which no two cycles have the same length.
A graph G in S, is called a simple MCD-graph if there exists no graph G’ in §, with |E(G’) | >
|E(G)|. A simple MCD-graph G is called a 2-connected simple MCD-graph if G is a 2-connected
graph.

In this papsr we assume that G is a 2-connected simple graph containing exactly one longest
cycle denoted by €, and that all vertices in V(G)-V (C) and all edges in E(G)-E(C) are drawn
inside the bounded region of €. The paths with two and only two end vertices lying on C are
called bridges.

Two bridges b; and b; are said to be skew if they have no common vertex and they cross each
other.

Two bridges are said to be parallel if they are internally disjoint and not skew.

Two bridges b, and b, are said to be independent if there exists a bridge b such that b,, b and
b, are parallel, and b; and b, are separated by b (though they may have end vertices in common).

A family of parallel bridges is said to be dependent if no two bridges of it are independent.

A family of parallel bridges (at least three bridges) is said to be independent if no three
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bridges of it are dependent.

A Dbridge b is said to be a skew bridge if there exists a bridge b’ such that b and b’ are skew.

A cycle C' is said to be a skew cycle if C/ contains two bridges which are skew.

If C' is not a skew cycle of G, then the plane is partitioned into three disjoint sets called the
interior, exterior and itself of C /. We shall express the interior and exterior of C ‘respectively,
by int’ and extC’. If a bridge b lies in intC’, then we write b € intC’.

For any two vertices u and v of C, let C[u, v] denote the (u, v)-path which follows the
clockwise orientation of C; similarly we shall use the symbol € (u, ») to denote the path C[u,
v]—{u, v}. Let b= (v,, v;) be a bridge of G and let ¢'=bUC[v,, v,], C"=bUC[vss v,], k=
min V€|, (V@M. 1t (Vv (€¢')|# |V (C") ], then the k-cycle in {C', C"} is said to be a side
crele of G. If €, is a cycle in {C', C"}, then the other cycle in {C’, C"} is denoted by C,.

Let m (G) denote the number of cycles in a graph G. For all other notations and terminolo-
gies not explained here we refer to [1~4].

The main result of this paper is

Main Theorem If G is a 2-connected simple MCD-graph on 28 vertices, then G does not
contain a subgraph homeomorphic to K.

2 Some lemmas
in the coming discussion, we always denote by |7/ | the Jength of €’ (where €’ is a cycle or

a path).

"y

uy 1

u2

Fig. 1 Fig. 2 Fig. 3

Lemma 1 Let G be a 2-connected simple graph on 28 vertices such that (1) |¢| =27;
(2) there exists exactly one vertex u€ intC such that N (u) ={v;, v3, v3}; (3) G-u has exactly
three bridges u,w,, u;w, and uzw; which are contained in intC’ (where C' =vzuv, UC[v,, v3]);
(4) the four bridges vyuvy, u;w,s uw, and uswg are independent ( though they may have end
vertices in common) (See Fig. 1. ). Then G contains two cycles having the same length.

Proof Clearly G has a subgraph homeomorphic to K,and |E(G)|— |V (G)| =5. By
Proposition 3. 1 in [3], m (G)>>25. Suppose that G contains no two cycles having the same
length, then by the first condition of the lemma, G must contain exactly one k-cycle for each in-

teger 3<Ck<<27. Let p =27.
Let Cyy Cyy C3, C4, Csand Cg be the cycles vluv3UC|:v3, 01]» vzuDIUC[vl, vz], vZuUSUC
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[vss v2]s uswsUC[wss usls ugw,UC[ws, uy] and uyw, UC[w,, u,], respectively(See Fig. 1).
. Clearly z,2>2 and z,222. Since |C,|#|C,|, we
may assume that z,<z,. Clearly z,< 3. For otherwise, |C;|<{p—3 for:€ {1, 2}, and then we

Leta:1= '0(1)3’ U])I and xg= |C(?)11 vz)

can find [C,|=3 and |C;| =4, respectively, by considering the (p— 1)-cycle and the (p—2)-
cycle of G, and hence G has two 3-cycles (in this case u,=ugor w,=w3,), a contradiction. There
are two possible cases only.

