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1 Introduction

From a mappingf : X×R −→ Y, whereX andY are complete metric spaces, or Banach
spaces when differentiability is studied, we consider a superposition operator in the follow-
ing form

[t 7→ u(t)] 7−→ [t 7→ f (u(t), t)]

whereu : R→ X is an almost periodic function, or an asymptotically almost periodic func-
tion, or an almost automorphic function.
Such operators are useful for the functional-analytic methods in the study of oscillations in
various kinds of differential equations. First studies of this kind of operators are presumably
due to Nemytskii (see the preface of [40]); that is why such operators are sometime called
Nemytskii operators.

Our aim is to obtain the continuity and differentiability of such operators under assump-
tions which are weaker than the generally used ones.

Superposition operators are currently used in numerous fields of Mathematical Analy-
sis, including the study of almost periodic functions; for instance the book [5] is totally
devoted to these operators and contains a lot of examples.

Let us describe the content of this paper.
In Section 2 we fix our notations about the notions used in the sequel.
In Section 3 we study the continuity of the superposition operators between spaces of al-

most periodic functions in the sense of Harald Bohr. We improve results of Yoshizawa [41]
by deleting an assumption of separability. The first main result is Theorem 3.5 where we do
not consider the usual Lipschitz condition as in [23] for instance. We give three different
proofs of this theorem since each of these proofs contains arguments which are interesting
for themselves. The first proof is the english translation of the one given by Cieutat in his
Thesis Dissertation [20] (in French) and which is unpublished in a scientific journal. The
second proof is based on a generalization to the almost periodicity of a method that we have
only encountered in the well-known book ”Cours d’Analyse” by Laurent Schwartz. This
method essentially uses a variation of the classical theorem of Heine on uniform continuity.
In another setting (this one of the spaces of bounded sequences), this method has been used
by Blot and Crettez in [12]. The third proof is based on the Bohr compactification from
which one can transform almost periodic functions into continuous functions defined on a
compact group. Finally we establish the converse of Theorem 3.5. This new result shows
that, among the various notions of almost periodic functions with parameters, the notion
used by Yoshizawa [41] is the appropriate notion that yields to the continuity of the super-
position operators. In Section 4, by using the new result of section 3, we improve results on
the semilinear evolution equations which are given in Hino, Naito, Minh and Shin’s book
[29].
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In Section 5 we establish results on the differentiability of superposition operators be-
tween spaces of almost periodic functions.

In Section 6, by using results of Section 5, we establish a result on the perturbation of
almost periodic solutions of differential equations in Banach spaces. In Section 7 we es-
tablish new results on the continuity and the differentiability of the superposition operators
in the setting of then-times differentiable almost periodic functions. Such functions are
specially studied in works of N’Gúeŕekata and several co-authors [34], [19], [7].

The methods used in this section are adaptations of these ones of Section 3 and of
Section 5.

We also adapt the methods of Section 3 and Section 5 to establish new results on on
the continuity and the differentiability of the superposition operators in the setting of the
asymptotically almost periodic functions in Section 8 (where we also use important results
due to Zaidman) and in the setting of almost automorphic functions in Section 9.

Note that we can find some results on the superposition operators on spaces of Besicovitch-
almost periodic functions in [10], [20], [13], and on spaces of almost periodic sequences
in [14]. Pankov’s book [36] contains some particular results on superposition operators in
Stepanov and Besicovich spaces. We do not study these settings in the present paper.

2 Notation

X andY are complete metric spaces.
WhenA is a topological space,C0(A,X) denotes the space of all continuous mappings

from A into X. When moreoverA is compact,C0(A,X) is endowed with the supremum
distanced∞(ϕ,ψ) := supa∈Ad(ϕ(a),ψ(a)).

WhenX andY are Banach spaces,L(X,Y) is the Banach space of all linear continuous
mappings fromX into Y. And whenn∈ N∗ := N \ {0}, Ln(Xn,Y) is the Banach space of
all continuousn-linear mappings from the productXn into Y.

WhenX andY are Banach spaces and whenn∈ N∗, Cn(X,Y) denotes the space of all
n-times continuously Fŕechet-differentiable mappings fromX into Y.

BC0(X,Y) denotes the space of the bounded continuous mappings fromX into Y. En-
dowed with the distance of the supremum, defined byd∞(ϕ,ψ) := supx∈X d(ϕ(x),ψ(x)),
BC0(X,Y) is a complete metric space, [38], Corollaire 2, p. 196. WhenY is a Banach space,
endowed with the sup norm‖ϕ‖∞ := supx∈X ‖ϕ(x)‖, BC0(X,Y) is a Banach space, [38],
Corollaire 3, p. 196. WhenX andY are Banach spaces and whenn∈ N∗, BCn(X,Y) is the
space of the mappings which belong toCn(X,Y)∩BC0(X,Y) such that all their differentials,
up to ordern, are bounded onX. Endowed with the norm‖ϕ‖Cn := ‖ϕ‖∞ +∑1≤k≤n‖Dkϕ‖∞,
it is a Banach space.

WhenX is a Banach space,C0
0(R+,X) denotes the space of all functionsu∈C0(R+,X)

such that limt→∞ u(t) = 0. It is a Banach subspace ofBC0(R+,X).
AP0(R,X) stands for the space of all almost periodic functions in the sense of Harald

Bohr [31], [4], [17], [33], [21], [41], [24]. Endowed with the distanced∞, it is a complete
metric space. WhenX is a Banach space andn∈ N∗, APn(R,X) denotes the space of the
functions ofBCn(R,X)∩AP0(R,X) such that all their derivatives, up to ordern, belong to
AP0(R,X) [34], [19], [7].
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We denote byPc(X) the set of all compact subsets ofX. We defineAPU(X×R,Y)
as the set of the mappingsf : X×R → Y which are continuous onX×R and satisfy the
following property:

for all K ∈ Pc(X), for all ε > 0, there exists̀ = `(K,ε) > 0 such that, for allr ∈ R,
there existsτ ∈ [r, r + `] satisfying‖ f (x, t +τ)− f (x, t)‖ ≤ ε for all (x, t) ∈ K×R; see [41],
Definition 2.1, p. 5-6.

In the finite-dimensional setting this notion is used in [11], [13] and [6], and under an
equivalent form it is also used in [30] and in [43], Section 3.4 in Chapter 3, p. 175. Such
mappings are calledalmost periodic in t uniformly in x.

Remark2.1. If φ ∈C0(X,Y), and if we setf (x, t) := φ(x) for all (x, t) ∈ X×R, then we
have f ∈ APU(X×R,Y).

WhenX is a Banach space,AAP(R+,X) denotes the space of all functions fromR+
in to X which are asymptotically almost periodic in the sense of Fréchet [42]. Recall
that u ∈ AAP(R+,X) means thatu = u1 + u2 with u1 ∈ AP0(R+,X) andu2 ∈C0

0(R+,X).
AAP(R+,X) is a Banach subset ofBC0(R+,X). Following Zaidman [28], a mapping
f : X×R+ → Y, (x, t) 7→ f (x, t), is calledasymptotically almost periodic in t uniformly
in x when f is continuous and whenf satisfies the following condition: for allK ∈ Pc(X),
for all ε > 0, there existT = T(K,ε)≥ 0 and` = `(K,ε) > 0 such that, for allr ∈R+, there
existsτ ∈ [r, r + `] satisfying‖ f (x, t + τ)− f (x, t)‖ ≤ ε for all x∈ K and for allt ≥ T. We
denote byAAPU(X×R+,Y) the set of all such mappings. One can see a recent use of these
notions in evolution equations e.g. in [28].

We denote byAA(R,X) the space of all functions fromR into X which are almost
automorphic in the sense of Bochner [15], [16], [34]. Recall thatu∈ AA(R,X) means that
u ∈C0(R,X) and thatu satisfies the following property: for all real sequence(s′n)n there
exists a subsequence(sn)n of (s′n)n such that limm→∞ u(t−sm) exists inX for all t ∈ R, and
limn→∞(limm→∞ u(t−sm+sn)) = u(t) for all t ∈ R.

Now we introduce a new notion. We say that a mappingf : X×R→Y, (x, t) 7→ f (x, t),
is almost automorphic in t uniformly in xwhen it satisfies the two following conditions:

(1) For allx∈ X, f (x, .) ∈ AA(R,Y).

(2) For all K ∈ Pc(X), for all ε > 0, there existsδ = δ(K,ε) > 0 such that, for allx,z∈ K,
if d(x,z)≤ δ then we haved( f (x, t), f (z, t))≤ ε for all t ∈ R.

We denote byAAU(X×R,Y) the set of all such mappings.

Remark2.2. Conditions (1) and (2) together are equivalent to the following one.

(3) Φ ∈C0(X,AA(R,Y)) whereΦ(x) := [t 7→ f (x, t)].

Indeed, let us assume that (1) and (2) fulfilled. In view of (1), the mappingΦ : X →
AA(R,Y) is well-defined. SinceX andAA(R,Y) are metric spaces,Φ is continuous onX
if and only if the restriction ofΦ to each compact subset ofX is continuous. This last
condition is ensured by (2), and consequently (3) is satisfied. Conversely assume that (3)
fulfilled. Then, sinceΦ(x) ∈ AA(R,Y) for all x∈ X, (1) is satisfied. And sinceΦ is contin-
uous onX, Φ is uniformly continuous on eachK ∈ Pc(X), that is exactly (2).
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Remark2.3. In the above definition, note that conditions (1) and (2) imply thatf ∈C0(X×
R,Y).

Remark2.4. If φ ∈C0(X,Y), and if we setf (x, t) := φ(x) for all (x, t) ∈ X×R, then f ∈
AAU(X×R,Y). If f ∈ APU(X×R,Y) then f ∈ AAU(X×R,Y). This notion is different
from the one used in [34], Theorem 2.18, p. 60; it also differs from the one used in [32]
where the authors use bounded subsets ofX instead of compact subsets ofX.

3 Continuity and Almost Periodicity

In this section we study the continuity of the superposition operators between spaces of
almost periodic functions.X andY are complete metric spaces.

First, let’s present a series of lemmas.

Lemma 3.1. Let f ∈ APU(X×R,Y) and K∈ Pc(X). Then the restriction of f to K×R is
uniformly continuous.

In the particular case whereX andY are both finite-dimensinal normed vector spaces,Lemma
3.1is established in Yoshizawa’s book [41] (see Theorem 2.1, p. 7). The proof therein can
be easily generalized to complete metric spaces.

Lemma 3.2. Let φ ∈C0(X,Y) and v∈ AP0(R,X). Then we haveφ◦v∈ AP0(R,Y).

Lemma 3.2 is Property 4, p. 3, in [31]. In the Banach spaces setting, a proof of this
result is also given in [4], p. 6, and in [34], Proof of Theorem 1.34, p. 14.

Lemma 3.3. Let f ∈ C0(X ×R,Y) and K∈ Pc(X). We define the mapping fK : R →
C0(K,Y) by setting fK(t) := [x 7→ f (x, t)] for all t ∈ R. Then the two following assertions
are equivalent.

