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Abstract
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of almost periodic functions with values in a complete metric space or in a Banach
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1 Introduction

From a mappind : X x R — Y, whereX andY are complete metric spaces, or Banach
spaces when differentiability is studied, we consider a superposition operator in the follow-
ing form

[t —u(t)] — [t— f(u(t),t)]

whereu: R — X is an almost periodic function, or an asymptotically almost periodic func-
tion, or an almost automorphic function.

Such operators are useful for the functional-analytic methods in the study of oscillations in
various kinds of differential equations. First studies of this kind of operators are presumably
due to Nemytskii (see the preface of [40]); that is why such operators are sometime called
Nemytskii operators.

Our aim is to obtain the continuity and differentiability of such operators under assump-
tions which are weaker than the generally used ones.

Superposition operators are currently used in numerous fields of Mathematical Analy-
sis, including the study of almost periodic functions; for instance the book [5] is totally
devoted to these operators and contains a lot of examples.

Let us describe the content of this paper.

In Section 2 we fix our notations about the notions used in the sequel.

In Section 3 we study the continuity of the superposition operators between spaces of al-
most periodic functions in the sense of Harald Bohr. We improve results of Yoshizawa [41]
by deleting an assumption of separability. The first main result is Theorem 3.5 where we do
not consider the usual Lipschitz condition as in [23] for instance. We give three different
proofs of this theorem since each of these proofs contains arguments which are interesting
for themselves. The first proof is the english translation of the one given by Cieutat in his
Thesis Dissertation [20] (in French) and which is unpublished in a scientific journal. The
second proof is based on a generalization to the almost periodicity of a method that we have
only encountered in the well-known book "Cours d’Analyse” by Laurent Schwartz. This
method essentially uses a variation of the classical theorem of Heine on uniform continuity.
In another setting (this one of the spaces of bounded sequences), this method has been used
by Blot and Crettez in [12]. The third proof is based on the Bohr compactification from
which one can transform almost periodic functions into continuous functions defined on a
compact group. Finally we establish the converse of Theorem 3.5. This new result shows
that, among the various notions of almost periodic functions with parameters, the notion
used by Yoshizawa [41] is the appropriate notion that yields to the continuity of the super-
position operators. In Section 4, by using the new result of section 3, we improve results on
the semilinear evolution equations which are given in Hino, Naito, Minh and Shin’s book
[29].
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In Section 5 we establish results on the differentiability of superposition operators be-
tween spaces of almost periodic functions.

In Section 6, by using results of Section 5, we establish a result on the perturbation of
almost periodic solutions of differential equations in Banach spaces. In Section 7 we es-
tablish new results on the continuity and the differentiability of the superposition operators
in the setting of then-times differentiable almost periodic functions. Such functions are
specially studied in works of N'Garékata and several co-authors [34], [19], [7].

The methods used in this section are adaptations of these ones of Section 3 and of
Section 5.

We also adapt the methods of Section 3 and Section 5 to establish new results on on
the continuity and the differentiability of the superposition operators in the setting of the
asymptotically almost periodic functions in Section 8 (where we also use important results
due to Zaidman) and in the setting of almost automorphic functions in Section 9.

Note that we can find some results on the superposition operators on spaces of Besicovitch-
almost periodic functions in [10], [20], [13], and on spaces of almost periodic sequences
in [14]. Pankov’'s book [36] contains some particular results on superposition operators in
Stepanov and Besicovich spaces. We do not study these settings in the present paper.

2 Notation

X andY are complete metric spaces.

WhenA is a topological spac&?(A, X) denotes the space of all continuous mappings
from A into X. When moreoveA is compactC%(A, X) is endowed with the supremum
distanced (¢, ) == supcad($(a), W(a)).

WhenX andY are Banach spaces(X,Y) is the Banach space of all linear continuous
mappings fromX into Y. And whenn € N, := N\ {0}, £(X",Y) is the Banach space of
all continuous-linear mappings from the produkt' into Y.

WhenX andY are Banach spaces and whea N,, C"(X,Y) denotes the space of all
n-times continuously FErchet-differentiable mappings frokinto Y.

BCY(X,Y) denotes the space of the bounded continuous mappingsXriomo Y. En-
dowed with the distance of the supremum, defineddbid, P) := sugex d(d(x), P(x)),
BCY(X,Y) is a complete metric space, [38], Corollaire 2, p. 196. W¥iéna Banach space,
endowed with the sup norib . := sup.x |¢(X)||, BC°(X,Y) is a Banach space, [38],
Corollaire 3, p. 196. WheX andY are Banach spaces and whea N,, BC"(X,Y) is the
space of the mappings which belong(X,Y)NBC°(X,Y) such that all their differentials,
up to ordem, are bounded oX. Endowed with the normi¢||cn := [|®[/e + 3 1<k<n | DX®]|co,
it is a Banach space.

WhenX is a Banach spac€d(R ., X) denotes the space of all functioms C°(R ., X)
such that linp_., u(t) = 0. It is a Banach subspace BE(R , , X).

AP°(R,X) stands for the space of all almost periodic functions in the sense of Harald
Bohr [31], [4], [17], [33], [21], [41], [24]. Endowed with the distandg, it is a complete
metric space. WheK is a Banach space amdk N,, AP"(R, X) denotes the space of the
functions ofBC"(R, X) NAPP(R, X) such that all their derivatives, up to ordgrbelong to
APP(R, X) [34], [19], [7].
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We denote byZ;(X) the set of all compact subsets ¥f We defineAPU(X x R,Y)
as the set of the mappindgs: X x R — Y which are continuous oKX x R and satisfy the
following property:

for all K € 2:(X), for all € > 0, there existd = ¢(K,€) > 0 such that, for alF € R,
there exists € [r,r + /] satisfying|| f (x,t +T) — f(x,1)|| < e for all (x,t) € K x R; see [41],
Definition 2.1, p. 5-6.

In the finite-dimensional setting this notion is used in [11], [13] and [6], and under an
equivalent form it is also used in [30] and in [43], Section 3.4 in Chapter 3, p. 175. Such
mappings are calledimost periodic in t uniformly in x

Remark2.1 If @€ C%(X,Y), and if we setf (x,t) := @(x) for all (x,t) € X x R, then we
havef € APU(X x R,Y).

