Communications in Mathematical Analysis

Volume 6, Number 1, pp. 31–35 (2009) ISSN 1938-9787

www.commun-math-anal.org

NONLOCAL CAUCHY PROBLEM FOR SOME FRACTIONAL ABSTRACT INTEGRO-DIFFERENTIAL EQUATIONS IN BANACH SPACES

A. ANGURAJ* Department of Mathematics PSG College of Arts and Science Coimbatore, TN, India

P. KARTHIKEYAN[†]

Department of Mathematics KSR College of Arts and Science Tiruchengode, TN, India

G. M. N'GUÉRÉKATA[‡]

Department of Mathematics Morgan State University Baltimore, MD, 21251, USA

(Communicated by Jin Liang)

Abstract

In this paper we study the existence and uniqueness of solutions for fractional integrodifferential equations with nonlocal condition in a Banach space. The results are established by the application of the contraction mapping principle and the Krasnoleskii fixed point theorem.

2000 AMS Subject Classification: 34K05; 34A12; 34A40.

Keywords: Fractional abstract integrodifferential equation; contraction mapping; Krasnoleskii theorem; nonlocal conditions.

1 Introduction

Recently, G. M. N'Guérékata [10] proved the existence and uniqueness of solutions to the Cauchy problem for the fractional differential equations with nonlocal conditions of the

^{*}angurajpsg@yahoo.com

[†]karthi_p@yahoo.com

[‡]Gaston.N'Guerekata@morgan.edu

form $D^q x(t) = f(t, x(t)), t \in [0, T], x(0) + g(x) = x_0$, where 0 < q < 1. Let (X, ||.||) be a Banach space, and I := [0, T], T > 0, a compact interval in *R*. Denote by C = C([0, T], X) the Banach space of all continuous function $[0, T] \rightarrow X$ endowed with the topology of uniform convergence (the norm in this space will be denoted by $||.||_C$).

Several authors have studied the following Cauchy problem for semilinear differential equations with nonlocal conditions in a Banach space.

$$\begin{cases} x'(t) &= Ax(t) + f(t, x), \quad t \in [0, T] \\ x(0) + g(x) &= x_0. \end{cases}$$

As indicated in several recent papers (see for instance [1, 2, 3, 4, 5, 6, 10, 11, 13, 14, 15]), the nonlocal condition $x(0) + g(x) = x_0$ can be applied in physics with better effect than the classical Cauchy problem with initial condition $x(0) = x_0$. For instance the authors used

$$g(x) = \sum_{i=1}^{p} c_i x(t_i),$$

where $c_i = 1, 2, ..., p$ are given constants and $0 < t_1 < t_2 < ..., < t_p \le T$. To describe the diffusion phenomenon of a small amount in a transparent tube. In this case, the Cauchy problem allows the additional measurements at $t_i, i = 1, 2, ..., p$.

Recent studies of fractional differential equations are done by Lakshmikantham in his papers [7, 8, 9]. The reader may also consult [12]. In this work we consider the following Cauchy problem for the nonlocal conditions fractional integro differential equation

$$\begin{cases} D^{q}x(t) = \int_{0}^{t} k(t, s, x(s)) ds, & t \in I, \\ x(0) + g(x) = x_{0}, \end{cases}$$
(1)

where 0 < q < 1; $k : \Delta \times X \to X, g : C(C, I) \to X$ are given functions. Here Δ denotes the set $\{(t, s) : 0 \le s \le t \le T\}$.

We investigate in our paper the Cauchy problem for the nonlinear fractional integrodifferential equation (1) with the following assumptions.

(H1). $k: \Delta \times X \to X$ is continuous and there exist a constant $K_1 > 0$ such that

$$||k(t,s,x_1) - k(t,s,x_2)|| \le K_1 ||x_1 - x_2||, \quad x_1, x_2 \in X, (t,s) \in \Delta.$$

(H2). $g: C \to X$ is bounded, continuous, and $||g(x) - g(y)|| \le b||x - y|| \quad \forall x, y \in C$. (H3). For any positive number *r* there exists $h_r \in L^1(I)$ such that

$$\sup_{\|x\| \le r} \|k(t,s,x)\| \le h_r(t), \quad x \in X, (t,s) \in \Delta$$

2 Main Results

2.1 Existence and uniqueness result

Now we are ready to present our results.

Theorem 2.1. Under assumptions (H1)-(H2), if $b < \frac{1}{2}$ and $K_1 \le \frac{\Gamma(q+1)}{2T^q}$, then Eq. (1) has a unique solution.