(i) f ∈ APU(X×R,Y)

(ii) For all K ∈ Pc(X), fK ∈ AP0(R,C0(K,Y)).

Lemma 3.3 comes from [20] inside the proof of Théor̀eme in Section 2 of Chapter 1, p.
7.

Proof. (i =⇒ ii) . Continuity of f K is a straightforward consequence of Lemma 3.1. By
using the definition ofAPU(X×R,Y), we know that, for allε > 0, there exists̀ > 0 such
that, for allr ∈ R, there existsτ ∈ [r, r + `] satisfyingd( f (x, t + τ), f (x, t))≤ ε for all x∈ K
and allt ∈ R. By taking the supremum overx∈ K, we obtaind∞( f K(t + τ), f K(t))≤ ε, for
all t ∈ R.
(ii =⇒ i). Let (xn, tn)n be a sequence of elements ofX×R which converges toward(x∗, t∗)∈
X×R. We setK∗ := {xn : n∈ N}∪{x∗} ∈ Pc(X). Note that we have

‖ f (xn, tn)− f (x∗, t∗)‖ ≤ ‖ f (xn, tn)− f (xn, t∗)‖+‖ f (xn, t∗)− f (x∗, t∗)‖

≤ ‖ f K∗(tn)− f K∗(t∗)‖∞ +‖ f K∗(t∗)(xn)− f K∗(t∗)(x∗)‖.
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Since limn→∞ tn = t∗, f K∗ is continuous onR, and f K∗(t∗) is continuous onK∗, we de-
duce from the previous inequalities that limn→∞ f (xn, tn) = f (x∗, t∗). And so we have
proven thatf ∈C0(X×R,Y). Now we arbitrarily fixK ∈ Pc(X) andε > 0. Since f K ∈
AP0(R,C0(K,Y)) we know that there exists̀ > 0 such that for allr ∈ R, there exists
τ ∈ [r, r + `] satisfying‖ f K(t +τ)− f K(t)‖∞ ≤ ε for all t ∈R, that implies:‖ f K(t +τ)(x)−
f K(t)(x)‖ ≤ ε for all x∈ K and for allt ∈R. Noting thatf K(t +τ)(x) = f (x, t +τ) and that
f K(t)(x) = f (x, t), we obtain thatf ∈ APU(X×R,Y). This completes the proof.

Lemma 3.4. Let f ∈ APU(X×R,Y) and u∈ AP0(R,X). Then we have[t 7→ f (u(t), t)] ∈
AP0(R,Y).

Proof. We setK := u(R), the closure ofu(R), which is compact [31], Property 1, p.
2. We define the mappingφ : C0(K,Y)× K → Y by φ(g,x) := g(x), and the function
v : R→C0(K,Y)×K by v(t) := ( f K(t),u(t)), where f K is provided by Lemma 3.3. When
g,h ∈C0(K,Y) andx,z∈ K, we haved(φ(g,x),φ(h,z)) ≤ d(g(x),h(x)) + d(h(x),h(z)) ≤
d∞(g,h) + d(h(x),h(z)). From these inequalities we can deduce thatφ is continuous. In
view of Lemma 3.3 we deduce thatf K is almost periodic, and by the Bochner criterion,
[31], p. 4, we see thatv∈ AP0(R,C0(K,Y)×K). Since f (u(t), t) = φ ◦ v(t) for all t ∈ R,
we conclude using Lemma 3.2.

The proof of Lemma 3.4 is contained in [20] Chapter 1, p.7. Lemma 3.4 is established
in [41] (Theorem 2.7, p. 16) whenX andY are finite-dimensional spaces. Theorem 2.7 may
not be extened to general complete metric spaces since Yoshizawa uses an argument on the
separability ofX.

(4) N1
f : AP0(R,X)→ AP0(R,Y), N1

f (u) := [t 7→ f (u(t), t)]

where f ∈ APU(X×R,Y).

Following Remark 2.1, whenφ ∈ C0(X,Y), we can define the superposition operator
u 7→ φ◦u from AP0(R,X) into AP0(R,Y). The first main result of this section is the follow-
ing theorem.

Theorem 3.5. Let f ∈ APU(X×R,Y). Then the superposition N1f , defined in (4), is con-

tinuous from AP0(R,X) into AP0(R,Y).

We will give three proofs of Theorem 3.5. But first, we need the following lemma.

Lemma 3.6. If K is a compact subset of AP0(R,X), then
S:= {u(t) : t ∈ R,u∈ K } is a relatively compact subset of X.

Proof. We fix ε > 0. SinceK is compact, it is also precompact, thus there exists{u1, ...,up}
a finite subset ofAP0(R,X) such thatK ⊂

S
1≤ j≤p{v∈ AP0(R,X) : d∞(v,u j) ≤ ε

2}. Since
u j(R) is relatively compact inX for all j = 1, ..., p, their union

S
1≤ j≤pu j(R) also is rela-

tively compact too, and consequently there exists{t1, ..., tq} a finite subset ofR such thatS
1≤ j≤pu j(R) ⊂

S
1≤ j≤p

S
1≤k≤q{x∈ X : d(x,u j(tk)) ≤ ε

2}. If x∈ S there existv∈ K and
t ∈ R such thatx = v(t), and then there existsj ∈ {1, ..., p} such thatd∞(v,u j) ≤ ε

2, and
consequently we haved(x,u j(t)) ≤ ε

2. By using the previous inclusion, we obtain that
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there existi ∈ {1, ..., p} andk ∈ {1, ...,q} such thatd(u j(t),ui(tk)) ≤ ε
2. And so we have

d(x,u j(tk))≤ d(x,u j(t))+d(u j(t),ui(tk))≤ 2ε
2 = ε. This reasoning proves the following in-

clusion:S⊂
S

1≤ j≤p
S

1≤k≤q{x∈X : d(x,u j(tk))≤ ε} that meansSis precompact, and since
X is complete, we obtain thatS is relatively compact, [22], Th́eor̀eme 3.17.5, p. 63.

Lemma 3.6 and its proof are included in [20], Lemme 3 in Section 3 of Chapter 2, p.15.
First Proof of Theorem 3.5.

Proof. Let K be a compact subset ofAP0(R,X), let u ∈ K and letε > 0. We setS :=
{u(t) : t ∈ R,u∈ K }. By using Lemma 3.6 we know that the closureS is compact. Since
f ∈ APU(X×R,Y) there exists̀ > 0 such that, for allr ∈ R, there exists−τ ∈ [r, r + `]
satisfying the following condition:

(5) d( f (x,s+ τ), f (x,s))≤ ε
3 for all (x,s) ∈ S×R.

SinceS× [0, `] is compact as a product of two compacts,f is uniformly continuous on it,
and consequently there existsδ = δ(S× [0, `],ε) > 0 such that, for alls1,s2 ∈ [0, `] and for
all x1,x2 ∈ S we have:(d(x1,x2) ≤ δ, |s1− s2| ≤ δ) =⇒ d( f (x1,s1), f (x2,s2)) ≤ ε

3. This
implies the following assertion:

(6) d(x1,x2)≤ δ =⇒ d( f (x1,s), f (x2,s))≤ ε
3, for all s∈ [0, `].

If v∈ K satisfiesd∞(v,u)≤ δ, by using (5) and (6), we obtain, for allt ∈ R,

d( f (u(t), t), f (v(t), t))≤ d( f (u(t), t), f (u(t), t− τ))+

d( f (u(t), t− τ), f (v(t), t− τ))+d( f (v(t), t− τ), f (v(t), t))≤ 3
ε
3

ε.

And so, by taking the supremum on thet ∈ R, we obtaind∞(N1
f (u),N1

f (v)) ≤ ε. This
proves that the restriction ofN1

f to K is continuous for all compact subsetK of AP0(R,X);
and sinceAP0(R,X) andAP0(R,Y) are metric spaces, this proves the continuity ofN1

f on
AP0(R,X).

This first proof of Theorem 3.5 is due to Cieutat [20], Proposition 1 in Section 3 of
Chapter 2, p. 15-17. In order to give a second proof of Theorem 3.5 we need the following
new result.

Lemma 3.7. Let f ∈APU(X×R,Y). Then the following assertion holds: for all K∈Pc(X)
and for all ε > 0, there existsδ = δ(K,ε) > 0 such that, for all x∈ K and for all z∈ X, if
d(x,z)≤ δ then d( f (x, t), f (z, t))≤ ε, for all t ∈ R.

Before presenting the proof of this lemma, let’s first give the following remark.

Remark3.8. This statement is not simply the uniform continuity off on K×R (Lemma
3.1). Note that we usez∈ X and notz∈ K in the conclusion. WhenX is locally compact,
for instance whenX is a finite-dimensional Banach space, we can find a relatively compact
subsetΩ of X which contains the compactK, [22], Result 3.18.2, p. 65, and then the
uniform continuity of f on Ω×R implies the conclusion of Lemma 3.7. But whenX is
not locally compact, for instance whenX is an infinite-dimensional Banach space, such a
reasoning becomes impossible.
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Proof. We proceed by contradiction: let’s assume that there existK ∈ Pc(X) and ε > 0
such that, for allδ > 0, there existxδ ∈ K, zδ ∈ X andtδ ∈ R satisfyingd(xδ,zδ) ≤ δ and
d( f (xδ, tδ), f (zδ, tδ) > ε. For allm∈ N∗, we setxm := x1/m, zm := z1/m andtm := t1/m, and
so the following assertion holds:

(7) For all m∈ N∗ there existxm ∈ K, zm ∈ X and tm ∈ R such thatd(xm,zm) ≤ 1
m and

d( f (xm, tm), f (zm, tm)) > ε.

SinceK is compact, by using the Weierstrass-Bolzano theorem, there exists a subsequence
(xα(m))m of (xm)m (whereα : N∗→N∗ is strictly increasing) such that limm→∞ xα(m) = x̂ for
some ˆx ∈ K . Note that we haved(xα(m),zα(m)) ≤ 1

α(m) ≤
1
m for all m∈ N∗, that implies

that we also have limm→∞ zα(m) = x̂. We setK1 := {zα(m) : m∈ N∗}∪ {x̂}. By using the
Heine-Borel-Lebesgue theorem we can see thatK1 is compact. And soK2 := K ∪K1 is
also compact as a union of two compact subsets. Then by using Lemma 3.1, we obtain the
following assertion:

(8) For all σ > 0 there existsβσ > 0 such that, for allx,z ∈ K2, if d(x,z) ≤ βσ then
d( f (x, t), f (z, t))≤ σ for all t ∈ R.

By takingσ0 := ε
2, β := βσ0 and choosingmβ ∈ N∗ such that 1

mβ
≤ β, we obtain

d( f (xα(m), t), f (zα(m), t))≤
ε
2

for all t ∈ R and for allm≥ mβ, that impliesd( f (xα(m), tα(m)), f (zα(m), tα(m))) ≤ ε
2 when

m≥mβ, which contradicts with (7).