When X is a Banach spacAP(R ., X) denotes the space of all functions frdin
in to X which are asymptotically almost periodic in the sense d@fchet [42]. Recall
thatu € AAP(R,,X) means that = uy + Up with up € APP(R,X) andu, € C§(R+, X).
AAPR_,,X) is a Banach subset &C°(R,,X). Following Zaidman [28], a mapping
f: X xRy =Y, (Xt)— f(xt), is calledasymptotically almost periodic in t uniformly
in xwhenf is continuous and whef satisfies the following condition: for al € 2.(X),
for all € > 0, there exisT = T(K,g) > 0 and/ = ¢(K,€) > 0 such that, for alf € R, there
existst € [r,r + /] satisfying|| f (x,t + 1) — f(x,t)|| < e for all x € K and for allt > T. We
denote byAAPU(X x R.,Y) the set of all such mappings. One can see a recent use of these
notions in evolution equations e.g. in [28].

We denote byAA(R, X) the space of all functions frorR into X which are almost
automorphic in the sense of Bochner [15], [16], [34]. Recall thatAA(R, X) means that
u € CO(R,X) and thatu satisfies the following property: for all real sequerfsg), there
exists a subsequen¢s) ), of (§,)n such that lim, .. u(t — sy) exists inX for all't € R, and
iMoo (Mmoo Ut —Sm+5n)) = u(t) forall t € R.

Now we introduce a new notion. We say that a mapging x R —Y, (x,t) — f(x,t),
is almost automorphic in t uniformly inwhen it satisfies the two following conditions:

(1) Forallxe X, f(x,.) € AAR,Y).

(2) ForallK € 2(X), for all € > 0, there exist® = 6(K,€) > 0 such that, for alk,z€ K,
if d(x,z) < dthen we havel(f(xt), f(zt)) <eforallt € R.

We denote byAAU(X x R,Y) the set of all such mappings.
Remark2.2 Conditions (1) and (2) together are equivalent to the following one.

(3) @ € COX,AA(R,Y)) whered(x) := [t — f(x,t)].

Indeed, let us assume that (1) and (2) fulfilled. In view of (1), the mapgingK —
AA(R,Y) is well-defined. Sinc&X andAA(R,Y) are metric spacesp is continuous orX

if and only if the restriction of® to each compact subset ¥fis continuous. This last
condition is ensured by (2), and consequently (3) is satisfied. Conversely assume that (3)
fulfilled. Then, sinceb(x) € AA(R,Y) for all x € X, (1) is satisfied. And sinc® is contin-

uous onX, @ is uniformly continuous on eadk € Z;(X), that is exactly (2).
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Remark2.3. In the above definition, note that conditions (1) and (2) imply thatC%(X x

R,Y).

Remark2.4. If @€ CO(X,Y), and if we setf (x,t) := @(x) for all (x,t) € X xR, thenf ¢
AAU(X xR)Y). If f € APU(X xR,Y) thenf € AAU(X x R,Y). This notion is different
from the one used in [34], Theorem 2.18, p. 60; it also differs from the one used in [32]
where the authors use bounded subsed$ iistead of compact subsetsXf

3 Continuity and Almost Periodicity

In this section we study the continuity of the superposition operators between spaces of
almost periodic functionsX andY are complete metric spaces.
First, let's present a series of lemmas.

Lemma 3.1. Let f € APU(X x R,Y) and Ke % (X). Then the restriction of f to Kk R is
uniformly continuous.

In the particular case whekeandy are both finite-dimensinal normed vector spaces,Lemma
3.1is established in Yoshizawa’s book [41] (see Theorem 2.1, p. 7). The proof therein can
be easily generalized to complete metric spaces.

Lemma 3.2. Letg < CO(X,Y) and ve AP(R, X). Then we haveov e APP(R,Y).

Lemma 3.2 is Property 4, p. 3, in [31]. In the Banach spaces setting, a proof of this
result is also given in [4], p. 6, and in [34], Proof of Theorem 1.34, p. 14.

Lemma 3.3. Let f € CO(X x R,Y) and K€ Z(X). We define the mapping‘f. R —
CO(K,Y) by setting K(t) := [x — f(xt)] for allt € R. Then the two following assertions
are equivalent.

(i) feAPUX xR,Y)
(i) ForallK € Z(X), f€ € APP(R,CO(K,Y)).

Lemma 3.3 comes from [20] inside the proof oféldeme in Section 2 of Chapter 1, p.
7.

Proof. (i = ii). Continuity of fX is a straightforward consequence of Lemma 3.1. By
using the definition oAPU(X x R,Y), we know that, for alk > 0, there existg > 0 such
that, for allr € R, there exists € [r,r + /] satisfyingd(f (x,t + 1), f(x,t)) <eforallx e K

and allt € R. By taking the supremum overc K, we obtaind.(fX(t 4 1), fK(t)) <&, for

allt e R.

(il =1i). Let(xn,tn)n be a sequence of elementsok R which converges towargx,,t.) €

X x R. We setK, := {xn:ne N} U{x.} € P(X). Note that we have

1 O, tn) = (s L] < [ F (%0 tn) = F O, E) [ 4 [ F (X0, b) = F X 1)

5 () = 5 (@) oo+ 15 (1) () = 5 (2 06



Superposition Operators Between Various Almost Periodic Function Spaces a7

Since lim, oty = t,, f% is continuous orR, and fX-(t,) is continuous orK,, we de-
duce from the previous inequalities that im. f (X,,tn) = f(x,t.). And so we have
proven thatf € CO(X x R,Y). Now we arbitrarily fixK € ?;(X) ande > 0. SincefX ¢
APP(R,CO(K,Y)) we know that there existé > 0 such that for allr € R, there exists
T € [r,r + /] satisfying|| fK (t + 1) — fK(t)]| < eforallt € R, that implies:|| f¥(t +1)(x) —
fX(t)(x)|| < e for all x € K and for allt € R. Noting thatf*(t 4-1)(x) = f(x,t + 1) and that
fX(t)(x) = f(x,t), we obtain thaf € APU(X x R,Y). This completes the proof. O

Lemma 3.4. Let f € APU(X x R,Y) and ue AP°(R, X). Then we havét — f(u(t),t)] €
APP(R,Y).