Case 1 z,=2. Clearly |C,|=p—1. If 2,226, then |C,|<<p—5. In this case we can find
|Cy] =4 and |C5| =86, respectively, by considering the (p —2)-cycle and the (p —4)-cycle of
G, and hence G has two 4-cycles, a contradiction. If z,==3, then C,=p—2. In this case we can
find |C,|="5 by considering the (p —3)-cycle of G, and hence G has two (p —5)-cycles, a con-
tradiction. If z,=4, then |C;|=p—3. In this case we can find |C,| =4 by considering the (p
—2)-cycle of G, and hence G has two (p —3)-cycles, a contradiction. Therefore z,=05. In this
case |Cy|=p—4. We can find |C,| =4 by considering (p-2)-cycle of G. It is easily seen that
G—{uw,, uw,) has one (p —i)-cycle for i=1, 2, 3, 4, 6, 7, 9 but no (p —5)-cycle.

Furthermore we can find |Cs| =7 by considering the (p —5)-cycle, and hence G has two
5-cycles, a contradiction.

Case 2 z,=3. Clearly |C,|=p—2. If 2,226, then !C,|<p—5. In chis case we can find
[Ci|=3 and |C5|=86, respectively, by considering the {p —1)-cycle and ths (p--4)-cvcle, and
hence G has two 6-cycles, a contradiction. If z,="14, then |C,|=p—2- Ia this case we can find

€| =3 by considering the (p-—1)-cvcle , and hence & nas two (p — 3)-cycles, a contradic-

tion. Thorefore z,=5. In this case |C;|=p—4. We can find |C,| =3 by considering the (p —
1)-cycle. Clearly G —{uw,, usw,} has one (p —i)-cycle for i=1, 2, 3, 4, 5, 8, 9but no (p—
6)-cycle. Furtheremore we can find |Cs| =8 by considering the (p — 6)-cycle, and hence G has
two 8-cycles, again a contradiction. 0

In the coming discussion, we assume that B is the set of bridges of G, X is the set of skew
bridges of G. Let B'<B. If ' is an k-cycle containing at least one bridge such that every bridge
contained in C’ is an element of B, then we say that C’ is covered by B’ and we write kccC
(B").

Lemma 2 Let G be a 2-connected simple graph on 28 vertices such that (1) |C|=27;
(2) G has exactly one pair skew bridges (u, v) and (u', v') such that C is separated by the four
vertices u, u’, v, v/ into four paths C[u, u' ], C[u’, v], C[v, v'Jand C[»', u]; (3) G has ex-
actly five bridges; (4) the end vertices of the three bridges (u;, vy), (uz» v;), (uzs v3) liec on
C[v', u] and there exist four bridges in G such that they are independent ( though they may have
end vertices in common) (See Fig. 2). Then G contains two cycles having the same length.

Proof Clearly G has a subgraph homeomorphic to K, and j==|E(G)|— |V (@)]|=5, by
Proposition 3. 1 in [3], m (G)>>25. Suppose that G contains no two cycles having the same
length, then by the first condition of the lemma, G must contain exactly one k-cycle for each in-
teger 3Ck<C27. Let p=27.

Let C3 be the 3-cycle of G. Suppose that C;is not a side cycle. There are only two cases by
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considering the (p —1)-cycle of G.

Case 1 G has one side cycle of length 5 containing the unique bridge 5* of length 2. Sup-
pose that Cj contains b” (See Fig. 3). Then another bridge contained in C;and b* have the same
end vertices. Let b* =u,wv, and b’ =u,v,. Clearly b is not a skew bridge. Let C,=b'JC[v,,
uy]s Cs=b"UC[vys u,]. Clearly C;is a i-cycle for =4, 5, and C,is the (p —2)-cycle, Cjis the
(p —1)-cycle. It follows that the (p —3)-cycle must be a skew cycle containing two skew bridges
and containing no other bridges. Clearly another skew cycle containing two skew bridges and
containing no other bridges is the 7-cycle. Let C be the 6-cycle, then Cgis not a side cycle. Let
P=C[uz, u;JUu,»,UC[v,, v;,], then C; does not contain the path P. Let C'=C[u,, 2’ JUu'v'
Ucely, vy JUvu, and ¢"=0Clu,, u]UuvUC[v, v;]Uvu,, then C4=C’ or C¢=0C". We may
assume that Cs=C’. Then C[u, u’] must be a path of length 1. It follows that C" is the 9-cycle.
Let Cgis the 8-cycle. Clearly C¢ does not contain the path P. Thus Cg must be the side cycle C
[zs v]Uvu. In this case, C[u’, v/ JUv'u’ is the 11-cycle and u’v' UC[v', v, JUvyu, UC[uy» ]
UuvUcC [, v] is the 12-cycle. It follows that the 10-cycle must contain the path P, and hence
G has two cycles having the same length, a contradiction.