Second Proof of Theorem 3.5.

Proof. Let’s fix u ∈ AP0(R,X) and ε > 0. SinceK := u(R) ∈ Pc(X), we can consider
δ = δ(K,ε) > 0 provided by Lemma 3.7. Then whenv∈ AP0(R,X) satisfiesd∞(v,u) ≤ δ,
we haved(v(t),u(t))≤ δ for all t ∈R, with u(t)∈K. Consequently Lemma 3.7 implies that
we haved( f (v(t), t), f (u(t), t))≤ ε for all t ∈R, that means thatd∞(N1

f (v),N
1
f (u))≤ ε.

We need some additional lemmas in order to give a third proof of Theorem 3.5.

Lemma 3.9. If φ ∈C0(X,Y) then the following assertion holds: for all K∈ Pc(X) and all
ε > 0 there existsδ = δ(K,ε) > 0 such that, for all x∈ K and all z∈ X, if d(x,z) ≤ δ then
f (φ(x),φ(z))≤ ε.

Following Remark 2.1, Lemma 3.9 is a straightforward consequence of Lemma 3.7.
Lemma 3.9 is established in [37], footnote (**), p. 355, in [38], Théor̀eme (T.2, IX, 5; 1),
p.109, and in [39], Th́eor̀eme 2.7.20, p. 229. In [12], Lemma A1.3 in Appendix 1, p. 22,
the authors call Lemma 3.9 as the lemma of Heine-Schwartz since its direct proof (given in
Laurent Schwartz’s book) is identical to the proof of the classical Heine’s theorem on the
uniform continuity (continuity on a compact space implies the uniform continuity).

Lemma 3.10. Let A be a compact metric space and F: X×A→Y be a mapping. Then the
following assertions are equivalent.
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(i) F is continuous on X×A.

(ii) The superposition operator NF : C0(A,X)→C0(A,Y) defined by
NF(ϕ) := [a 7→ F(ϕ(a),a)] is well-defined and continuous.

Proof. (i =⇒ ii ) We fix ϕ ∈C0(A,X) andε > 0. We setK := {(ϕ(a),a) : a ∈ A} which
is compact as the range of the compactA by the continuous mappinga 7→ (ϕ(a),a). We
considerδ > 0 provided by Lemma 3.9 whereX is replaced byX×A andφ is replaced
by F . Whenψ ∈ C0(A,X) satisfiesd∞(ψ,ϕ) ≤ δ then we haved((ϕ(a),a),(ψ(a),a)) =
d(ϕ(a),ψ(a))+d(a,a)≤ d∞(ψ,ϕ)≤ δ with (ϕ(a),a) ∈ K for all a∈ A. Then Lemma 3.9
impliesd(F(ϕ(a),a),F(ψ(a),a))≤ ε for all a∈ A, that means:d∞(NF(ϕ),NF(ψ))≤ ε.

(ii =⇒ i) Whenx∈X we consider the constant functionϕx(a) := x, and soϕx∈C0(A,X)
and the mappingx 7→ ϕx is continuous fromX into C0(A,X). We fix (x,a) ∈ X×A, and
consider((xn,an))n a sequence of points ofX×A which converges towards(x,a). Then,
for all n∈ N, the following inequalities hold:

d(F(xn,an),F(x,a))≤ d(F(xn,an),F(x,an))+d(F(x,an),F(x,a))

= d(NF(ϕxn)(an),NF(ϕx)(an))+d(NF(ϕx)(an),NF(ϕx)(a))

≤ d∞(NF(ϕxn),NF(ϕx))+d(NF(ϕx)(an),NF(ϕx)(a)).

Note that limn→∞ d∞(NF(ϕxn),NF(ϕx)) = 0 sinceNF andx 7→ ϕx are continuous, and that
limn→∞ d(NF(ϕx)(an),NF(ϕx)(a)) = 0 sinceNF(ϕx)∈C0(A,Y). And so the last inequalities
imply limn→∞ d(F(xn,an),F(x,a)) = 0.
And since we work in metric spaces, we conclude thatF is continuous.

In the following lemma we use the Bohr compactificationRB of R, [36], Subsection
1.1 in Section 1 in Chapter 1 p. 5. We denote byiB : R → RB the associated injective
homomorphism of topological groups. Recall thatRB is a compact group, thatiB(R) is
dense inRB, and thatu∈ AP0(R,X) then there existsuB ∈C0(RB,X) such thatuB(iB(t)) =
u(t) for all t ∈ R.

Lemma 3.11. Let f ∈ APU(X×R,Y). Then there exists fB ∈ C0(X×RB,Y) such that
fB(x, iB(t)) = f (x, t) for all (x, t) ∈ X×R.

Proof. We consider the operatorIY : AP0(R,Y) → C0(RB,Y) defined byIY(v) := vB. It
is easy to check thatIY is a bijective isometry. We definef ] : X → AP0(R,Y) by setting
f ](x) := [t 7→ f (x, t)]. By using Lemma 3.7 we see thatf ] is continuous. Denote byπ1

andπ2 the two projections onX×RB. We define the mappingE : C0(RB,Y)×RB → Y
by E(ϕ,ξ) := ϕ(ξ). We can verify thatE is continuous. Since a composition of continu-
ous mappings is continuous, we obtain thatfB := E ◦ (IY ◦ f ] ◦π1,π2) is continuous from
X ×RB into Y. And when(x, t) ∈ X ×R, we have fB(x, iB(t)) = E(IY ◦ f ](x), iB(t)) =
IY( f ](x))(iB(t)) = f ](x)(t) = f (x, t).

Third Proof of Theorem 3.5.

Proof. We considerfB ∈ C0(X ×RB,Y) provided by Lemma 3.11. In view of Lemma
3.10 it follows that the superposition operatorNfB : C0(RB,X) → C0(RB,Y), defined by
NfB(ϕ) = [ξ 7→ fB(ϕ(ξ),ξ)], is continuous, i.e. the following assertion holds:
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(9) For all ϕ ∈ C0(RB,X) and all ε > 0 there existsη = η(ϕ,ε) > 0 such that, for all
ψ ∈C0(RB,X), if d∞(ψ,ϕ)≤ η, then we haved∞(NfB(ψ),NfB(ϕ))≤ ε.

Fix u∈ AP0(R,X) andε > 0. Let η = η(uB,ε) > 0 be provided by (9). Ifv∈ AP0(R,X)
satisfiesd∞(v,u)≤ η then we also haved∞(vB,uB)≤ η and consequently, by using (9), we
obtain, for allt ∈ R, the following inequalities:

d( f (v(t), t), f (u(t), t)) = d( fB(v(t), iB(t)), fB(u(t), iB(t)))

= d( fB(vB(iB(t)), iB(t)), fB(uB(iB(t)), iB(t)))≤ d∞(NfB(vB),NfB(uB))≤ ε,

that impliesd∞(N1
f (v),N

1
f (u))≤ ε.

In the finite-dimensional Banach spaces setting, Theorem 3.5 is stated in [30], Lemma
1.1, p. 5, with no proof. The authors rather refer to 1955 Amerio’ works (in Italian), 1960
Perov’s results (in Russian), 1962 Zubov’s works (in Russian), and 1961 Corduneanu’s
results (in Romanian); see [30] for precise references. WhenX is a finite-dimensional
space, a proof of Theorem 3.5 is also given in [11], Lemma 5, p. 706.

Now we establish the converse of Theorem 3.5.

Theorem 3.12.Let f : X×R→Y be a mapping such that, for all u∈ AP0(R,X), we have
[t 7→ f (u(t), t)] ∈ AP0(R,Y), and such that the superposition operator N1

f : AP0(R,X) →
AP0(R,Y) is continuous. Then we have f∈ APU(X×R,Y).

Proof. For allx∈ X we consider the constant functionux : R→ X defined byux(t) := x for
all t ∈ R. Then we haveux ∈ AP0(R,X), and by using the first assumption we obtain the
following assertion:

(10) For allx∈ X, f (x, .) = N1
f (ux) ∈ AP0(R,Y) .

It is clear that the mappingU : X → AP0(R,X), defined byU(x) := ux, is continuous and
sinceN1

f : AP0(R,X) → AP0(R,Y) is continuous, the compositionN1
f ◦U is continuous

on X, and by using the Heine theorem, we obtain that, for allK ∈ Pc(X), the mapping
x 7→ f (x, .) is uniformly continuous onK, i.e. the following assertion holds:

(11) For all K ∈ Pc(X) and allε > 0 there existsδ = δ(K,ε) > 0 such that, for allx,z∈ K,
if d(x,z)≤ δ thend( f (x, t), f (z, t))≤ ε for all t ∈ R.

This assertion means that, for allK ∈ Pc(X), the family( f (., t))t∈R is uniformly equi-
continuous onK.
Now we fixK ∈ Pc(X) andε > 0. Then there exists a finite subset{x1, ...,xn} in K such that
K ⊂

S
1≤i≤n{x∈ X : d(x,xi) ≤ δ(K, ε

3)} whereδ(K, ε
3) is provided by (11). By using (10)

we know thatf (xi , .) ∈ AP0(R,Y) for all i = 1, ...,n, and by using the Bochner criterion, we
see that the functiont 7→ ( f (x1, .), ..., f (xn, .)) is almost periodic, from which we obtain the
following assertion:

(12) For all σ > 0 there exists̀ = `σ > 0 such that, for allr ∈ R, there existsτ ∈ [r, r + `]
satisfyingd( f (xi , t + τ), f (xi , t))≤ σ for all i = 1, ...,n and allt ∈ R.
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We use (12) withσ = ε
3. Let r ∈R andτ∈ [r, r +`]. Then we haved( f (xi , t +τ), f (xi , t))≤ ε

3
for all i = 1, ...,n and allt ∈ R. Whenx∈ K there existsi ∈ {1, ...,n} such thatd(x,xi) ≤
δ(K, ε

3), and then, by using (11), the following inequalities hold:d( f (x, t), f (xi , t))≤ ε
3 and

d( f (x, t + τ), f (xi , t + τ))≤ ε
3 for all t ∈ R. Therefore we obtain

d( f (x, t + τ), f (x, t))≤ d( f (x, t + τ), f (xi , t + τ))+d( f (xi , t + τ), f (xi , t))

+d( f (xi , t), f (x, t))≤ 3
ε
3

= ε,

for all t ∈R. And so we have proven that for allK ∈ Pc(X) and for allε > 0 there exists̀ =
`(K,ε) > 0 such that, for allr ∈R there existsτ∈ [r, r +`] satisfyingd( f (x, t +τ), f (x, t))≤
ε for all x∈ K and for allt ∈ R. This is the second condition to havef ∈ APU(X×R,Y).
After that, it suffices to prove thatf is continuous onX×R.