Proof. We setK := u(R), the closure ofu(R), which is compact [31], Property 1, p.
2. We define the mapping: C°(K,Y) x K — Y by @(g,x) := g(x), and the function
ViR — COK,Y) x K by v(t) := (fK(t),u(t)), wherefK is provided by Lemma 3.3. When
g,h € CO(K,Y) andx,z € K, we haved(9(g,x),(h,2)) < d(g(x),h(x)) +d(h(x),h(2)) <
dw(g,h) +d(h(x),h(z)). From these inequalities we can deduce tha continuous. In
view of Lemma 3.3 we deduce th&f is almost periodic, and by the Bochner criterion,
[31], p. 4, we see that € APP(R,CO(K,Y) x K). Sincef(u(t),t) = @ov(t) for all t € R,
we conclude using Lemma 3.2. O

The proof of Lemma 3.4 is contained in [20] Chapter 1, p.7. Lemma 3.4 is established
in [41] (Theorem 2.7, p. 16) wheX andY are finite-dimensional spaces. Theorem 2.7 may
not be extened to general complete metric spaces since Yoshizawa uses an argument on the
separability ofX.

(4) N1 : APY(R,X) — APP(R,Y), N} (u) := [t — f(u(t),t)]

wheref € APU(X x R,Y).

Following Remark 2.1, whep € C°(X,Y), we can define the superposition operator
u— @oufrom APO(R, X) into AP°(R,Y). The first main result of this section is the follow-
ing theorem.

Theorem 3.5. Let f € APU(X x R,Y). Then the superpositioniiNdefined in (4), is con-
tinuous from AB(R, X) into AP’(R,Y).

We will give three proofs of Theorem 3.5. But first, we need the following lemma.

Lemma 3.6. If X is a compact subset of AR, X), then
S:={u(t) :t e R,ue K} is arelatively compact subset of X.

Proof. We fixe > 0. SinceX is compact, itis also precompact, thus there eXists...,u,}

a finite subset oAP°(R, X) such thatX’ C Uy<j<p{v € AP(R,X) : dw(V,Uj) < 5}. Since
uj(R) is relatively compact irX for all j = 1,..., p, their union{J;<j<,u;j(R) also is rela-
tively compact too, and consequently there ex{sts...,t;} a finite subset oR such that
Ui<j<pUj(R) C Uir<jepUrckeqix € X 1 d(x,uj(tk)) < §}. If x € Sthere exisv € K and

t € R such thatx = v(t), and then there existse {1, ..., p} such thatd,(v,u;) < §, and
consequently we have(x,u;(t)) < §. By using the previous inclusion, we obtain that
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there exist € {1,...,p} andk € {1,...,q} such thatd(u;(t), ui(t)) < 5. And so we have
d(x, uj(tc)) < d(x,u;j(t))+d(uj(t),ui(tk)) < 25 =&. This reasoning proves the following in-
clusion:SC U< j<pUr<k<qtX € X 1 d(X,uj(tk)) < €} that meansSis precompact, and since
X is complete, we obtain th&is relatively compact, [22], Téoeme 3.17.5, p. 63. [

Lemma 3.6 and its proof are included in [20], Lemme 3 in Section 3 of Chapter 2, p.15.
First Proof of Theorem 3.5.

Proof. Let X be a compact subset &P°(R,X), letu € K and lete > 0. We setS:=
{u(t) :t € R,ue K}. By using Lemma 3.6 we know that the clos@& compact. Since
f € APU(X x R,Y) there exist¥ > 0 such that, for all € R, there exists-t € [r,r + /]
satisfying the following condition:

(5) d(f(x,s+71),f(x,5)) < £ forall (x,s) € SxR.

SinceSx [0, /] is compact as a product of two compactss uniformly continuous on it,
and consequently there exists= 8(Sx [0,/],&) > 0 such that, for alk, s, € [0,¢] and for

all x1,% € Swe have: (d(x1,x2) < 8,|s1 — S| < 8) = d(f(x1,51), f(X,52)) < §. This

implies the following assertion:

(6) d(x1,%2) <d=d(f(x1,5),f(x2,8)) < §, forallse [0,4].
If ve X satisfiedd., (v,u) < 9, by using (5) and (6), we obtain, for alE R,

d(f(u(t),t), f(v(t),t)) < d(f(u(t),t), F(u(t),t — 1))+

d(f(u(t),t —1), f(v(t),t —1)) +d(f(v(t),t —1), f(v(t),t)) <3:&.

€
3
And so, by taking the supremum on the R, we obtainds. (N7 (u),N}(v)) < &. This
proves that the restriction &ff to X is continuous for all compact subsgtof AP°(R, X);
and sinceAP’(R, X) andAP°(RR,Y) are metric spaces, this proves the continuitjNdfon

APP(R, X). 0

This first proof of Theorem 3.5 is due to Cieutat [20], Proposition 1 in Section 3 of
Chapter 2, p. 15-17. In order to give a second proof of Theorem 3.5 we need the following
new result.

Lemma 3.7. Let f e APU(X x R,Y). Then the following assertion holds: for all&Z;(X)
and for all€ > 0, there exist® = d(K,€) > 0 such that, for all xc K and for all z€ X, if
d(x,z) <dthend f(xt), f(zt)) <eg forallt € R.

Before presenting the proof of this lemma, let’s first give the following remark.

Remark3.8. This statement is not simply the uniform continuity bbn K x R (Lemma
3.1). Note that we use< X and notz € K in the conclusion. WheX is locally compact,

for instance wheiX is a finite-dimensional Banach space, we can find a relatively compact
subsetQ of X which contains the compa#t, [22], Result 3.18.2, p. 65, and then the
uniform continuity of f on Q x R implies the conclusion of Lemma 3.7. But whnis

not locally compact, for instance whefis an infinite-dimensional Banach space, such a
reasoning becomes impossible.
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Proof. We proceed by contradiction: let's assume that there &ist?.(X) ande > 0
such that, for alB > 0, there exisk® € K, 22 € X andt® € R satisfyingd(x®,2) < & and
d(f(x3,13), f(2,1%) > &. For allme N,, we setxy := x¥/™, z,, := 2/ andt, := t/™, and
so the following assertion holds:

(7) For allm e N, there existy € K, Zm € X andtm € R such thatd(Xm,zn) <  and
d(f (Xm,tm), T (Zm,tm)) > €.

SinceK is compact, by using the Weierstrass-Bolzano theorem, there exists a subsequence
(Xa(m))m Of (Xm)m (Wherea : N, — N, is strictly increasing) such that li.« Xq(m) = X for
somex’e K . Note that we havel(Xq(m), Za(m)) < Wlm) < L for all me N,, that implies
that we also have lif.« Zym = X We setKy := {Zym) : me N, } U {X}. By using the
Heine-Borel-Lebesgue theorem we can see Kjails compact. And s, .= KUK is
also compact as a union of two compact subsets. Then by using Lemma 3.1, we obtain the

following assertion:

(8) For all o > 0 there existf3; > 0 such that, for allx,z € Ky, if d(x,z) < By then
d(f(xt),f(zt)) <oforallt e R.