Therefore C3 does not contain b*. In this case there exists a subgraph G * @G such that G*
‘has one side cycle of length 3 and one side cycle of length 5. It follows thut G * has tvo (p* —
1)-cycles (where P * is the length of the longest cycle in G * ), a contradiction.

Case 2 @ has one skew cycls of length p — 1. In this case thiszre exists a subgraph G * @G
such that G * hes onc side cycle of length 3 and one pair skew bridges. It follows that G * has two
(P* —1)-cycles, again a coatradiction.

Similarly, we can find that the 4-cycle denoted by C,is a side cycle by considering the (p—
2)-cycle.

Let b3(2,) denote the bridge contained in C3(C,). Clearly b,& X. Let b,= (u3, v3), then b,
€ X. We assume that by= (u, v). ‘

Let B,={b3, b,}, then C(B,)={3, 4, p—1, p—2, p—3}. Two cases now arise, depend-
ing on whether the (p —4)-cycle C,_, is a skew cycle or not. - .

Case 1 C,_,is a skew cycle. We express by b; the other skew bridge. Let By= {bss by,
b7}. There are two possible subcases only.

Case 1.1 b;is the bridge of length 2. In this case C(B3)={3, 4, 9, 10, p—1, p—2, p
—3,p—4,p—5, p—6, p—7). Clearly the (p —8)-cycle is not a skew cycle, and hence G has
one 10-cycle which is a side cycle. a contradiction.

Case 1.2 b;is a bridge of length 1. In this case C(B3)=(3, 4, 7, 8, p—1, p—2, p—3,
p—4, p—5, p—6, p—T7}. Clearly the (p —8)-cycle denoted by C,_g is not a skew cycle. Let
by be a bridge contained in C,_4, then 5,_8 is clearly a side cycle. Let B={bs, by, by, byq).

Case 1. 2.1 b,€intC,_4 In this case by is a bridge of length 2. Thus C(B,)=C(Bs)U
{10, 12, p—8, p—9, p—12, p—13}. By considering the (p —.10)-cycle, it follows that G has
one 12-cycle which contains exactly one bridge of length 1, a contradiction.

Case 1.2.2 5,&intC,_;. In this case by, is a bridge of length 1. Thus C(B,)=C(Bs) U
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{5, 6, 9, 10, p—8, p—10}. Clearly the (p —9)-cycle denoted by C,_yis not a skew cycle, and
hence 6,_9 is a side cycle. Let by, be a bridge contained in C,_y. If ;& intC,_4, then G has two
(p—10)-cycles, a contradiction. Therefore b€ intC,._o. By considering the length of b;, is 1 or
2, it follows that G has two 7-cycles or two 9-cycles, a contradiction.

Case 2 (C,_,is not a skew cycle. Clearly 5,_4 is a side cycle. Let bg be a bridge contained in
C,-4 Clearly the length of any skew cycle is at least 9. Therefore b,€intC,_,, and hence bgis a
bridge of length 2. Let By={b3, b,, bg}. Then C(Bs)={3, 4, 6,8, p—1,p—2,p—3, p—
4, p—>5}. It is easy to see that the 5-cycle denoted by Cj is neither a skew cycle nor a side cycle.
~Thus Cs must be a cycle containing two bridges which are parallel. If Cscontains a skew bridge,
then G clearly has two 6-cycles, a contradiction. Therefore Cs must contain bg. Let b be a
bridge contained in Cgand b* #bg. Let B,={b3, b, bg, b*}. Then C(B)=CBHU{5, 7,9,
p—7, p—8}. Clearly the (p —6)-cycle is not a skew cycle. It follows that G has one side cycle
of length 8, which contains exactly one bridge of length 1, a contradiction. ]

Replacing by “|C | =28" the equality “|C | =27 relative to Lemma 2 results in the follow-
ing .

Lemma 3 (Omission)

" Proof By contradiction. Suppose that G contains no two ¢reles having the same length.
Then for each integer k € {3, 4, -, 28}, exczpi onz, G has exactly onz k-cycic. In this proof,
the k-cycle of G is denoted by C,. If C, is a siae cy:le, then thc yridge contained in C, is denoted
by ;. Let p = 25.