Let C be a compact subset ofX×R. We setpr1 andpr2 the two projections onX×R,
andC1 := pr1(C), C2 := pr2(C). Note thatC1 andC2 are compact and that we haveC⊂
C1×C2. We fix ε > 0. By using (11) withK = C1, we know that the following assertion
holds:

(13) There existsδ = δ(C1,
ε
3) > 0 such that, for allx,z∈C1, if d(x,z) ≤ δ then we have

d( f (x, t), f (z, t))≤ ε
3 for all t ∈ R.

SinceC1∈Pc(X), there exists a finite subset{z1, ...,zm} in C1 such thatC1⊂
S

1≤i≤m{z∈X :
d(z,zi)≤ δ}. Since f (zi , .) ∈ AP0(R,Y), f (zi , .) is uniformly continuous onC2, and conse-
quently we have: for alli = 1, ...,mand for allσ > 0 there existsηi(σ) > 0 such that, for all
s, t ∈R, if |s− t| ≤ ηi(σ) thend( f (zi ,s), f (zi , t))≤ σ. We setη(σ) := min1≤i≤mηi(σ) > 0,
and we obtain the following assertion:

(14) For all σ > 0 there existsη(σ) > 0 such that, for alls, t ∈ R, if |s− t| ≤ η(σ) then we
haved( f (zi ,s), f (zi , t))≤ σ for all i = 1, ...,m.

Now we fixx∈C1 andt ∈C2. We choosezi such thatd(x,zi)≤ δ whereδ is the one of
(13). We considerz∈C1 such thatd(z,zi)≤ δ ands∈C2 such that|s− t| ≤ η( ε

3 whereη is
provided by (14). Then by using (13) and (14), we obtain the following inequalities:

d( f (x, t), f (z,s))≤

d( f (x, t), f (zi , t))+d( f (zi , t), f (zi ,s))+d( f (zi ,s), f (z,s))≤ 3
ε
3

= ε.

That proves the continuity of the restriction off toC1×C2. Consequently the restriction of
f toC is also continuous, for all compact subsetC of X×R. SinceX×R is a metric space,
this proves the continuity off onX×R.

Corollary 3.13. Letφ : X →Y be a mapping. Then the two following assertions are equiv-
alent.

(i) φ is continuous from X into Y.

(ii) The superposition operator u7→ φ◦u is continuous from AP0(R,X) into AP0(R,Y).



Superposition Operators Between Various Almost Periodic Function Spaces 53

Following Remark 2.1, Corollary 3.13 is a straightforward consequence of Theorem 3.5
and Theorem 3.12.

Remark3.14. All the results of this section remain valid if we replaceR by R+ = [0,∞) or
by a locally compact Abelian group.

Remark3.15. WhenΩ is a nonempty open subset ofX, we define

AP0(R,Ω) := {u∈ AP0(R,X) : u(R)⊂ Ω}.

Sinceu(R) is compact whenu∈AP0(R,X) and sinceX\Ω is closed, whenu∈AP0(R,Ω),
we can findρ > 0 such thatv∈ AP0(R,Ω) whenv∈ AP0(R,X) and‖v−u‖∞ < ρ. And so
AP0(R,Ω) is an open subset ofAP0(R,X). When f ∈C0(X×R,Y) satisfies the condition
which definesAPU(X×R,Y) where we replaceK ∈ Pc(X) by K ∈ Pc(Ω), we say that
f ∈ APU(Ω×R,Y). And then all the results of this section remain valid when we replace
AP0(R,X) by AP0(R,Ω) andAPU(X×R,Y) by APU(Ω×R,Y).

4 An Application to Evolution Equations

We consider a Banach spaceX, a (possibly) unbounded linear operatorA : D(A)⊂ X → X,
a nonlinear mappingf : X×R+ → X, and the following semilinear evolution equation:

(15) u′(t) = Au(t)+ f (u(t), t).

We consider the following list of assumptions on the equation (15).

(16) A is the infinitesimal generator of aC0-semigroup of linear operators(S(t))t≥0 on X
such that there existsω > 0 satisfying‖S(t)x−S(t)y‖ ≤ eωt‖x−y‖ for all t ≥ 0 and
for all x,y∈ X.

(17) f ∈ APU(X×R+,X).

(18) There existsγ > 0 such that, for allλ > 0, for all x,y∈ X and for allt ≥ 0 we have
(1−λγ)‖x−y‖ ≤ ‖x−y+λ( f (x, t)− f (y, t))‖.

All the notions used in these three assumptions are defined in [29]; (18) is called a condition
of accretivity of− f + γI , whereI is the identity operator onX. Recall that a so-called mild
solution of (15) is a continuous solutionu of the following integral equation:

u(t) = S(t−s)x+
Z t

s
S(t− r) f (u(r), r)dr, t ≥ s.

Theorem 4.1. We assume (16)-(18) fulfilled and we assume thatω− γ < 0. Then there
exists a unique almost periodic mild solution of (15).

This result is proven by Corollary 2.27 in [29], p. 146 by using an (apparently) ad-
ditional assumption. Now we explain what is new here. In [29], the authors formulate a
so-called condition (H5), Definition 2.18, p. 144, which says (by using our vocabulary and
our notations) that the superpositionN1

f : AP0(R+,X) → AP0(R+,X) is well-defined and
continuous. By using our results of Section 3, this condition (H5) is translatable into a
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condition onf which is exactly (17). Moreover, inside their so-called condition (H4), Defi-
nition 2.17, p.144, they assume thatf is continuous onX×R+ which is redundant since this
continuity is contained in (17) after our Theorem 3.12. Finally, in their statement of their
Corollary 2.17, the authors of [29] assume (by translating in our notations) that−N1

f + γN1
I

is an accretive operator in the sense given in their Definition 1.5, p. 17. It is easy to verify
that (18) implies their accretivity condition on the operators.

5 Differentiability and Almost Periodicity

In this section,X andY are Banach spaces.

Theorem 5.1. Let f ∈ APU(X×R,Y) such that the partial Fŕechet-differential with re-
spect to the first vector variable Dx f (x, t) exists for all(x, t) ∈ X×R. We also assume that
Dx f ∈ APU(X×R,L(X,Y)).
Then the superposition operator N1

f , defined in (4), is continuously differentiable from

AP0(R,X) into AP0(R,Y), and for all u,v∈ AP0(R,X) we have
DN1

f (u).v = [t 7→ Dx f (u(t), t).v(t)].

Proof. SinceDx f ∈ APU(X×R,L(X,Y)), by using Theorem 3.5, we have:

(19) N1
Dx f is continuous fromAP0(R,X) into AP0(R,L(X,Y)).

We fix u∈ AP0(R,X) and set

(20) L(t) := Dx f (u(t), t) for all t ∈ R.

L ∈ AP0(R,L(X,Y)) in view of (19). We define now the mappingF : X×R→Y by

(21) F(z, t) := L(t).z for all (z, t) ∈ X×R.

We consider the bilinear continuous operatorB : L(X,Y)×X→Y defined byB(T,x) := T.x.
Denoting bypr1 andpr2 the two projections onX×R, we see thatF = B◦(L◦ pr2, pr1) and
consequentlyF is continuous as a composition of continuous mappings. We fixK ∈ Pc(X)
andε > 0. Letρ > 0 such that‖x‖ ≤ ρ for all x∈ K. SinceL is almost periodic, there exists
` = `( ε

ρ) > 0 such that, for allr ∈R, there existsτ∈ [r, r +`] satisfying‖L(t +τ)−L(t)‖≤ ε
ρ

for all t ∈ R. Consequently, for all(x, t) ∈ K×R, we have‖F(x, t + τ)−F(x, t)‖ ≤ ‖L(t +
τ)−L(t)‖.‖x‖ ≤ ε

ρ .ρ = ε. And so we have proven thatF ∈ APU(X×R,Y). Then, by using
Lemma 3.4, we obtain the following.

(22) For allv∈ AP0(R,X), Λ.v := [t 7→ Dx f (u(t), t).v(t)] ∈ AP0(R,Y).

By using the mean value theorem, Corollaire 1 in [2], Corollaire 1, p. 144, or result 8.6.2
in [22], p. 164, we have, for allv∈ AP0(R,X) and for allt ∈ R, the following inequality:

(23) ‖ f (u(t)+v(t), t)− f (u(t), t)−Dx f (u(t), t).v(t)‖
≤ supζ∈ ]u(t),u(t)+v(t)[ ‖Dx f (ζ, t)−Dx f (u(t), t)‖.‖v(t)‖.

By using Lemma 3.7, and settingK := u(R) ∈ Pc(X), we obtain:
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(24) For all ε > 0 there existsδ = δ(K,ε) > 0 such that, for allx∈ K and for allz∈ X, if
‖x−z‖ ≤ δ then we have‖Dx f (z, t)−Dx f (x, t)‖ ≤ ε for all t ∈ R.

Fix now ε > 0 and considerv∈ AP0(R,X) such that‖v‖∞ ≤ δ whereδ is provided by (24).
Then, for allt ∈ R and allζ ∈ ]u(t),u(t) + v(t)[, we have‖ζ− u(t)‖ ≤ ‖(u(t) + v(t))−
u(t)‖= ‖v(t)‖ ≤ ‖v‖∞ ≤ δ, which implies, (in view of(24)), the following assertion:

(25) For all t ∈ R and allζ ∈ ]u(t),u(t)+v(t)[ and‖Dx f (ζ, t)−Dx f (u(t), t)‖ ≤ ε.

From (23) and (25) we deduce that

‖ f (u(t)+v(t), t)− f (u(t), t)−Dx f (u(t), t).v(t)‖ ≤ ε‖v(t)‖

for all t ∈ R, and by taking the supremum ont ∈ R, we obtain
‖N1

f (u+v)−N1
f (u)−Λ.v‖∞ ≤‖v‖∞ when‖v‖∞ ≤ δ; this proves thatN1

f is Fŕechet-differentiable
atu and that

(26) DN1
f (u).v = [t 7→ Dx f (u(t), t).v(t)].

Now it suffices to proves the continuity ofDN1
f . By using (19) and Theorem 3.5, we know

that the following assertion holds.

(27) For all u ∈ AP0(R,X) and all ε > 0 there existsη = η(u,ε) > 0 such that, for all
u1 ∈ AP0(R,X), if ‖u−u1‖∞ ≤ η then‖N1

Dx f (u)−N1
Dx f (u1)‖ ≤ ε.

We fix u∈ AP0(R,X) andε > 0. Letu1 ∈ AP0(R,X) such that‖u−u1‖∞ ≤ η, whereη is
provided by (27). Then, for allv∈ AP0(R,X) such that‖v‖∞ ≤ 1, by using (27) we have

‖Dx f (u(t), t).v(t)−Dx f (u1(t), t).v(t)‖ ≤ ‖Dx f (u(t), t)−Dx f (u1(t), t)‖.‖v(t)‖

≤ ‖NDx f (u)−NDx f (u1)‖.‖v‖∞ ≤ ε.1 = ε,

that implies, by taking the supremum on allt ∈ R, that
‖DN1

f (u).v−DN1
f (u1).v‖∞ ≤ ε, and by taking the supremum on thev ∈ AP0(R,X) such

that‖v‖∞ ≤ 1, we obtain‖DN1
f (u)−DN1

f (u1)‖∞ ≤ ε in norm of linear operators. And so
the continuity ofDN1

f follows.