Proof. Define $F : \mathcal{C} \to C$ by

$$Fx(t) = x_0 - g(x) + \frac{1}{\Gamma(q)} \int_0^t (t-s)^{q-1} \int_0^s k(s,\tau,x(\tau)) d\tau ds, \quad t \in [0,T].$$

Let $G = \sup_{x \in \mathcal{C}} ||g(x)||$, and $K_2 = \max\{||k(t,s,0)|| : (t,s) \in \Delta\}$, and choose $r \ge 2(||x_0|| + G + \frac{K_2T^q}{\Gamma(q+1)})$ Then we can show that $FB_r \subset B_r$ where $B_r := \{x \in \mathcal{C} : ||x|| \le r\}$. So let $x \in B_r$. Then we get

$$\begin{split} \|Fx(t)\| &\leq \|x_0\| + G \\ &+ \frac{1}{\Gamma(q)} \int_0^t (t-s)^{q-1} \int_0^s \|k(s,\tau,x(\tau))\| d\tau ds \\ &\leq \|x_0\| + G + \frac{1}{\Gamma(q)} \int_0^t (t-s)^{q-1} \int_0^s (\|k(s,\tau,x(\tau) - k(s,\tau,0)\| + \|k(s,\tau,0)\|) d\tau ds \\ &\leq \|x_0\| + G + \frac{1}{\Gamma(q)} \int_0^t (t-s)^{q-1} \int_0^s (K_1\|x(\tau)\| + K_2) d\tau ds \\ &\leq \|x_0\| + G + \frac{1}{\Gamma(q)} \int_0^t (t-s)^{q-1} (K_1\|x(s)\| + K_2) ds \\ &\leq \|x_0\| + G + (K_1r + K_2) \frac{1}{\Gamma(q)} \int_0^t (t-s)^{q-1} ds \\ &\leq \|x_0\| + G + (K_1r + K_2) \frac{T^q}{\Gamma(q+1)} \leq r \end{split}$$

by the choice of K_1, K_2 and *r*. Now we take $x, y \in C$. Then we get

$$\begin{aligned} \|(Fx)(t) - (Fy)(t)\| &\leq \|g(x) - g(y)\| + \frac{1}{\Gamma(q)} \int_0^t (t-s)^{q-1} \int_0^s \|k(s,\tau,x(\tau)) - k(s,\tau,y(\tau))\| d\tau ds \\ &\leq \Omega_{b,K_1,T,q} \|x - y\|, \end{aligned}$$

where $\Omega_{b,K_1,T,q} := (b + \frac{K_1T^q}{\Gamma(q+1)})$ depends only on the parameters of the problem. And since $\Omega_{b,K_1,T,q} < 1$, the result follows in view of the contraction mapping principle.

2.2 Existence result

In this subsection we prove the result based on the well-known theorem

Theorem 2.2. (*Krasnoselkii*). Let *M* be a closed convex and nonempty subset of a Banach space X. Let A, B be two operators such that

- *1.* $Ax + By \in M$ whenever $x, y \in M$;
- 2. A is compact and continuous ;
- *3. B* is a contraction mapping.

Then there exists $z \in M$ such that z = Az + Bz.

Now we present our second result.

Theorem 2.3. Assume (H1)-(H3) with b < 1. Then Eq.(1) has at least one solution on I.

Proof. Choose $r \ge ||x_0|| + G + \frac{T^q ||h_r||_{L^1}}{\Gamma(q+1)}$ and consider $B_r : \{x \in C : ||x|| \le r\}$. Now define on B_r the operators A, B by

$$(Ax)(t) := \frac{1}{\Gamma(q)} \int_0^t (t-s)^{q-1} \int_0^s k(s,\tau,x(\tau)) d\tau ds,$$

and

$$(Bx)(t) := x_0 - g(x).$$

Let's observe that if $x, y \in B_r$; then $Ax + By \in B_r$. Indeed it is easy to check the inequality

$$||Ax + By|| \le ||x_0|| + G + \frac{T^q ||h_r||_{L^1}}{\Gamma(q+1)} \le r.$$

By(H2), it is also clear that B is a contraction mapping for b < 1. Since x is continuous, then (Ax)(t) is continuous in view of (H1). Let's now note that A is uniformly bounded on B_r . This follows from the inequality

$$||(Ax)(t)|| \le \frac{T^q ||h_r||_{L^1}}{\Gamma(q+1)}.$$

Now let's prove that (Ax)(t) is equicontinuous.