We first prove the following two facts.

Fact A Suppose B’ B is such that for some k(1<<k<{p/2—1), p—iE C(B’') for each
i€{1, 2, =, k—1} and p—k&C(B'), and G has C,_, and Ci4y. Then either B'=B or G has
brtor

Proof If B'5%B, then C,_, contains a bridge b & B'. .

Suppose that C,_, is a skew cycle. Consider two cases.

Case 1 C,_; contains at least three bridges. Let C’ be the cycle containing only the bridge
such that XZintC’. Then [C'|>]|C,_.| and thus G has two |C' |-cycles, which is false.

Case 2 C,_; contains only two skew bridges. In this case, there exists a subgraph G¢* =@
such that G* contains one side cycle of length k+2 and two skew bridges. Thus G has two (|V
(G@*) | —k)-cycles, which is false.

Suppose that C,_, is not a skew cycle and that C,_, also contains a bridge b’ #b. Now by re-
placing the bridge 3’ by the arc between the end vertices of ', we obtain a cycle containing b and
having length longer than p —k, and hence G has two cycles having the same length, which is al-
so false.

T herefore C,_; contains only one bridge b, and hence b=b,4,.

Fact B Suppose that BB, G has no C,_, and for some ¥ (1<t<kr<<p/2—1), p—i€EC
(B'") for each i€ {1, 2, *+, k—1})—{t} and p —k & C(B’). Then either B’ =B .or G has b4,

Proof This is similar to the proof of Fact A.
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Now we continue to prove this lemma.

Clearly G has C;. For otherwise, G is a 4-UPC[1]-graph, this contradicts Theorem 4 in
[4].

Suppose that G has no C,_;, then G must have C,_,. By Fact B, G has b,. Note that b, &
X. Let By={b,}, then C(B;)={4, p—2}. By Fact B, G has b;. Let B,={b,, bs}. Clearly bs
& X. For otherwise, C(B,)={4, 5, p—2, p—3, p—5}, by Fact B, @ has bg; it is easily seen
that the length of any skew cycle is at least 10, and hence b, € intCq; consequently G has two 4-
cycles, which is false. Thus b,€intC;and C(B,)={3, 4, 5, p—2, p—3). By Fact B, G has
bg. Clearly b; & intCs. Thus b must be a skew bridge. Let By={b,, bss bg}. Then C(By)={3,
4, 5,6, p—2, p—3, p—~4, p—6, p—7}. By Fact B, G has b;. Clearly b, is not a skew
bridge. Thus b;€ intC;, and hence G has two 4-cycles, a contradiction. Therefore ¢ must have
C,_1

By Fact A, G has b;. Let B;={d3}, then C(B,)=1{3, p—1}. There are two possible cases
only.

Casel b,€X

Suppose that ¢ has no C,. Then G must have C,_;and C,_, must be a skew cycle. It fol-
lows that G has ;€ X. Let By= {bs, bs}. Then C(B,)=1{3,5,6, p—1, p—2, p--3}, where
Cs is a skew cycle. Since G has C,_, by Fact A, G has hgand g is a side cycle, a coniradiction.
Therefore G has C,.

Suppose that G has ro &,_, By Fact B, G has bs. Clearly bs& X. Let By={bs, bs}, then C
(By)=1{3, &, p—1, p—3, p—4}. By Fact B, G has b;. Clearly b; & X. Also, the length of
any skew cycle is at least 9. Hence ;€ intC;. Let By={bs, bs, b;}. Then C(B;)={3, 4,5, 7,
p—1,p—3, p—4, p—5, p—6}. By Fact B, G has by. Clearly by& X. Thus b,E€ intC,, and
hence G has two 4-cycles, a contradiction. Therefore G has C, s

By Fact A, G has b,. Note that b,& X. Let B,={bs, b,}. Then C(B,)={3, 4, p—1, pP—
2, p—3). '

Suppose that ¢ has no C,4. By Fact B, G has b;. Clearly 5, & X, and hence b,€intC,. Let
By={b3, b(» b7}. Then C(By)={3,4,5,7,p—1,p—2, p—3, p—5, p—6). By Fact B, G
has by. Clearly by& X, and hence b, €intCy. Thus G has two 4-cycles, a contradiction. There-
fore G has C,_,.