Theorem 5.1 was established in [20], Proposition 3 in Section 3 of Chapter 2, p. 17, by
using a different proof. WhenX is a finite-dimensional space, a proof of Theorem 5.1 is
given in [11], Lemma 7, p. 710. By induction from Theorem 5.1 we obtain the following
result.

Theorem 5.2. Let f ∈ APU(X×R,Y) and n∈ N∗. We assume that the partial Fréchet-
differential with respect the first vector variable of order n, Dn

x f (x, t), exists for all(x, t) ∈
X×R, and that Dk

x f ∈ APU(X×R,Lk(Xk,Y)) for all k = 1, ...,n.
Then the superposition operator N1

f , defined in (4), is n-times continuously differentiable

from AP0(R,X) into AP0(R,Y), and moreover, for all u,v1, ...,vn ∈ AP0(R,X) we have
DnN1

f (u).(v1, ...,vn) = [t 7→ Dn
x f (u(t), t).(v1(t), ...,vn(t)].

By using Remark 2.1, a straightforward of this result is the following one.
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Corollary 5.3. Let n∈N∗ andφ∈Cn(X,Y). Then the superposition operator N1
φ : u 7→ φ◦u,

from AP0(R,X) into AP0(R,Y), is n-times continuously differentiable on AP0(R,X), and,
for all u,v1, ...,vn∈AP0(R,X), we have DnN1

φ(u).(v1, ...,vn)= [t 7→Dnφ(u(t)).(v1(t), ...,vn(t))].

Whenn= 1, in the finite-dimensional setting, Corollary 5.3 is proven in [9], Proposition
1, p. 19.

6 An Application to Differential Equations

In this section,X is a Banach space. Letf0, f1 : X×R → X be two mappings andε ∈ R.
We consider the following ordinary differential equation:

(28) u′(t) = f0(u(t), t)+ ε. f1(u(t), t).

Whenε = 0 this equation becomes:

(29) u′(t) = f0(u(t), t).

We will assume that there exists a solutionu∗ ∈ AP1(R,X) of (29), that the partial Fréchet-
differential of f0 with respect tox exists and we consider the following condition on the
linearization of (29) aroundu∗.

(30) For allb∈ AP0(R,X) there exists a uniquev∈ AP1(R,X) such that
v′(t) = Dx f0(u∗(t), t).v(t)+b(t) for all t ∈ R.

We can find conditions onDx f0(u∗(t), t) which ensure the validity of (30). For instance
in [20], Théor̀eme 3, Section 3, Chapter III, p. 43, the following assertion is proven: ifX
is a Hilbert space and if[t 7→ Dx f0(u∗(t), t)] ∈ AP0(R,L(X,X)) and if there existsα > 0
satisfying〈Dx f0(u∗(t), t).x | x〉 ≥ α‖x‖2 for all (x, t) ∈ X×R, then (30) is fulfilled. In the
finite-dimensional setting, such a question is considered in [27], Lemma 13-1, p. 122.

Theorem 6.1.We assume that f0, f1∈APU(X×R,X), that the partial Fŕechet-differentials
Dx f0(x, t) and Dx f1(x, t) exist for all(x, t)∈X×R, and that Dx f0,Dx f1∈APU(X×R,L(X,X)).
We assume that there exists u∗ ∈ AP1(R,X) which is a solution of (29) for which condition
(30) is also fulfilled. Then there existε0 > 0 and a continuously differentiable function
ε 7→ uε, from (−ε0,ε0) into AP1(R,X), such that, for allε ∈ (−ε0,ε0), uε is an almost
periodic solution of the differential equation (28) and such that u0 = u∗.

Proof. We introduce the operatorT : AP1(R,X)×R → AP0(R,X) defined byT(u,ε) :=
[t 7→u′(t)− f0(u(t), t)−ε. f1(u(t), t)]. We consider the operatord

dt : AP1(R,X)→AP0(R,X)
which is linear continuous. We also consider the canonical injectionin : AP1(R,X) →
AP0(R,X), in(u) := u, which is linear continuous. Then we see thatT(u,ε) = d

dtu−N1
f0 ◦

in(u)− ε.N1
f1 ◦ in(u) for all (u,ε) ∈ AP1(R,X)×R. By using Theorem 5.2, we know

that N1
f0 andN1

f1 are of classC1 on AP0(R,X). Then we obtain thatT is of classC1 on
AP1(R,X)×R. We also verify that the following equation holds:

(31) T(u∗,0) = 0.
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We calculate the partial Fréchet-differential ofT with respect to its first (functional) vari-
ableDuT(u∗,0).v = d

dtv−DN1
f0(u∗).v−0.DN1

f (u∗).v. And we see thatDuT(u∗,0).v = b is
equivalent to the differential equationv′(t) = Dx f0(u∗(t), t).v(t)+ b(t) for all t ∈ R. And
consequently, (30) ensures that the following assertion holds:

(32) DuT(u∗,0) ∈ Isom(AP1(R,X)×R,AP0(R,X)).

After (31) and (32) we can use the implicit function theorem, [1] Theorem 2.5.7, p. 107
and conclude that there existε0 > 0 and a continuously differentiable functionε 7→ uε,
from (−ε0,ε0) into AP1(R,X), such thatT(uε,ε) = 0 for all ε ∈ (−ε0,ε0), that means that
u′ε(t) = f0(uε(t), t)+ ε. f1(uε(t), t) for all t ∈ R, and moreoveru0 = u∗.

Remark6.2. Such a method based on the implicit function theorem is used for instance in
[11] for the bounded solutions of second-order ordinary differential equations and in [8] for
the periodic solutions of Hamiltonian systems.

7 Differentiable Almost Periodic Functions

In this section,X andY are Banach spaces.

Lemma 7.1. Let f ∈ APU(X×R,Y)∩C1(X×R,Y) such that its Fŕechet-differential
D f ∈ APU(X×R,L(X×R,Y)). We consider the new mapping g: X×X×R→Y defined
by g(x1,x2, t) := D f (x1, t).(x2,1). Then the following assertions hold.

(i) g∈ APU((X×X)×R,Y).

(ii) Let n∈ N∗, n≥ 2. If we assume moreover that f∈Cn(X×R,Y) and that
Di f ∈ APU(X×R,Li((X×R)i ,Y)) for all i = 1, ...,n, then g∈Cn−1(X×X×R,Y)
and Djg∈ APU((X×X)×R,L j((X×X×R) j ,Y)) for all j = 1, ...,n−1.

Proof. (i) We consider the three projection mappingspr1, pr2 andpr3 on the product space
X×X×R, and the bilinear continuous mappingB : L(X×R,Y)×(X×R)→Y defined by
B(ϕ,(x, t)) := ϕ(x, t). We see that the following equality holds.

(33) g = B◦ (D f ◦ (pr1, pr3),(pr2,c))

wherec : X×X×R → R is the constant mappingc(x1,x2, t) := 1. Since all the mappings
present in the right member of (32) are continuous,g is continuous onX ×X ×R as a
composition of continuous mappings. Now we fixC∈ Pc(X×X) andε > 0. We setC1 :=
pr1(C) andC2 := pr2(C) which are compact subsets ofX. We choseρ > 0 such that
‖x2‖+ 1≤ ρ for all x2 ∈ C2. Since we haveD f ∈ APU(X×R,L(X×R,Y)), we know
that there exists̀ = `(C2,

ε
ρ) > 0 such that, for allr ∈ R, there existsτ ∈ [r, r + `] satisfying

‖D f (x1, t + τ)−D f (x1, t)‖ ≤ ε
ρ for all (x1, t) ∈C2×R. Therefore we have

‖D f (x1, t + τ).(x2,1)−D f (x1, t).(x2,1)‖

≤ ‖D f (x1, t + τ)−D f (x1, t)‖.(‖x2‖+1)≤ ε
ρ
.ρ = ε
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for all (x1,x2, t) ∈ C1×C2×R. Since we haveC ⊂ C1×C2, we have proven thatg ∈
APU((X×X)×R,Y).

(ii) We define the mappingsΦ : X×X×R→ L(X×R,Y) andΨ : X×X×R→ X×R
by settingΦ := D f ◦ (pr1, pr3) and Ψ := (pr2,c), and so by using (32), we obtain the
following equality.

(34) g = B◦ (Φ,ψ).

Then by using the chain rule for the high-order differentials, for instance this one given
in Box 2.4 A in [1], p. 91, for allp = 2, ...,n, for all (x1,x2, t) ∈ X×X×R, and for all
zi = (xi

1,x
i
2, t

i) ∈ X×X×R wheni = 1, ...,n, we have the following formula:

Dpg(x1,x2, t).(z1, ...zp)

=
p

∑
i=0

∑
σ∈S i

p

p!
i!(p− i)!

B(DiΦ(x1,x2, t).(zσ(1), ...zσ(p)),Dp−iΨ(x1,x2, t).(zσ(i+1), ...zσ(p)))

whereS i
p denotes the set of the bijectionsσ from {1, ..., p} into itself such thatσ(1) < ... <

σ(i) andσ(i +1) < ... < σ(p). We note that

DiΦ((x1,x2, t).(zσ(1), ...zσ(p)) = Di+1 f (x1, t).((x
σ(1)
1 , tσ(1)), ...,(xσ(i)

1 , tσ(i))),

and sinceΨ is affine, we haveDp−iΨ(x1,x2, t) = 0 wheni ≤ p−2 and we have
D1Ψ(x1,x2, t).(δx1,δx2,δt) = (δx2,0). And so the previous formula forDpg becomes the
following one.

(35) Dpg(x1,x2, t).(z1, ...zp) = Dp+1 f (x1, t).((x1
1, t

1), ...,(xp
1, t p),(x2,1))

+
p

∑
i=1

Dp f (x1, t).((x1
1, t

1), ...,(xi−1
1 , t i−1),(x2,0),(xi+1

1 , t i+1), ...,(xp
1, t p)).