Let $t_1, t_2 \in I$ and $x \in B_r$. Using the fact that f is bounded on the compact set $I \times B_r$ (thus $\sup_{(t,s)\in I\times B_r} ||k(t,s,x(s))|| := c_0 < \infty$), we will get

$$\begin{split} \|Ax(t_1) - Ax(t_2)\| &= \frac{1}{\Gamma(q)} \| \int_0^{t_1} (t_1 - s)^{q-1} \int_0^s k(s, \tau, x(\tau)) d\tau ds \\ &\quad - \int_0^{t_2} (t_2 - s)^{q-1} \int_0^s k(s, \tau, x(\tau)) d\tau ds \| \\ &= \frac{1}{\Gamma(q)} \| \int_{t_2}^{t_1} (t_1 - s)^{q-1} \int_0^s k(s, \tau, x(\tau)) d\tau ds \\ &\quad - \int_0^{t_2} (t_2 - s)^{q-1} - (t_1 - s)^{q-1}) \int_0^s k(s, \tau, x(\tau)) d\tau ds \| \\ &\leq \frac{1}{\Gamma(q)} \left(\| \int_{t_2}^{t_1} (t_1 - s)^{q-1} \int_0^s k(s, \tau, x(\tau)) d\tau ds \| \right) \\ &\quad + \frac{1}{\Gamma(q)} \left(\| \int_0^{t_2} (t_2 - s)^{q-1} - (t_1 - s)^{q-1}) \int_0^s k(s, \tau, x(\tau)) d\tau ds \| \right) \\ &\leq \frac{c_0}{\Gamma(q+1)} |2(t_1 - t_2)^q + t_2^q - t_1^q| \\ &\leq \frac{2c_0}{\Gamma(q+1)} |t_1 - t_2|^q, \end{split}$$

which does not depend on x. So $A(B_r)$ is relatively compact. By the Arzela-Ascoli Theorem, A is compact. We now conclude the proof of the theorem using the Krasnoselkii's theorem above.

Acknowledgments

The authors thank the referees for his/her careful reading of the manuscript and valuable comments.

References

- S. Aizicovici, H. Lee, Nonlinear nonlocal Cauchy problems in Banach spaces, *Appl. Math. Lett.*, 18 (2005), No. 4, pp 401-407.
- [2] S. Aizicovici, V. Staicu, Multivalued evolution equations with nonlocal conditions in Banach spaces, *Nonlinear Diff. Eq. Appl.*, **14** (2007), No. 3-4, pp 361-376.
- [3] L. Byszewski, Theorems about the existence and uniquness of solutions of a semilinear evolution nonlocal Cauchy problem, *J. Math. Anal. Appl*. **162** (1991), pp 494-505.
- [4] K. Deng, Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions, J. Math. Anal. Appl. 179 (1993), pp 630-637.
- [5] J. Liang, J.-H., Liu, T.-J. Xiao, Nonlocal Cauchy problems for nonautonomous evolution equations, *Comm. Pure Appl. Anal.*, 5 (2006), pp 529-535.
- [6] J. Liang, T.-J. Xiao, Semilinear integrodifferential equations with nonlocal conditions, *Comput. Math. Appl.*, 47 (2004), No. 6-7, pp 853-875.
- [7] V. Lakshmikantham, Theory of fractional differential equations, *Nonlinear Anal*. (in press) in press.
- [8] V. Lakshimikantham, A. S. Vatsala, Theory of fractional differential inequalities and applications, *Commun. Appl. Anal.* (in press)
- [9] V. Lakshimikantham, A. S. Vatsala, Basic thoeory of fractional differential equations, *Nonlinear Anal.* (in press)
- [10] G. M. N'Guérékata, A Cauchy problem for some fractional abstract differential equation with non local conditions, *Nonliner Anal.* (in press)
- [11] G. M. N'Guérékata, Existence and uniqueness of an integral solution to some Cauchy problem with nonlocal conditions, *Differential and Difference Equations and Applications*, pp 843-849, Hindawi Publ, Corp, New York, 2006.
- [12] I. Podlubny, Fractional Differential Equations, San Diego, Academic Press, 1999.
- [13] K. Ezzinbi, J. Liu, Nondensely defined evolution equations with nonlocal conditions, *Math. Comput. Modelling* 36 (2002), pp 1027-1038.
- [14] E. Hernandez, Existence of solutions to a second order partial differential equations with nonlocal condition, *Electron. J. Differential Equations* **51** (2003), pp 1-10.
- [15] R.-N. Wang, T.-J. Xiao, J. Liang, Coupled nonlocal periodic parabolic systems with delay, *Appl. Anal.*, 87 (2008), No. 4, pp 479-495