Suppose that ¢ has no C¢. Then C,_, must be a skew cycle. It follows that G has b e X.
Let By=={b3, by5 b;}. Then C(B;)={3,4,7,8, p—1, p—2, p—3,p—4,p—5, p—6, p—
7}. Since G has Cs, there exists a subgraph G * @G such that G * has a side cycle of length 5 and
contains two skew bridges. In this case G* has two cycles of length |V (G*)]|—4, a contradic-
tion. Therefore G has Cg.

By Fact A, G has bg. Clearly bg& X, and hence b,€intCq Thus G has two 4-cycles, again
a contradiction.

Case 2 b;& X

Suppose that G has no C,. Then ¢ must have C,_,and Cg, and C,_is the maximum skew
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cycle and Cg is the \minimum skew cycle. Let Bs3=X|J{b3}. Then p —i€C(B;) for i=1, 2, 3
and p —4& C(By). Since G has C,_,and Cy, by Fact A, Cgis a side cycle. Thus G has two 6-cy-
cles, ;contradiction. Therefore G has C,.

Suppose that G has no C,_,. By Fact B, G has bs. Let B,={bs, b5}. Consider two subcas-

Case 2.1 b;€X. In this case C(By;)={3, 5, p—1, p—3, p—4}. By Fact B, G has b,.
Suppose b; € X. Then G has two (p —6)-cycles, a contradiction. Therefore b, & X. Thus b; €
intCy. Let By={bs, bss bs}. Then C(B3)={3,5,6,7,p—1, p—3, p—4, p—5, p—8}. By
Fact B, G has bg. Clearly b3 & X. Thus b, €intCy, and hence G has two 3-cycles, a contradic-
tion.

Case 2.2 b;& X. In this case C(B;)={3, 4, 5, p—1, p—3}. By Fact B, G has bg. Sup-
pose that bs€ X. Let By={by, bs, bg}. Then C(By)={3, 4,5, 6,p—1, p—3, p—4, p—5,
p—7}. By Fact B, G has bg. Clearly b3& X. Thus b;E€ intCy, and hence G has two 5-cycles, a
contradiction. Therefore bg& X. Thus by € intCs, and hence G has two 3-cycles, a contradiction.
Therefore G has C,_,. By Fact A, G has b,. Clearly by € intC,. Consequently G has two 3-cy-
cles, again a contradiction. IJ
3 The proof of main theorem

By Theorem 3. 1 in [2], @ has at least 33 edges, i.e. , j-=|E(@)|— |V (6¢)|>5. Suppose
G has a subgraph homeomorphic t¢ 4, Then, by Proposition 2. : in 3], m (¢)>25, and
hence |C|>27. Since (V (¢!)|==23, we must have j=5, m (G)< 26, and |C|=27 or 28. Let
p=lcCl. '

Casel p==27

In this case there exists exactly one vertex (say z) in V (G)-V (C)and there are exactly 6
edges in E(G)-E(C). Let N (u) be the set of vertices of G adjacent to u, and d (x)= |N (u)].
Let T be the set of bridges of G-u. Clearly |T |=6-d (u). There are three possible subcases on-
ly.

Case 1.1 d(u)>4

Let w €N (u) and G* =G —uw. Clearly G* contains a subgraph homeomotphic to K, and
|E@*)|— |V (G*)| =4, by Proposition 3.1 in [3], m(G*)>=>18. Now we count the number
of cycles in ¢ containing uw : For each v € N () — {w }, G has exactly two cycles containing
{uv, uw } but no other edges in E(G)—E(C); for each vE N (u)— {w )} and each bET , G has
at least one cycle containing {uv, uw, b} but no other edges in E(G)—E(C). Thus it foliows
from |T |< 2 that the number of cycles in G containing uw is at least

2@@)— 1)+ @@) — DT |
=QC+ITPHG—ITDH
=104+ |T | — |T]) = 10.
Consequently, m (G)>>28, a contradiction.
Case 1.2 d(u)=3
In this case G must be a plane graph. For otherwise there exists » € N (z) such that G* =G
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—uvp contains a subgraph homeomorphic to K4, and hence m (G *)=>18. It is easily seen that the
number of cycles in G containing uv is at least

2@ @) — D + |{T|W@ @) — 1) =10,
and hence m (G)=>28, again a contradiction.