Now we fixC∈ Pc(X×X) andε > 0, and we considerC1 andC2 defined like in the proof
of (i). We choseρ > 0 such that‖x2‖ ≤ ρ for all x2 ∈C2.
SinceDp+1 f ∈APU(X×R,Lp+1((X×R)p+1,Y)) andDp f ∈APU(X×R,Lp((X×R)p,Y)),
we have(Dp+1 f ,Dp f ) ∈ APU(X×R,Lp+1((X×R)p+1,Y)×Lp((X×R)p,Y)), and con-
sequently there exists̀= `(C1,

ε
(p+1)(ρ+1)) > 0 such that, for allr ∈ R, there exists

τ ∈ [r, r + `] satisfying‖Dp+1 f (x1, t + τ)−Dp+1 f (x1, t)‖Lp+1 ≤ ε
(p+1)(ρ+1)

and‖Dp f (x1, t + τ)−Dp f (x1, t)‖Lp ≤ ε
(p+1)(ρ+1) for all x1 ∈C1 and for allt ∈ R. Conse-

quently, by using (35), for allz1, ...,zp ∈ X×X×R such that‖zi‖ ≤ 1 wheni = 1, ..., p, for
all (x1,x2, t) ∈C1×C2×R, the following inequalities hold:

‖Dpg(x1,x2, t + τ).(z1, ...zp)−Dpg(x1,x2, t).(z1, ...zp)‖

≤ ‖(Dp+1 f (x1, t + τ)−Dp+1 f (x1, t)).((x1
1, t

1), ...,(xp
1, t p),(x2,1)‖

+
p

∑
i=1

‖(Dp f (x1, t + τ)−Dp f (x1, t)).

((x1
1, t

1), ...,(xi−1
1 , t i−1),(x2,0),(xi+1

1 , t i+1), ...,(xp
1, t p))‖
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≤ ‖(Dp+1 f (x1, t + τ)−Dp+1 f (x1, t))‖.
p

∏
i=1

(‖xi
1‖+ |t i |).(‖x2‖+1)

+
p

∑
i=1

‖Dp f (x1, t + τ)−Dp f (x1, t)‖. ∏
1≤ j≤p, j 6=i

(‖x j
1‖+ |t j |).‖x2‖

≤ ε
(p+1)(ρ+1)

.(ρ+1)+
p

∑
i=1

ε
(p+1)(ρ+1)

.(ρ+1) = ε.

And so we have proven thatDpg∈ APU((X×X)×R,Lp((X×X×R)p,Y))).

Theorem 7.2.Let n∈N∗ and f∈APU(X×R,Y)∩Cn(X×R,Y) such that Dk f ∈APU(X×
R,Lk((X×R)k,Y)) for all k = 1, ...,n. Then the superposition operator N2

f : APn(R,X)→
APn(R,Y), defined by N2f (u) := [t 7→ f (u(t), t)], is well-defined and continuous on APn(R,X).

Proof. We proceed by induction onn.
First Step: n = 1. We denote byin1 : AP1(R,X) → AP0(R,X) the canonical injection.
By using Theorem 3.5 we know thatN1

f (in1(u)) ∈ AP0(R,Y) whenu ∈ AP0(R,X). The
functiont 7→ f (u(t), t) is differentiable as a composition of differentiable functions, and we
have

d
dt

f (u(t), t) = D f (u(t), t).(u′(t),1) = g(u(t),u′(t), t)

whereg is defined in Lemma 7.1. Since(in1(u),u′) ∈ AP0(R,X×X), by using Lemma 3.4,
we know that[t 7→ f (u(t), t)] = N1

g(in1(u),u′) ∈ AP0(R,Y), and soN2
f is well-defined on

AP1(R,X).
We note that, for allu,u1 ∈ AP1(R,X), the following equality holds:

(36) ‖N2
f (u)−N2

f (u1)‖C1 = ‖N1
f ◦ in1(u)−N1

f ◦ in1(u1)‖∞

+‖N1
g ◦ (in1,

d
dt )(u)−N1

g ◦ (in1,
d
dt )(u1)‖∞.

It is easy to see thatin1 : AP1(R,X) → AP0(R,X) and d
dt : AP1(R,X) → AP0(R,X) are

linear continuous. By using Theorem 3.5,N1
f : AP0(R,X) → AP0(R,Y) is continuous. By

using Lemma 7.1, we know thatN1
g : AP0(R,X×X) → AP0(R,Y) is continuous. Conse-

quentlyN1
f ◦ in1 : AP1(R,X) → AP0(R,Y) andN1

g ◦ (in1,
d
dt ) : AP1(R,X) → AP0(R,Y) are

continuous as compositions of continuous operators. And so, by using (36), we deduce that
N2

f is continuous fromAP1(R,X) into AP1(R,Y).
Second Step: the induction assumption. We assume that the result is valid for an integer

n∈ N∗.
Third Step: we prove the result forn+ 1. We consider the canonical injectioninn+1 :

APn+1(R,X)→APn(R,X). After Second Step we know that the operatorN2,n
f : APn(R,X)→

APn(R,Y), defined byN2,n
f (w) := [t 7→ f (w(t), t)] is well-defined and continuous. For all

u∈ APn+1(R,X), we haveinn+1(u) ∈ APn(R,X) and consequently we obtain
N2,n

f (inn+1(u)) ∈ APn(R,Y). By using Lemma 7.1, ii, we know thatg∈ APU((X×X)×
R,Y) ∩Cn(X × X ×R,Y), and D jg ∈ APU(((X × X)×R,L j((X × X ×R) j ,Y)) for all
j = 1, ...,n. Consequently by using Second Step, we know thatN2

g : APn(R,X ×X) →
APn(R,Y), defined byN2

g(u1,u2) := [t 7→ g(u1(t),u2(t), t)], is well-defined and continuous.



60 J. Blot, P. Cieutat, G. M. N’Gúeŕekata, and D. Pennequin

And so, for allu∈ APn+1(R,X) we deduce that[t 7→ dn

dtn g(u(t),u′(t), t)] ∈ AP0(R,Y), and
we note that

dn

dtn
g(u(t),u′(t), t) =

dn

dtn
(

d
dt

f (u(t), t)) =
d
dt

(
dn

dtn
f (u(t), t)),

that implies the following equality:

(37) dn

dtn g(u(t),u′(t), t) = dn+1

dtn+1 f (u(t), t).

From this equality we obtain that[t 7→ f (u(t), t)] ∈ APn+1(R,Y) whenu ∈ APn+1(R,X),
that permits to say that the operatorN2,n+1

f : APn+1(R,X) → APn+1(R,Y), defined by

N2,n+1
f (u) := [t 7→ f (u(t), t)], is well-defined.

Now we treat the continuity ofN2,n+1
f . For all u,u1 ∈ APn+1(R,X) we note that the

following majorizations hold:

‖N2,n+1
f (u)−N2,n+1

f (u1)‖Cn+1

= ‖N2,n
f (inn+1(u))−N2,n

f (inn+1(u1))‖Cn +sup
t∈R

‖ dn+1

dtn+1 f (u(t), t)− dn+1

dtn+1 f (u1(t), t)‖

= ‖N2,n
f ◦ inn+1(u)−N2,n

f ◦ inn+1(u1)‖Cn +sup
t∈R

‖ dn

dtn
g(u(t),u′(t), t)− dn

dtn
g(u1(t),u′1(t), t)‖

≤‖N2,n
f ◦ inn+1(u)−N2,n

f ◦ inn+1(u1)‖Cn +‖N2,n
g (inn+1(u),

d
dt

u))−N2,n
g (inn+1(u1),

d
dt

u1))‖Cn.

And sinceN2,n
f , N2,n

g , inn+1 and d
dt are continuous operators, the compositionsN2,n

f ◦ inn+1

andN2,n
g ◦ (inn+1,

d
dt ) are also continuous. Then by using the last previous inequalities, we

deduce thatN2,n+1
f : APn+1(R,X)→ APn+1(R,Y) is continuous.

Before to treat the differentiability of the nonlinear operatorN2
f we need an additional

lemma of differential calculus.

Lemma 7.3. Let Ψ ∈Cn+1(X×R,Y), with n∈ N∗, and let p,q∈Cn(R,X).
Then, for all(ε, t) ∈ R×R, the following equality holds:

d
dε

dn

dtn
Ψ(p(t)+ ε.q(t), t) =

dn

dtn
d
dε

Ψ(p(t)+ ε.q(t), t).

Proof. We proceed by induction onn∈ N∗.
First Step: n = 1. By doing a straightforward calculation, we verify thatd

dε
d
dt Ψ(p(t) +

ε.q(t), t) and d
dt

d
dε Ψ(p(t)+ ε.q(t), t) are both equal to

D2Ψ(p(t)+ ε.q(t), t).((q(t),0),(p′(t)+ ε.q′(t),1))+DΨ(p(t)+ ε.q(t), t).((q′(t),0)).
Second Step: induction assumption onn−1.

Third Step: the casen. We use the induction assumption on the mappingΨ1 ∈Cn((X×
X)×R,Y) defined byΨ1((p1, p2), t) := DΨ(p1, t).(p2,1). And so we have the equality:

d
dε

dn−1

dtn−1 Ψ1((p(t), p′(t))+ε.(q(t),q′(t)), t) =
dn−1

dtn−1

d
dε

Ψ1((p(t), p′(t))+ε.(q(t),q′(t)), t).
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Note that

Ψ1((p(t), p′(t))+ ε.(q(t),q′(t)), t) = DΨ(p(t)+ ε.q(t), t).((p′(t)+ ε.q′(t),1)

=
d
dt

Ψ(p(t)+ ε.q(t), t),

and so we obtain the following equality:

d
dε

dn−1

dtn−1

d
dt

Ψ(p(t)+ ε.q(t), t) =
dn−1

dtn−1

d
dε

d
dt

Ψ(p(t)+ ε.q(t), t).

Then by using the symmetry of the second differential of(t,ε) 7→ Ψ(p(t)+ ε.q(t), t), we
deduce from the previous equality the following ones:

d
dε

dn

dtn
Ψ(p(t)+ ε.q(t), t) =

dn−1

dtn−1

d
dt

d
dε

Ψ(p(t)+ ε.q(t), t) =
dn

dtn
d
dε

Ψ(p(t)+ ε.q(t), t).

Remark7.4. This last lemma is in the spirit of a classical result on second-order partial
derivatives like it is exposed in [25], Theorem 3.3, p. 92. Note that we cannot simplify the
proof of Lemma 7.3 by saying that the function(ε, t) 7→ ψ(p(t)+ ε.q(t), t) is (n+1)-times
differentiable and by using the symmetry of the total differential of ordern+1.

Theorem 7.5. Let f ∈ APU(X×R,Y)∩Cn+1(X×R,Y) such that
Dk f ∈APU(X×R,Lk((X×R)k,Y)) for all k = 1, ...,n+1. Then the superposition operator
N2

f : APn(R,X)→ APn(R,Y), defined by N2f (u) := [t 7→ f (u(t), t)], is continuously differen-

tiable on APn(R,X), and for all u,v∈APn(R,X) we have: DN2
f (u).v= [t 7→Dx f (u(t), t).v(t)].

Proof. By using the high-order chain rule, [1] p. 92, we know that, whenu∈ APn(R,X)
and 1≤ k≤ n, by settingU(t) := (u(t), t), dk

dtk f (u(t), t) = Dk( f ◦U)(t).(1, ...,1) is equal to
a linear combination of terms if the following form:

Di f (U(t)).(D j1U(t).(1, ...,1), ...,D j iU(t).(1, ...,1))

= Di f (U(t)).(
d j1

dt j1
U(t), ...,

d j i

dt j i
U(t)) = Di f (u(t), t).((

d j1

dt j1
u(t),θ j1), ...,(

d j i

dt j i
u(t),θ j i ))

whereθ jm is equal to zero or to 1.

