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Abstract

In this paper we study the existence and uniqueness of solutions for fractional in-
tegrodifferential equations with nonlocal condition in a Banach space. The results
are established by the application of the contraction mapping principle and the Kras-
noleskii fixed point theorem.
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1 Introduction

Recently, G. M. N’Gúeŕekata [10] proved the existence and uniqueness of solutions to the
Cauchy problem for the fractional differential equations with nonlocal conditions of the
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form Dqx(t) = f (t,x(t)), t ∈ [0,T], x(0)+ g(x) = x0, where0 < q < 1. Let (X,‖.‖) be a
Banach space, andI := [0,T],T > 0 , a compact interval inR. Denote byC = C([0,T],X)
the Banach space of all continuous function[0,T]→ X endowed with the topology of uni-
form convergence ( the norm in this space will be denoted by‖.‖C ).

Several authors have studied the following Cauchy problem for semilinear differential
equations with nonlocal conditions in a Banach space.

{
x′(t) = Ax(t)+ f (t,x), t ∈ [0,T]
x(0)+g(x) = x0.

As indicated in several recent papers (see for instance [1, 2, 3, 4, 5, 6, 10, 11, 13, 14, 15]),
the nonlocal conditionx(0)+g(x) = x0 can be applied in physics with better effect than the
classical Cauchy problem with initial conditionx(0) = x0. For instance the authors used

g(x) =
p

∑
i=1

cix(ti),

whereci = 1,2, ......., p are given constants and0 < t1 < t2 < .......,< tp ≤ T. To describe
the diffusion phenomenon of a small amount in a transparent tube. In this case, the Cauchy
problem allows the additional measurements atti , i = 1,2, ......p.

Recent studies of fractional differential equations are done by Lakshmikantham in his
papers [7, 8, 9]. The reader may also consult [12]. In this work we consider the following
Cauchy problem for the nonlocal conditions fractional integro differential equation

{
Dqx(t) =

R t
0 k(t,s,x(s))ds, t ∈ I ,

x(0)+g(x) = x0,
(1)

where0 < q < 1 ; k : ∆×X → X,g : C(C, I)→ X are given functions. Here∆ denotes the
set{(t,s) : 0≤ s≤ t ≤ T} .

We investigate in our paper the Cauchy problem for the nonlinear fractional integrodif-
ferential equation (1) with the following assumptions.

(H1). k : ∆×X → X is continuous and there exist a constantK1 > 0 such that

‖k(t,s,x1)−k(t,s,x2)‖ ≤ K1‖x1−x2‖, x1,x2 ∈ X,(t,s) ∈ ∆.

(H2). g : C→ X is bounded, continuous, and‖g(x)−g(y)‖ ≤ b‖x−y‖ ∀x,y∈ C .
(H3). For any positive numberr there existshr ∈ L1(I) such that

sup‖x‖≤r‖k(t,s,x)‖ ≤ hr(t), x∈ X,(t,s) ∈ ∆

2 Main Results

2.1 Existence and uniqueness result

Now we are ready to present our results.
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Theorem 2.1. Under assumptions (H1)-(H2), ifb < 1
2 andK1 ≤ Γ(q+1)

2Tq , then Eq. (1) has a
unique solution.

Proof. DefineF : C →C by

Fx(t) = x0−g(x)+
1

Γ(q)

Z t

0
(t−s)q−1

Z s

0
k(s,τ,x(τ))dτds, t ∈ [0,T].

Let G = supx∈C‖g(x)‖, andK2 = max{‖k(t,s,0)‖ : (t,s) ∈ ∆} , and chooser ≥ 2(‖x0‖+
G+ K2Tq

Γ(q+1) Then we can show thatFBr ⊂ Br whereBr := {x∈ C : ‖x‖ ≤ r}. So letx∈ Br .
Then we get

‖Fx(t)‖ ≤ ‖x0‖+G

+
1

Γ(q)

Z t

0
(t−s)q−1

Z s

0
‖k(s,τ,x(τ))‖dτds

≤ ‖x0‖+G+
1

Γ(q)

Z t

0
(t−s)q−1

Z s

0
(‖k(s,τ,x(τ)−k(s,τ,0)‖+‖k(s,τ,0)‖)dτds

≤ ‖x0‖+G+
1

Γ(q)