By takingap := £, B := By, and choosingng € N, such thatn%[j < 3, we obtain

N ™

d(f(xd(m)vt)v f(zd(m)at)) <

for all t € R and for allm > mg, that impliesd( f (Xy(m),ta(m)); f (Zam)ta@m))) < 5 when
m > mg, which contradicts with (7). O

Second Proof of Theorem 3.5.

Proof. Let’s fix u € AP°(R,X) ande > 0. SinceK := u(R) € ?(X), we can consider
&= 8(K,€) > 0 provided by Lemma 3.7. Then where AP°(R, X) satisfiesdw(V,u) < 3,
we haved(v(t),u(t)) <dforallt € R, withu(t) € K. Consequently Lemma 3.7 implies that
we haved(f(v(t),t), f(u(t),t)) <eforallt € R, that means that.(N}(v),N}(u)) <e. O

We need some additional lemmas in order to give a third proof of Theorem 3.5.

Lemma 3.9. If ¢ € CO(X,Y) then the following assertion holds: for all & ?;(X) and all
€ > O there exist®d = d(K,€) > 0 such that, for all xc K and all ze X, if d(x,z) < & then

f(o(x),9(2) <e.

Following Remark 2.1, Lemma 3.9 is a straightforward consequence of Lemma 3.7.
Lemma 3.9 is established in [37], footnote (**), p. 355, in [38],€beme (T.2, I1X, 5; 1),
p.109, and in [39], TRoeme 2.7.20, p. 229. In [12], Lemma A1.3 in Appendix 1, p. 22,
the authors call Lemma 3.9 as the lemma of Heine-Schwartz since its direct proof (given in
Laurent Schwartz’s book) is identical to the proof of the classical Heine’s theorem on the
uniform continuity (continuity on a compact space implies the uniform continuity).

Lemma 3.10. Let A be a compact metric space and X x A—Y be a mapping. Then the
following assertions are equivalent.
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() F is continuous on X A.

(i) The superposition operatordN C°(A, X) — CP(A,Y) defined by
Ne(¢) :=[a— F(¢(a),a)] is well-defined and continuous.

Proof. (i = ii) We fix ¢ € C°(A,X) ande > 0. We setk := {(¢(a),a) : a € A} which
is compact as the range of the compAdby the continuous mapping+— (¢(a),a). We
considerd > 0 provided by Lemma 3.9 wher¢ is replaced byX x A and @ is replaced
by F. Wheny € C%(A X) satisfiesd.,(y,$) < & then we haved((¢(a),a), (Y(a),a)) =
d(¢(a),P(a)) +d(a,a) < do(P, ) < dwith (¢p(a),a) € K for allac A. Then Lemma 3.9
impliesd(F(¢(a),a),F(W(a),a)) <eforallac A, that meansd.(Ne (¢),Ne(P)) <e.

(i = i) Whenx € X we consider the constant functior(a) := x, and sapy € C°(A, X)
and the mapping — ¢y is continuous fromX into C°(A, X). We fix (x,a) € X x A, and
consider((xn,an))n @ sequence of points & x A which converges towardx,a). Then,
for all n € N, the following inequalities hold:

d(F (Xn,an),F(x,@)) < d(F(Xn,an),F(X,@)) +d(F(x,a),F(x,a))
F (

—d(NF(<I>xn)( );NF (¢x)(an)) +d(Ne (9x) (@n), Nr ($x)(2))
deo (NF (¢x,); NE (9x)) + d(NF (¢x) (@n), Ne (9x) (8))-
)=

Note that lim_. oo(NF(q)Xn), Ne (0x)) = 0 sinceNr andx — ¢ are continuous, and that
limn_ d(Ng (0x)(an), N (dx)(a)) = 0 sinceNk (dx) € C°(A,Y). And so the last inequalities
imply limp_e d(F (Xn,an),F(x,a)) = 0.

And since we work in metric spaces, we conclude th& continuous. O

In the following lemma we use the Bohr compactificati®p of R, [36], Subsection
1.1 in Section 1 in Chapter 1 p. 5. We denoteipy R — Rg the associated injective
homomorphism of topological groups. Recall tfi&g is a compact group, thag(R) is
dense ifkg, and thau € AP°(R, X) then there existsg € C°(Rg, X) such thaug(is(t)) =
u(t) forallt e R.

Lemma 3.11. Let f € APU(X x R,Y). Then there existsgfc C°(X x Rg,Y) such that
fa(x,ig(t)) = f(xt) forall (x,t) € X x R.

Proof. We consider the operatdy : AP°(R,Y) — C%(Rg,Y) defined byk (v) := vg. It

is easy to check thak is a bijective isometry. We defin& : X — AP°(R,Y) by setting
f(x) := [t — f(x,t)]. By using Lemma 3.7 we see thét is continuous. Denote by
and T, the two projections oiX x Rg. We define the mapping : C°(Rg,Y) x Rg — Y

by E(¢,¢) := ¢(§). We can verify thak is continuous. Since a composition of continu-
ous mappings is continuous, we obtain that= E o (& o ff o1y, ) is continuous from
X x Rg into Y. And when(x,t) € X x R, we havefg(x,ig(t)) = E(k o f¥(x),ig(t)) =
K(F(0))(i(t) = F(X)(t) = F(x1). O

Third Proof of Theorem 3.5.

Proof. We considerfg € CO(X x Rg,Y) provided by Lemma 3.11. In view of Lemma
3.10 it follows that the superposition operatdy, : C°(Rg,X) — C°(Rg,Y), defined by
Ntz (¢) = [ — fa($(§),&)], is continuous, i.e. the following assertion holds:
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(9) For all $ € C°(Rg,X) and alle > 0 there exist) = n(¢,€) > 0 such that, for all
P € CO(Rg, X), if dw(W,d) < n, then we havel,(N¢, (P), N¢, (¢)) < €.

Fix u € APP(R,X) ande > 0. Letn = n(us,€) > 0 be provided by (9). I¥ € AP°(R,X)
satisfiesd. (v,u) < n then we also have.(vg,ug) < n and consequently, by using (9), we
obtain, for allt € R, the following inequalities:

d(f(v(t),t), f(u(t),t)) = d(fe(v(t),is(t)), fa(u(t),is(t)))

= d(fg(ve(is(t)),ia(t)), fe(us(ia(t)),is(t))) < dw(Nts(Ve), Nz (Us)) <&,
that impliesd..(N}(v), N} (u)) <. O

In the finite-dimensional Banach spaces setting, Theorem 3.5 is stated in [30], Lemma
1.1, p. 5, with no proof. The authors rather refer to 1955 Amerio’ works (in Italian), 1960
Perov’s results (in Russian), 1962 Zubov’s works (in Russian), and 1961 Corduneanu’s
results (in Romanian); see [30] for precise references. Wheés a finite-dimensional
space, a proof of Theorem 3.5 is also given in [11], Lemma 5, p. 706.