Let N (u)={v,, vy, v3}. Then the three edges uv;, uv, and uv, divide intC into three re-
gions Ry, Ryand Rs. Let T ={by, by, bs}. If b,, by and b3 do not lie in the same region, then we
may assume that b, lies in R, and b;, b3 do not lie in B;. Since G * =G —b; contains a subgraph
homeomorphic to K, m (G*)=18. Now we count the number of cycles in G containing &, :
Clearly G has exactly two cycles containing b, but no other edges in E(G)—E (C); for each pair
of distinct elements i, j€ {1, 2, 3}, G has exactly one cycle containing {b,, vuv;} but no other
edges in E(G)—E(C); for each i€ {2, 3}, G has exactly one cycle containing {b,, b;} but no
other edges in E(G)—E(C); for any b€ {b,, b3}, there exists one pair of distinct elements i, j
€ {1, 2, 3} such that G has exactly one cycle containing {b, b;, vuv;} but no other edges in §
(G)—E(C). Thus the number of cycles containing b, is at least 2+ 3+ 2+4-2=9, consequently m
(G)>=27, a contradiction. Therefore b,, b, and b3 must lie in the same region, say B,. Let /=
vauv, UC[v,, vs] be the boundary of R,, then the four bridges b;, b;, bz and v,uv, are indepen-
dent (See Fig. 1). For otherwise there exist three bridges (say b;, b; and vguw, for any two dis-
tinct elements i, jE& {1, 2, 3)) are dependent, and then it is casy to verify that & has at least 10
cycles containing b,, and hence m (3);218410=2¢, a coniradiction.

Clearly G is csuch that it satisfizs the conditions iz Lemma 1. By Lemma 1, G has two cycles
having the same length . a contradiction.

Case 1.3 d(u)=2 ,

Let B be the set of bridges in G. Clearly |B|=5.

Suppose that G has two pairs of skew bridges. Then there exists b;, b, € B such that b,
skews to b; and G —b; has one pair of skew bridges. Let G* =G —5,. Then G * has a subgraph
homeomorphic to K4, and hence m (G*)>>18. Since G is a simple graph, there exists at most one
bridge such that it and b, have the same end vertices. Let B, B, the number of cycles containing
all bridges in B, but no bridges in B-B, is denoted by ¢(B;). If B,={b;, ***, b,}, then c(B,) is
denoted by c(by, ***, b,). Clearly c(b;)=2; c(by, by)=2; for each bE B— {b;, by}, c(by, b)=
1; there exist two bridges by, b,€ B— {b,, b,} such that ¢(b,, b,, b;)=1 for =3, 4. Therefore
the number of cycles containing b, is at least 2+ 2-+3+4+2=9. Thus m (¢ )>=27, a contradiction.
Therefore G has exactly one pair of skew bridges. Let b= (u, v) and by= (4’ , »’) be one pair of
skew bridges. Then the four vertices », u’, » and v’ divide C into four paths C[u, u'], C[4,
v], C[v, v'] and C[v', u] which are denoted by P,, P,, Pzand P,, respectively. Let B— {b,,
by} = {bs, by, bs}. Then all end vertices of by, b, and bs lie on a common path in {P,, P;, P3,
P4}._ For otherwise, we may assume that the end vertices of b3 lie on P; and the end vertices of b,
and b; do not lie on P;. In this case let G* =G —b;. Then m(G*)=>=18. Also ¢(by)=2; for each
bE B—{bs}, c(bs, b)=1; clearly G has at least three cycles, each of which contains b; and con-

tains at least three bridges. Thus the number of cycles containing bj is at least 2-+44-3=9, and
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hence m (G)>=27, a contradiction.

In fact, the four bridges b,, b3, b, and by ére independent (See Fig. 2), since otherwise we
may assume that by, by and b, are dependent. In this case c(b3) =2; for each b€ B— {bs}, c(b,
b3)=1; also G has at least three cycles, each of which contains b5 and contains at least three
bridges. Thus m(G)>18+42+44+43=27, a contradiction.

Clearly G is such that the conditions in Lemma 2 are satisfied. By Lemma 2, G has two cy-
cles having the same length, a contradiction.

Case 2 p=28

A similar discussion to that of Case 1. 3 yields that G is such that the conditions in Lemma 3

are satisfied. By Lemma 3, G has two cycles having the same length, again a contradiction.
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