Z t

0
(t−s)q−1

Z s

0
(K1‖x(τ)‖+K2)dτds

≤ ‖x0‖+G+
1

Γ(q)

Z t

0
(t−s)q−1(K1‖x(s)‖+K2)ds

≤ ‖x0‖+G+(K1r +K2)
1

Γ(q)

Z t

0
(t−s)q−1ds

≤ ‖x0‖+G+(K1r +K2)
Tq

Γ(q+1)
≤ r

by the choice ofK1,K2 andr. Now we takex,y∈C. Then we get

‖(Fx)(t)− (Fy)(t)‖ ≤ ‖g(x)−g(y)‖+
1

Γ(q)

Z t

0
(t−s)q−1

Z s

0
‖k(s,τ,x(τ))−k(s,τ,y(τ))‖dτds

≤Ωb,K1,T,q‖x−y‖,

whereΩb,K1,T,q := (b+ K1Tq

Γ(q+1)) depends only on the parameters of the problem. And since
Ωb,K1,T,q < 1, the result follows in view of the contraction mapping principle.

2.2 Existence result

In this subsection we prove the result based on the well-known theorem

Theorem 2.2. (Krasnoselkii). Let M be a closed convex and nonempty subset of a Banach
space X. Let A, B be two operators such that

1. Ax+By∈M wheneverx,y∈M;

2. A is compact and continuous ;

3. B is a contraction mapping.



34 A. Anguraj, P. Karthikeyan, and G. M. N’Guéŕekata

Then there existsz∈M such thatz= Az+Bz.

Now we present our second result.

Theorem 2.3. Assume (H1)-(H3) withb < 1. Then Eq.(1) has at least one solution on I.

Proof. Chooser ≥ ‖x0‖+G+ Tq‖hr‖L1

Γ(q+1) and considerBr : {x∈C : ‖x‖ ≤ r}. Now define on
Br the operatorsA,B by

(Ax)(t) : =
1

Γ(q)

Z t

0
(t−s)q−1

Z s

0
k(s,τ,x(τ))dτds,

and

(Bx)(t) : = x0−g(x).

Let’s observe that ifx,y∈ Br ; thenAx+By∈ Br . Indeed it is easy to check the inequality

‖Ax+By‖ ≤ ‖x0‖+G+
Tq‖hr‖L1

Γ(q+1)
≤ r.

By(H2), it is also clear thatB is a contraction mapping forb < 1. Sincex is continuous,
then(Ax)(t) is continuous in view of(H1). Let’s now note thatA is uniformly bounded on
Br . This follows from the inequality

‖(Ax)(t)‖ ≤ Tq‖hr‖L1

Γ(q+1)
.

Now let’s prove that(Ax)(t) is equicontinuous.
Let t1, t2 ∈ I andx∈ Br . Using the fact thatf is bounded on the compact setI ×Br

(thussup(t,s)∈I×Br
‖k(t,s,x(s)‖ := c0 < ∞), we will get

‖Ax(t1)−Ax(t2)‖=
1

Γ(q)
‖
Z t1

0
(t1−s)q−1

Z s

0
k(s,τ,x(τ))dτds

−
Z t2

0
(t2−s)q−1

Z s

0
k(s,τ,x(τ))dτds‖

=
1

Γ(q)
‖
Z t1

t2
(t1−s)q−1

Z s

0
k(s,τ,x(τ))dτds

−
Z t2

0
(t2−s)q−1− (t1−s)q−1)

Z s

0
k(s,τ,x(τ))dτds‖

≤ 1
Γ(q)

(
‖
Z t1

t2
(t1−s)q−1

Z s

0
k(s,τ,x(τ))dτds‖

)

+
1

Γ(q)

(
‖
Z t2

0
(t2−s)q−1− (t1−s)q−1)

Z s

0
k(s,τ,x(τ))dτds‖

)

≤ c0

Γ(q+1)
|2(t1− t2)q + tq

2− tq
1|

≤ 2c0

Γ(q+1)
|t1− t2|q,

which does not depend on x. SoA(Br) is relatively compact. By the Arzela-Ascoli The-
orem, A is compact. We now conclude the proof of the theorem using the Krasnoselkii’s
theorem above.
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