Now we establish the converse of Theorem 3.5.

Theorem 3.12.Let f: X x R — Y be a mapping such that, for allaAP°(R, X), we have
[t — f(u(t),t)] € AP’(R,Y), and such that the superposition operatof NAPP(R, X) —
AP°(R,Y) is continuous. Then we havesfAPU(X x R,Y).

Proof. For allx € X we consider the constant functiop: R — X defined byuy(t) := x for
all't € R. Then we havey € AP°(R,X), and by using the first assumption we obtain the
following assertion:

(10) For allx € X, f(x,.) = N}(uyx) € APP(R,Y).

It is clear that the mapping : X — AP°(R, X), defined byU (x) := uy, is continuous and
sinceN? : APP(R,X) — AP°(R,Y) is continuous, the compositioN} o U is continuous
on X, and by using the Heine theorem, we obtain that, forkalt 2;(X), the mapping
x— f(x,.) is uniformly continuous ofK, i.e. the following assertion holds:

(11) For allK € 2(X) and alle > 0 there exist® = (K, ) > 0 such that, for alk,z€ K,
if d(x,z) <dthend(f(xt),f(zt)) <eforallteR.

This assertion means that, for &lle 7;(X), the family (f(.,t))icr is uniformly equi-
continuous orK.
Now we fixK € P(X) ande > 0. Then there exists a finite subge, ..., xn} in K such that
K C Ucicnix e X :d(x,x) < 3(K, §)} whered(K, §) is provided by (11). By using (10)
we know thatf (x;,.) € AP°(R,Y) for alli = 1,...,n, and by using the Bochner criterion, we
see that the function— (f(x,.), ..., f(Xn,.)) is almost periodic, from which we obtain the
following assertion:

(12) For allo > 0 there exist€ = /5 > 0 such that, for alt € R, there existg € [r,r + /]
satisfyingd(f(x,t+1), f(x,t)) <o foralli=1,..,nandallt € R.
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We use (12) witho = £. Letr ¢ Randt € [r,r +/]. Then we have(f(x,t+1), f(x;,t)) < §
foralli=1,..,nand allt € R. Whenx € K there exists € {1,...,n} such thad(x,x) <
d(K, §), and then, by using (11), the following inequalities haldf (x,t), f(x;,t)) < £ a
d(f(x,t+1),f(x,t+1)) < § forallt € R. Therefore we obtain

d(f(x,t+1), f(x,t)) <d(f(x,t+71), f(X,t+71)) +d(f(xi,t+71), F(X,1))

+d(f(x,t), f(x1)) <3

for allt € R. And so we have proven that for &lc 2;(X) and for alle > O there existg =
¢(K,€) > 0 such that, for alt € R there exists € [r,r +¢] satisfyingd(f(x,t+1), f(x,1)) <
e for all x € K and for allt € R. This is the second condition to have= APU(X x R,Y).
After that, it suffices to prove thdtis continuous ofX x R.

Let C be a compact subset ¥fx R. We setpr; and pr» the two projections oiX x R,
andC; := pry1(C), C; := prz(C). Note thatC; andC, are compact and that we ha@eC
C1 x Cp. We fixe > 0. By using (11) withk = C;, we know that the following assertion
holds:

:8’

wlm

(13) There exist® = 8(Cy, ) > 0 such that, for alk,z € Cy, if d(x,z) < & then we have
d(f(x,t),f(zt)) <% orallte]R

SinceCy € (X)), there exists a finite subsf, ..., zn} in Cy such thaCy C U <jcm{ze X:
d(z,z) < &}. Sincef(z,.) € AP°(R,Y), f(z,.) is uniformly continuous o, and conse-
quently we have: for aiI_ 1,...,mand for aIIo > 0 there existg); (o) > 0 such that, for all
st eR,if [s—t| <ni(o) thend(f(z,s), f(z,t)) < o. We setn (o) := mini<j<mni(o) >0,
and we obtain the following assertion:

(14) For allo > 0 there exist$)(0) > 0 such that, for als,t € R, if [s—t| <n(o) then we
haved(f(z,s), f(z,t)) <oforalli=1,....m

Now we fixx € C; andt € C,. We choose; such thatl(x,z) < d whered is the one of
(13). We consider € C; such thatl(z,z) < d ands € C; such thats—t| < n(§ wheren is
provided by (14). Then by using (13) and (14), we obtain the following mequalltles.

d(f(xt),f(z9)) <

d(f(xt), f(z,t))+d(f(z,t), f(z,9)+d(f(z,9),f(zs) < 3% =

That proves the continuity of the restriction bfo C; x C,. Consequently the restriction of
f to Cis also continuous, for all compact sub€atf X x R. SinceX x R is a metric space,
this proves the continuity of on X x R. O

Corollary 3.13. Let@: X — Y be a mapping. Then the two following assertions are equiv-
alent.

(i) @is continuous from X into Y.

(i) The superposition operator @o u is continuous from ARR, X) into APP(R,Y).
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Following Remark 2.1, Corollary 3.13 is a straightforward consequence of Theorem 3.5
and Theorem 3.12.

Remark3.14 All the results of this section remain valid if we replakeéoy R, = [0, ) or
by a locally compact Abelian group.

Remark3.15 WhenQ is a nonempty open subsetXf we define
APP(R,Q) := {ue AP°(R,X) : u(R) C Q}.

Sinceu(R) is compact when € AP(R, X) and sinceX \ Q is closed, whem € AP°(R, Q),

we can findp > 0 such thav € AP’(R, Q) whenv € AP°(R,X) and||v— u]|. < p. And so
AP°(R,Q) is an open subset &P°(R, X). Whenf € CO(X x R,Y) satisfies the condition
which definesAPU(X x R,Y) where we replac& € 2Z:(X) by K € 2:(Q), we say that

f € APU(Q x R,Y). And then all the results of this section remain valid when we replace
APP(R,X) by AP°(R, Q) andAPU(X x R,Y) by APU(Q x R,Y).