The operatoru 7→ d jm

dt jm u is continuously differentiable fromAPn(R,X) into AP0(R,X)
since it is linear continuous. The operatoru 7→ θ jm is continuously differentiable from
APn(R,X) into AP0(R,X) since it is constant. Whenj ≤ k ≤ n, we haveD j f continu-
ously differentiable and by using Theorem 5.1 we know thatN1

D j f is continuously differ-

entiable fromAP0(R,X) into AP0(R,X). The canonical injectioninn from APn(R,X) into
AP0(R,X) is continuously differentiable since it is linear continuous. And then the oper-
atoru 7→ [t 7→ D j f (u(t), t)] which is equal toN1

D j f ◦ inn is continuously differentiable as a

composition of continuously differentiable operators. The operatorMi : Li((X×R)i ,Y)×
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(X×R)i → Y, defined byMi(T,(z1, ...,zi)) := T.(z1, ..; ,zi), is continuously differentiable
since it isn-linear continuous. Consequently the operator

u 7→ [t 7→ Di f (u(t), t).((
d j1

dt j1
u(t),θ j1), ...,

d j i

dt j i
u(t),θ j i )]

is continuously differentiable fromAPn(R,X) into AP0(R,Y) as a composition of contin-
uously differentiable operators. And since a combination of continuously differentiable
operators is continuously differentiable, we can assert that the following assertion holds.

(38) The operatorSk : APn(R,X)→ AP0(R,Y), defined by
Sk(u) := [t 7→ dk

dtk f (u(t), t)], is continuously differentiable.

Now we fixu∈ APn(R,X). From (38) we know that the following assertion holds:

(39) For allk= 1, ...,n and for allε > 0 there existsηk
ε > 0 such that , for allv∈APn(R,X),

if ‖v‖Cn ≤ ηk
ε then we have

supt∈R ‖ dk

dtk f (u(t)+v(t), t)− dk

dtk f (u(t), t)− (DSk(u).v)(t)‖ ≤ ε.‖v‖Cn.

By using Theorem 5.1 and the Fréchet-differentiability ofN1
f ◦ inn note that the asser-

tion (39) remains valid fork = 0. SinceSk is Fŕechet-differentiable atu, we know that
DSk(u).v = d

dε |ε=0
Sk(u+ ε.v) which means that

lim
ε→0

sup
t∈R

‖1
ε
(

dk

dtk
f (u(t)+ ε.v(t), t)− dk

dtk
f (u(t), t))− (DSk(u).v)(t)‖= 0

and so we have, for allt ∈ R,

lim
ε→0

(
1
ε
(

dk

dtk
f (u(t)+ ε.v(t), t)− dk

dtk
f (u(t), t))−DSk(u).v)(t)) = 0

that gives us the following equality

(40) (DSk(u).v)(t) = d
dε |ε=0

dk

dtk f (u(t)+ ε.v(t), t) for all t ∈ R.

And then, by using Lemma 7.3, and by noting that we haved
dε |ε=0

f (u(t) + ε.v(t), t) =
Dx f (u(t), t).v(t), we obtain

(41) (DSk(u).v)(t) = dk

dtk (Dx f (u(t), t).v(t)) for all t ∈ R.

And so by using (39), (41) and Theorem 5.1, by settingηε := min0≤k≤n ηk
ε/n+1 > 0, we

obtain that for allε > 0 there existsηε > 0 such that for allv∈ APn(R,X), if ‖v‖Cn ≤ ηε
then we have

‖N2
f (u+v)−N2

f (u)−Λ(u).v‖Cn =

n

∑
k=0

sup
t∈R

‖ dk

dtk
f (u(t)+v(t), t)− dk

dtk
f (u(t), t))− dk

dtk
(Dx f (u(t), t).v(t))‖ ≤ ε
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that proves the Fréchet-differentiability ofN2
f atu and that we have

DN2
f (u).v = [t 7→Dx f (u(t), t).v(t)]. To establish the continuity ofN2

f we begin to note that,
whenu,u1,v∈ APn(R,X) with ‖v‖Cn ≤ 1, the following inequalities hold:

‖DN2
f (u).v−DN2

f (u1).v‖Cn =
n

∑
k=0

sup
t∈R

‖ dk

dtk
(Dx j(u(t), t).v(t))− dk

dtk
(Dx j(u1(t), t).v(t))‖

=
n

∑
k=0

sup
t∈R

‖(DSk(u).v)(t)− (DSk(u1).v)(t)‖=
n

∑
k=0

‖DSk(u).v−DSk(u1).v‖∞

≤
n

∑
k=0

‖DSk(u)−DSk(u1)‖L(APn(R,X),AP0(R,X)).

And by taking the supremum on thev ∈ APn(R,X) such that‖v‖Cn ≤ 1, we obtain the
following inequality:

‖DN2
f (u).v−DN2

f (u1).v‖L(APn(R,X),APn(R,X)) ≤
n

∑
k=0

‖DSk(u)−DSk(u1)‖L(APn(R,X),AP0(R,X)).

And since theDSk are continuous we deduce from the last inequality thatDN2
f is continuous.

8 Asymptotically Almost Periodic Functions

In this section,X andY are Banach spaces.

Lemma 8.1. Let f ∈AAPU(X×R+,Y) and K∈Pc(X). Then the restriction of f to K×R+
is uniformly continuous.

Proof. We fix ε > 0 and we considerT = T(K, ε
3) ≥ 0 and` = `(K, ε

3) > 0 provided by
the definition off ∈ AAPU(X×R+,Y); see Section 2. Since[0,T + `+2] is compact, the
productK× [0,T + `+ 2] is also compact, and by using the classical Heine theorem, we
know that the restriction off at this product is uniformly continuous, that permits to obtain
the following assertion:

(42) There existsη ∈ (0,1) such that, for allx1,x2 ∈ K and for allt1, t2 ∈ [0,T + `+2], if
‖x1−x2‖ ≤ η and if |t1− t2| ≤ η, then we have‖ f (x1, t1)− f (x2, t2)‖ ≤ ε

3.

Now we fixx1,x2 ∈ K such that‖x1−x2‖ ≤ η andt1, t2 ∈ R+ such that|t1− t2| ≤ η.
First case:t1, t2 ∈ [0,T]. Then by using (42) we have‖ f (x1, t1)− f (x2, t2)‖ ≤ ε

3 ≤ ε.
Second case:t1 ∈ [0,T] andt2 > T. Note that we havet2− t1 = |t1− t2| ≤ η < 1, that

implies t2 ≤ t1 + 1 ≤ T + 1 ≤ T + ` + 2, and then by using (42) we obtain‖ f (x1, t1)−
f (x2, t2)‖ ≤ ε

3 ≤ ε.
Third case:t1 > T andt2 > T. We setr :=−t1+T +1, and then there existsτ∈ [r, r +`]

such that‖ f (z, t + τ)− f (z, t)‖ ≤ ε
3 for all z∈ K and for allt ≥ T.

We note that−t1 +T +1≤ τ ≤ −t1 +T +1+ ` that impliesT +1≤ t1 + τ ≤ T +1+ ` ≤
T + `+2, and we also note thatt2 + τ ≤ t1 +η+ τ ≤ t1 +1+ τ ≤ T + `+2. Then by using
(42) we obtain the following inequality:
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(43) ‖ f (x1, t1 + τ)− f (x2, t2 + τ)‖ ≤ ε
3.

By taking into account the role ofT, sincet1 ≥ T and t2 ≥ T we obtain the following
inequalities:

(44) ‖ f (x1, t1 + τ)− f (x1, t1)‖ ≤ ε
3 and‖ f (x2, t2 + τ)− f (x2, t2)‖ ≤ ε

3.

By using (43) and (44) we have:

‖ f (x1, t1)− f (x2, t2)‖ ≤ ‖ f (x1, t1)− f (x1, t1 + τ)‖+‖ f (x1, t1 + τ)− f (x2, t2 + τ)‖

+‖ f (x2, t2 + τ)− f (x2, t2)‖ ≤ 3
ε
3

= ε.

The previous proof is very similar to the proof of proposition 10, p.42, in [42].

Lemma 8.2. Let f ∈ AAPU(X×R+,Y). Then for all K∈ Pc(X) and all ε > 0 there exists
δ = δ(K,ε) > 0 such that, for all x∈ K and all z∈ X, if ‖x−z‖ ≤ δ then we have‖ f (x, t)−
f (z, t)‖ ≤ ε, for all t ∈ R+.

The proof of Lemma 8.2 is similar to this one of Lemma 3.7, by replacing the use of
Lemma 3.1 by the use of Lemma 8.1.

Lemma 8.3. Let f ∈ AAPU(X×R+,Y) and u∈ AAP(R+,X). Then we have
[t 7→ f (u(t), t)] ∈ AAP(R+,Y).

This result is due to Zaidman [28]; it permits us to define the following superposition
operator

(45) N3
f : AAP(R+,X)→ AAP(R+,Y), N3

f (u) := [t 7→ f (u(t), t)].

Theorem 8.4. Let f : X×R+ → Y be a mapping. Then the two following assertions are
equivalent.

(i) f ∈ AAPU(X×R+,Y).

(ii) The superposition operator N3f , defined in (45), is continuous from
AAP(R+,X) into AAP(R+,Y).

Proof. (i =⇒ ii). We fix u∈ AAP(R+,X) andε > 0. We setK := u(R+). We know that
K ∈ Pc(X), [42], Lemma p. 37. Then we considerδ = δ(K,ε) > 0 provided by Lemma
8.2. Whenv∈ AAP(R+,X) is such that‖v−u‖∞ ≤ δ, then by using Lemma 8.2, we obtain
‖ f (v(t), t)− f (u(t), t)‖ ≤ ε for all t ≥ 0, that means:‖N3

f (v)−N3
f (u)‖∞ ≤ ε.

(ii =⇒ i). SinceN3
f (AAP(R+,X) ⊂ AAP(R+,Y), whenx∈ X we defineux(t) := x for

all t ≥ 0, and since we haveux ∈ AAP(R+,X), we obtain thatt 7→ f (x, t) = f (ux(t), t) =
N3

f (ux)(t) lies toAAP(R+,Y). And consequently we obtain the following assertion.

(46) For allx∈ X, f (x, .) ∈ AAP(R+,Y).
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We consider the operatorU : x 7→ ux from X into AAP(R+,X). SinceU is a linear isom-
etry,U is continuous and consequently the compositionN3

f ◦U is continuous fromX into

AAP(R+,Y). Note that(N3
f ◦U(x))(t) = f (ux(t), t) = f (x, t) and so we have:

(47) The mappingx 7→ f (x, .) is continuous fromX into AAP(R+,Y).

Consequently, when we fixK ∈ Pc(X), x 7→ f (x, .) is uniformly continuous onK that gives
us the following assertion.