4 An Application to Evolution Equations

We consider a Banach spaXea (possibly) unbounded linear operatorD(A) C X — X,
a nonlinear mapping : X x R, — X, and the following semilinear evolution equation:

(15) u'(t) = Au(t) + f(u(t),t).
We consider the following list of assumptions on the equation (15).

(16) A is the infinitesimal generator of@-semigroup of linear operatot§(t));>o on X
such that there exists > 0 satisfying||S(t)x — S(t)y|| < €**||x—y]|| for allt > 0 and
forall x,y € X.

(17) f € APU(X x R, X).

(18) There existyy > 0 such that, for alA > 0, for all x,y € X and for allt > 0 we have
(A=AY)[x=yll < [[x=y+A(f(x,t) = f(y,1))].

All the notions used in these three assumptions are defined in [29]; (18) is called a condition
of accretivity of— f +yl, wherel is the identity operator oK. Recall that a so-called mild
solution of (15) is a continuous solutiarnof the following integral equation:

u(t) = St —s)x+/5t St—r)f(ur),ndr, t>s.

Theorem 4.1. We assume (16)-(18) fulfilled and we assume thaty < 0. Then there
exists a unique almost periodic mild solution of (15).

This result is proven by Corollary 2.27 in [29], p. 146 by using an (apparently) ad-
ditional assumption. Now we explain what is new here. In [29], the authors formulate a
so-called condition (H5), Definition 2.18, p. 144, which says (by using our vocabulary and
our notations) that the superpositid} : APP(R,X) — AP’(R, X) is well-defined and
continuous. By using our results of Section 3, this condition (H5) is translatable into a
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condition onf which is exactly (17). Moreover, inside their so-called condition (H4), Defi-
nition 2.17, p.144, they assume ttas continuous oiX x R which is redundant since this
continuity is contained in (17) after our Theorem 3.12. Finally, in their statement of their
Corollary 2.17, the authors of [29] assume (by translating in our notations)-that- yN?

is an accretive operator in the sense given in their Definition 1.5, p. 17. It is easy to verify
that (18) implies their accretivity condition on the operators.

5 Differentiability and Almost Periodicity

In this sectionX andY are Banach spaces.

Theorem 5.1. Let f € APU(X x R,Y) such that the partial Rechet-differential with re-
spect to the first vector variable,D(x,t) exists for all(x,t) € X x R. We also assume that
Dxf € APU(X xR, L(X,Y)).

Then the superposition operatorfNdefined in (4), is continuously differentiable from
APP(R, X) into AP’(R,Y), and for all uv € AP°(R, X) we have

DN#(u).v = [t — Dy f(u(t),t).v(t)].

Proof. SinceDyf € APU(X x R, L(X,Y)), by using Theorem 3.5, we have:

(19) Nj ; is continuous fromAP’(R, X) into AP’(R, L(X,Y)).

We fix u € APP(R, X) and set

(20) L(t) := Dxf(u(t),t) forallt € R.

L € APP(R, £L(X,Y)) in view of (19). We define now the mappifrg: X x R — Y by
(21) F(zt) :=L(t).zforall (zt) € X x R.

We consider the bilinear continuous operdotZ (X,Y) x X — Y defined byB(T,x) :=T.x.
Denoting bypr; andpr; the two projections oX x R, we see that = Bo (Lo prp, pr1) and
consequently is continuous as a composition of continuous mappings. We fix?;(X)
ande > 0. Letp > 0 such thaf|x|| < p for all x € K. SinceL is almost periodic, there exists
L= E(g) > 0 such that, for alf € R, there exists € [r,r +/] satisfying||L(t +1) — L(t)|| < %
for allt € R. Consequently, for allx,t) € K x R, we have||F (x,t +1) — F(x,t)|| <||L(t+
T)—L(t)]].|[x] < %.p = €. And so we have proven thete APU(X x R,Y). Then, by using
Lemma 3.4, we obtain the following.

(22) For allv e APY(R,X), A.v:= [t — Dyf(u(t),t).v(t)] € AP'(R,Y).

By using the mean value theorem, Corollaire 1 in [2], Corollaire 1, p. 144, or result 8.6.2
in [22], p. 164, we have, for ail € AP°(R, X) and for allt € R, the following inequality:

(23) | f(ut <>> FU).) =it (u). Y wD)|
<suQ€ o sv(o IDF (€)= Dy (u). ) -Jv(t) .

By using Lemma 3.7, and setting:= u(R) € Z(X), we obtain:
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(24) For alle > 0 there exist® = 6(K €) > 0 such that, for alk € K and for allz € X, if
Ix—12|| < dthen we have{Dyf(zt) — Dxf(x,t)|| <eforallt € R.
)

Fix nowe > 0 and considev € AP°(R, X) such that|v||. < &whered is provided by (24).
Then, for allt € R and all{ € Ju(t),u(t) + v(t)], we have||{ —u(t)|| < ||(u(t) +v(t)) —
ut)|l = Ivt)]| < ||vl|e < 8, which implies, (in view of(24)), the following assertion:

(25) For allt € R and all{ € Ju(t), u(t) +v(t)[ and||Dxf({,t) — Dxf(u(t),t)[| <e.
From (23) and (25) we deduce that

[ (u(t) +v(t),t) = F(u(t),t) — Dxf(u(t), ) V(1) || < efv(t)]]

for allt € R, and by taking the supremum o® R, we obtain
INF(u+V) — N} (u) = A.V||eo < ||V]| When||V||e < ; this proves thal? is Fréchet-differentiable
atu and that

(26) DN}(u).v = [t — Dxf (u(t),t).v(t)].

Now it suffices to proves the continuity 8N?. By using (19) and Theorem 3.5, we know
that the following assertion holds.

(27) For allu € AP’(R,X) and alle > 0 there exists) = n(u,€) > 0 such that, for all
U € APP(R, X)), if [Ju— Ul <1 then|INS (u) — N3 (u)| <e.

We fix u € AP°(R, X) ande > 0. Letu; € AP°(R, X) such that|u— u || <1, wheren is
provided by (27). Then, for alt € AP°(R, X) such that|v||. < 1, by using (27) we have

[IDxf (u(t),t).v(t) = Dxf (ua(t), t).v(t)[| < [|Dxf(u(t),t) — Dxf (us(t),)[[.V(t)]]
< INoy £ (0) = Noys ()| [Vlle < £1 =,
that implies, by taking the supremum ontad R, that
IDN}(u).v — DN} (u1).v|l. < €, and by taking the supremum on thes AP°(R,X) such
that |v|| < 1, we obtain|DN}(u) — DN} (uy)||. < € in norm of linear operators. And so
the continuity ofDN} follows. O

Theorem 5.1 was established in [20], Proposition 3 in Section 3 of Chapter 2, p. 17, by
using a different proof. Whel is a finite-dimensional space, a proof of Theorem 5.1 is
given in [11], Lemma 7, p. 710. By induction from Theorem 5.1 we obtain the following
result.

Theorem 5.2. Let f € APU(X x R,Y) and ne N,. We assume that the partial &het-
differential with respect the first vector variable of order rj; fix, t), exists for all(x,t) €

X x R, and that Off € APU(X x R, x(X*,Y)) forallk=1,...,n

Then the superposition operatortNdefined in (4), is n-times continuously differentiable
from AP (R, X) into AP’(R,Y), and moreover, for all w, ..., v, € AP(R, X) we have
D"NF(u).(V1, .., Vn) = [t = DEf (u(t),1).(va(t), .., Vn(1)].

By using Remark 2.1, a straightforward of this result is the following one.
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Corollary 5.3. Letne N, andge C"(X,Y). Then the superposition operatogltxu — @ou,
from AP (R, X) into AP’(R,Y), is n-times continuously differentiable on ¥R, X), and,
forallu,vi, ...,vn € APP(R, X), we have DNg(u). (v, ..., Vn) = [t — D"@(u(t)).(Va(t), ..., Va(t))].

Whenn =1, in the finite-dimensional setting, Corollary 5.3 is proven in [9], Proposition
1, p. 19.

6 An Application to Differential Equations

In this sectionX is a Banach space. Ldg, f; : X x R — X be two mappings and € R.
We consider the following ordinary differential equation:

(28) U'(t) = fo(u(t),t) +e&.f1(u(t),t).
Whene = 0 this equation becomes:
(29) U(t) = fo(u(t),1).

We will assume that there exists a solutionc APY(R, X) of (29), that the partial Frchet-
differential of fo with respect tax exists and we consider the following condition on the
linearization of (29) around,.

(30) For allb € APP(RR, X) there exists a uniqguec AP(RR, X) such that
V/(t) = Dxfo(u.(t),t).v(t) +b(t) forall t € R.

We can find conditions oDy fo(u.(t),t) which ensure the validity of (30). For instance
in [20], Theoeme 3, Section 3, Chapter Ill, p. 43, the following assertion is proveX: if
is a Hilbert space and it — Dyxfo(u.(t),t)] € APP(R, L(X,X)) and if there existst > 0
satisfying(Dx fo(u.(t),t).x | X) > a||x||? for all (x,t) € X x R, then (30) is fulfilled. In the
finite-dimensional setting, such a question is considered in [27], Lemma 13-1, p. 122.

Theorem 6.1.We assume thap ff; € APU(X x R, X), that the partial Féchet-differentials
Dy fo(x,t) and Dy f1(x,t) exist for all(x,t) € X x R, and that B fo, Dx f1 € APU(X xR, L(X, X)).
We assume that there exists@ AP (R, X) which is a solution of (29) for which condition
(30) is also fulfilled. Then there exisg > 0 and a continuously differentiable function
€ — Ug, from (—go,€0) into APY(RR,X), such that, for alle € (—¢&p,€0), Ue is an almost
periodic solution of the differential equation (28) and such thatw.,.

Proof. We introduce the operatdr : APY(R,X) x R — APP(R, X) defined byT (u,€) :=
[t— U (t) — fo(u(t),t) —&. f(u(t),t)]. We consider the operatd : APY(R, X) — AP°(R, X)
which is linear continuous. We also consider the canonical injedtianAP* (R, X) —
APP(R, X), in(u) := u, which is linear continuous. Then we see tiigt, ) = %u— N}O o
in(u) —e.Nf, oin(u) for all (u,e) € APY(R,X) x R. By using Theorem 5.2, we know
thatNi andN{ are of clasC' on AP(R,X). Then we obtain thaT is of classC' on
APY(R,X) x R. We also verify that the following equation holds:

(31) T(u,,0) =0.
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We calculate the partial Echet-differential ofl with respect to its first (functional) vari-
ableD,T (u,,0).v= $v—DNf (u.).v— 0.DN}(u,).v. And we see thaD,T(u,,0).v=bis
equivalent to the differential equatiaf(t) = Dxfo(u,(t),t).v(t) + b(t) for allt € R. And
consequently, (30) ensures that the following assertion holds:

(32) DT (u,,0) € IsomAPL(R, X) x R, AP°(R, X)).

After (31) and (32) we can use the implicit function theorem, [1] Theorem 2.5.7, p. 107
and conclude that there exigsy > 0 and a continuously differentiable functian— ug,

from (—&o,€0) into APY(R, X), such thafl (ug,€) = O for all € € (—¢o,£0), that means that
up(t) = fo(ug(t),t) +€.f1(ug(t),t) for all t € R, and moreoveup = u,. O

Remark6.2 Such a method based on the implicit function theorem is used for instance in
[11] for the bounded solutions of second-order ordinary differential equations and in [8] for
the periodic solutions of Hamiltonian systems.

7 Differentiable Almost Periodic Functions

In this sectionX andY are Banach spaces.

Lemma 7.1. Let f € APU(X x R,Y)NCY(X x R,Y) such that its Fechet-differential
Df e APUX xR, L(X xR,Y)). We consider the new mapping§ x X x R — Y defined
by g(x1,%2,t) := Df(x1,t).(x2,1). Then the following assertions hold.

(i) g€ APU((X x X) x R,Y).

(i) LetneN,, n> 2. If we assume moreover that=fC"(X x R,Y) and that
D' f € APU(X xR, Li((X x R)',Y)) for all i =1,..,n, then ge C"~ X x X xR,Y)
and D'g € APU((X x X) x R, L (X x X x R)J,Y)) forall j=1,...,n—1.

Proof. (i) We consider the three projection mappings, pr. andprs on the product space
X x X x R, and the bilinear continuous mappiBg L(X x R,Y) x (X x R) — Y defined by
B(d, (x,t)) := ¢(x,t). We see that the following equality holds.