(48) For all K ∈ Pc(X) and for allε > 0, there existsη = η(K,ε) > 0 such that, for all
x,z∈ K, if ‖x−z‖ ≤ η implies‖ f (x, t)− f (z, t)‖ ≤ ε

3 for all t ∈ R+.

We fix K ∈ Pc(X) and we consider a finite list of elementsx1,x2, ...,xn ∈ K such thatK ⊂Sn
i=12B(xi ,η) whereη is provided by (48). After (46) we know thatf (xi , .) ∈ AAP(R+,Y)

for all i = 1, ...,n. It is easy to see that(0, ...,0, f (xi , .),0, ...,0) ∈ AAP(R+,Yn), and since a
finite sum of asymptotically almost periodic functions is asymptotically almost periodic, we
obtain that( f (x1, .), ..., f (xi , .), ... f (xn, .)) = ∑n

i=1(0, ...,0, f (xi , .),0, ...,0) ∈ AAP(R+,Yn),
and so we have the following assertion.

(49) For allε > 0 there exist̀ > 0 andT ≥ 0 such that, for allr ∈R, there existsτ∈ [r, r +τ]
satisfying‖ f (xi , t + τ)− f (xi , t)‖ ≤ ε

3 for all t ≥ T and for alli = 1, ..,n.

Let x∈K. We choosej between 1 andn such that‖x−x j‖ ≤ η. Then whent ≥ T, by using
(48) and (49) we obtain the following inequalities:

‖ f (x, t + τ)− f (x, t)‖ ≤ ‖ f (x, t + τ)− f (x j , t + τ)‖+‖ f (x j , t + τ)− f (x j , t)‖

+‖ f (x j , t)− f (x, t)‖ ≤ 3
ε
3

= ε,

that provides the following assertion

(50) For allK ∈ Pc(X) and for allε > 0 there exist̀ > 0 andT ≥ 0 such that, for allr ∈R,
there existsτ ∈ [r, r + τ] satisfying‖ f (x, t + τ)− f (x, t)‖ ≤ ε

3 for all t ≥ T and for all
x∈ K.

Note that (50) is the second condition onf to belong toAAPU(X×R+,Y). Now it suffices
to prove thatf is continuous onX×R. Let ((xn, tn))n be a sequence of elements ofX×R+
which converges toward(x∗, t∗). For alln∈ N, we have

‖ f (xn, tn)− f (x∗, t∗)‖ ≤ ‖ f (xn, tn)− f (x∗, tn)‖+‖ f (x∗, tn)− f (x∗, t∗)‖

≤ ‖ f (xn, .)− f (x∗, .)‖∞ +‖ f (x∗, tn)− f (x∗, t∗)‖.

By using (47) we have limn→∞ ‖ f (xn, .)− f (x∗, .)‖∞ = 0, and by using (46) we know that
f (x∗, .) is continuous and so we have limn→∞ ‖ f (x∗, tn)− f (x∗, t∗)‖= 0. Then by using the
last previous inequalities we obtain limn→∞ f (xn, tn) = f (x∗, t∗) that proves the continuity
of f .

We note that the previous proof of(i =⇒ ii) is similar to the second proof of Theorem
3.5 given in Section 3.
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Theorem 8.5.Let f ∈AAPU(X×R+,Y) such that the partial Fŕechet-differential Dx f (x, t)
exists for all(x, t) ∈ X×R+ and such that Dx f ∈ AAPU(X×R+,L(X,Y)).
Then the superposition operator N3

f , defined in (45), is continuously Fréchet-differentiable

from AAP(R+,X) into AAP(R+,Y), and we have DN3f (u).v= [t 7→Dx f (u(t), t).v(t)] for all
u,v∈ AAP(R+,X).

The proof of Theorem 8.5 is similar to this one of Theorem 5.1 by replacing the use of
Theorem 3.5 by the use of Theorem 8.4, and by replacing the use of Lemma 3.4 by the use
of Lemma 8.3.

9 Almost Automorphic Functions

In this section,X is a complete metric space andY is a Banach space.

Lemma 9.1. Let Ω be a subset of X. Ifφ ∈C0(Ω,Y) and if v∈ AA(R,X) is such thatv(R)
is contained inΩ, then we haveφ◦v∈ AA(R,Y).

Lemma 9.1 is Theorem 2.1.5, p. 14 in [33].

Lemma 9.2. Let f ∈ AAU(X×R,Y), K ∈ Pc(X), and n∈ N∗. Then there exist Nn ∈ N∗,
cn

j ∈C0(K,R) and an
j ∈AA(R,Y) for all j = 1, ...,Nn such that the following approximation

holds.

(51) ‖
Nn

∑
j=1

cn
j (x)a

n
j (t)− f (x, t)‖ ≤ 1

n for all x ∈ K and for all t∈ R.

Proof. By using Remark 2.2, we haveΦ ∈C0(X,AA(R,Y)) whereΦ(x) := [t 7→ f (x, t)].
Consequently,Φ(K) is a compact subset ofAA(R,Y). Then by using the Schauder’s ap-
proximation theorem, cf. Remarque 1, p. 90, in [18] or p. 116-117 in [26], we can assert that
there existsΦn : K →Y, Φn(x) := ∑Nn

j=1cn
j (x)a

n
j , wherecn

j ∈C0(K,R) andan
j ∈AA(R,Y) for

all j = 1, ...,Nn, such that‖Φ(x)−Φn(x)‖∞ ≤ 1
n for all x∈ K, that proves the lemma.

Remark9.3. The converse of Lemma 9.2 is obviously true, but we will not use it.

Lemma 9.4. Let f ∈ AAU(X×R,Y) and u∈ AA(R,X). Then we have[t 7→ f (u(t), t)] ∈
AA(R,Y).

Proof. We setK := u(R) which is compact [33], Theorem 2.1.3, (v), p. 12. Letc ∈
C0(K,R) anda∈ AA(R,Y). We denote byp : R×Y →Y the bilinear continuous mapping
p(t,y) := ty, and we define the functionv : R→R×Y by settingv(t) := (c(u(t)),a(t)). By
using Lemma 9.1 we know thatc◦u is almost automorphic, and by using the definition of
the almost automorphy, we see thatv∈ AA(R,R×Y). Sincec(u(t))a(t) = p◦ v(t) for all
t ∈ R, we have proven the following assertion:

(52) [t 7→ c(u(t))a(t)] ∈ AA(R,Y) whenc∈C0(K,R) anda∈ AA(R,Y).

We consider the mappingfn(x, t) := ∑Nn
j=1cn

j (x)a
n
j (t) provided by Lemma 9.2. Since a finite

sum of almost automorphic functions is almost automorphic too ([33], Theorem 2.1.3, p.
12), by using (52) we obtain that[t 7→ fn(u(t), t)] ∈ AA(R,Y). By using (51) we obtain that
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‖ fn(u(t), t)− f (u(t), t)‖ ≤ 1
n for all t ∈ R, and consequently[t 7→ f (u(t), t)] is almost auto-

morphic as a uniform limit of a sequence of almost automorphic functions, ([33], Theorem
2.1.10).

When f ∈ AAU(X×R,Y) Lemma 9.4 permits us to define the following superposition
operator:

(53) N4
f : AA(R,X)→ AA(R,Y), N4

f (u) := [t 7→ f (u(t), t)].

Lemma 9.5. Let f ∈ AAU(X×R,Y). Then for all K∈ Pc(X) and for all ε > 0, there
existsδ = δ(K,ε) > 0 such that, for all x∈ K and for all z∈ X, if d(x,z)≤ δ then we have
d( f (x, t), f (z, t))≤ ε for all t ∈ R.

The proof of Lemma 9.5 is similar to this one of Lemma 3.7 by obtaining (8) from (2).

Theorem 9.6. Let f : X×R → Y be a mapping. Then the two following assertions are
equivalent.

(i) f ∈ AAU(X×R,Y).

(ii) The superposition operator N4f , defined in (53), is continuous from
AA(R,X) into AA(R,Y).

Proof. (i =⇒ ii). The proof of this implication is similar to the second proof of Theorem
3.5 by replacing the use of Lemma 3.7 by this one of Lemma 9.5.
(ii =⇒ i). For allx∈X, we consider the constant functionux : R→X defined byux(t) := x.
Then we haveux ∈AA(R,X), and sinceN4

f (AA(R,X))⊂AA(R,Y), we obtain thatf (x, .) =
N4

f (ux) ∈ AA(R,Y), and so (1) is satisfied. Since the mappingU : X → AA(R,X), defined
by U(x) := ux, is continuous, and sinceN4

f is continuous, the compositionN4
f ◦U is also

continuous onX. Then by using the Heine theorem, for allK ∈ Pc(X), the mapping
[x 7→ f (x, .) = N4

f ◦U(x)] is uniformly continuous onK, that is exactly (2). And so we have
f ∈ AAU(X×R,Y).

Theorem 9.7. We assume that X and Y are Banach spaces. Let f∈ AAU(X×R,Y) such
that the partial Fŕechet-differential Dx f (x, t) exists for all(x, t) ∈ X ×R, and such that
Dx f ∈ AAU(X×R,L(X,Y)). Then the superposition operator N4

f , defined in (53), is con-
tinuously Fŕechet-differentiable from AA(R,X) into AA(R,Y), and we have
DN4

f (u).v = [t 7→ Dx f (u(t), t).v(t)] for all u, v∈ AA(R,X).

The proof of Theorem 9.7 is similar to this one of Theorem 5.1 by replacing the use of
Theorem 3.5 by this one of Theorem 9.6, and the use of Lemma 3.4 by this one of condition
(2).
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[33] G.M. N’Guéŕekata,Almost automorphic and almost periodic functions in abstract
spaces, Kluwer Academic Publishers, New York, 2001.
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diff érentielles,Ann. Polon. Math.IX (1960), 157-181.

[36] A.A. Pankov,Bounded and almost periodic solutions of nonlinear operator differen-
tial equations, Kluwer Academic Publishers, Dordrecht, 1990.

[37] L. Schwartz,Cours d’analyse de l’́Ecole Polytechnique, tome 1, Hermann, Paris,
1967.

[38] L. Schwartz,Analyse: topologie ǵeńerale et analyse fonctionnelle, Hermann, Paris,
1970.

[39] L. Schwartz,Analyse I; th́eorie des ensembles et topologie, Hermann, Paris, 1991.

[40] M.M. Vainberg,Variational methods for the study of nonlinear operators, Holden-
Day, Inc., San Francisco, 1964.

[41] T. Yoshizawa,Stability theory and the existence of periodic solutions and almost pe-
riodic solutions, Springer-Verlag, New York, 1975.

[42] S. Zaidman,Almost-periodic functions in abstract spaces, Pitman Publishing, Inc.,
Marshfield. MA, 1985.

[43] V.I. Zubov,Theory of oscillations, English Edition, World Scientific Publishing. Co.,
Singapore, 1999.