(33) g=Bo(Dfo(pry,prs),(przc))

wherec: X x X x R — R is the constant mapping(x;, xz,t) := 1. Since all the mappings
present in the right member of (32) are continuogiss continuous orX x X x R as a
composition of continuous mappings. Now we@x P(X x X) ande > 0. We seC; :=
pr1(C) and Cy := prz(C) which are compact subsets Bf We chosep > 0 such that
IX2|]| +1 < p for all x2 € C,. Since we havddf € APU(X x R, L(X x R,Y)), we know
that there existé = £(C, 5) > 0 such that, for alf € R, there exists € [r,r + ] satisfying

IDf(x1,t+1) —Df(xqg,t )|| <5 £ for all (x1,t) € Co x R. Therefore we have
IDf(x1,t+71).(%2,1) — Df(Xq,t).(%2,1)]|

< IDF(xa,t+ 1)~ D ) (ell +2) < Sp—e

O lm
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for all (x1,x2,t) € C; x C; x R. Since we haveC C C; x Cp, we have proven thag €
APU((X x X) x R,Y).

(i) We define the mappingd8: X x X x R — L(X xR,Y)andW: X x X x R - X xR
by setting® := Df o (pr1, pr3) andW¥ := (pry,c), and so by using (32), we obtain the
following equality.

Then by using the chain rule for the high-order differentials, for instance this one given
in Box 2.4 Ain [1], p. 91, for allp = 2,...,n, for all (x1,X,t) € X x X x R, and for all
Z = (X, %,,t') € X x X x R wheni = 1,...,n, we have the following formula:

DPg(x1,%2,1).(Z,...2°)

= Z} 71 [B(D'®(x1,3,1). (Y, 2P, DP1W(xy 20, 1). (20, . 2P
065' Hp—

whereS,'D denotes the set of the bijectioagrom {1, ..., p} into itself such that (1) < ... <
o(i)anda(i+1) < ... < o(p). We note that

D'd((x,%,1). (Y, .. 2P = DL (xq, 1). (S 10D, (80 190Dy,

and sincéV is affine, we havé)p—‘LIJ(xl,xz,t) = 0 wheni < p—2 and we have
DIW(xg,Xp,1).(8x1, 8%z, 8t) = (8%,0). And so the previous formula fdPg becomes the
following one.

(35) DPg(xq,%p,t).(Z,...2°) = DPTL (xq,1). (x4, 1), ..., KT, tP), (X2, 1))
+_§ DPf (xg,1). (O, t4), ..., (&1 671) (x2,0), (XL, 6+0), . (<D, tP)).

i=1

Now we fixC € £(X x X) ande > 0, and we conside; andC; defined like in the proof
of (i). We chose > 0 such that|xy|| < p for all x; € Cs.

SinceDPH1f € APU(X xR, Lp;1((X x R)PFLY)) andDPf € APU(X x R, Ly((X x R)P,Y)),
we have(DP1f, DPf) € APU(X x R, Lp1((X x R)PTLY) x L5((X x R)P,Y)), and con-

sequently there exists= ¢(Cq, m) > 0 such that, for alf € R, there exists

T € [r,r + /] satisfying|[ DPf (x,t + 1) — DPT (xq,1)] £, < m

and||DPf (xq,t + 1) — DPf(xq,t) |, < m for all x; € C; and for allt € R. Conse-
quently, by using (35), for alt, ...,z° € X x X x R such that|Z|| < 1 wheni =1, ..., p, for

all (xg,x%2,t) € C1 x Cz x R, the following inequalities hold:

|DPg(x1,%2,t +71).(Z,...2°) — DPg(x1, X2, t).(Z, ...2°)]|
< J(DPFHf (xe,t+T) = DPHH (x0,1)). (0, 1Y), oo, O, tP), (32, 1) |

-3 10R 1) D0. 1),

(O th), s O 1), 02, 0), (410, (K0, EP)) |
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< (DPFH (xa,t+1) — Dp“f(xl,t))\-]_ﬁl(HXilll +1t)- (x| +2)

p . .
+ZIIDpf(Xl,tH)—Dpf(xl,t)H- [T (xali+ - lxell
E 1<j2p i

é( p+1)=¢.

B P d &
Do)’ 2 piDprD)’
And so we have proven th&i’g € APU((X x X) x R, Lp((X x X xR)P,Y))). O

Theorem 7.2.Letne N, and f€ APU(X xR,Y)NC"(X xR,Y) such that §f € APU(X x
R, L (X x R)KY)) for all k = 1,...,n. Then the superposition operatof NAP'(R, X) —
AP'(R,Y), defined by R(u) := [t — f(u(t),t)], is well-defined and continuous on KR, X).

Proof. We proceed by induction om

First Step:n= 1. We denote byn; : APY(R,X) — AP°(R,X) the canonical injection.
By using Theorem 3.5 we know that}(iny(u)) € APP(R,Y) whenu € AP’(R,X). The
functiont — f(u(t),t) is differentiable as a composition of differentiable functions, and we
have d

gt F(u®),t) = DF(u(t),1).(U' (1), 1) = glu(t), u'(t). 1)

whereg is defined in Lemma 7.1. Sinden;(u), ) € APP(R, X x X), by using Lemma 3.4,
we know thatt — f(u(t),t)] = Nj(in1(u),u’) € AP(R,Y), and soN? is well-defined on
APL(R, X).

We note that, for all, u; € AP*(R, X), the following equality holds:

(36) [INF(u) — NF(un)lcs = [INF oina(u) — N 0ina (ug) s
+ING o (ing, §) (u) —Ng o (ing, § ) (Ug) |-

It is easy to see thah; : APY(R,X) — AP(R,X) and & : APY(R,X) — APY(R,X) are

linear continuous. By using Theorem 3N : AP°(R, X) — AP°(R,Y) is continuous. By

using Lemma 7.1, we know that] : AP°(R, X x X) — AP(R,Y) is continuous. Conse-
quentlyN? oing : APY(R,X) — AP(R,Y) andNj o (ing, &) : APY(R,X) — AP°(R,Y) are
continuous as compaositions of continuous operators. And so, by using (36), we deduce that
NZ is continuous fronAP (R, X) into AP*(R,Y).

Second Step: the induction assumption. We assume that the result is valid for an integer
ne N,.

Third Step: we prove the result for+ 1. We consider the canonical injection, .1 :
APYL(R X) — APY(R, X). After Second Step we know that the operadar' : AP"(R, X) —
AP'(R,Y), defined bny*”(w) = [t — f(w(t),t)] is well-defined and continuous. For all
uc APYL(R, X), we haveiny1(u) € AP (R, X) and consequently we obtain
Nfz’”(inn+1(u)) € AP(R,Y). By using Lemma 7.1, ii, we know thate APU((X x X) x
R,Y)NC"(X x X x R,Y), andDlg € APU(((X x X) x R, Lj((X x X x R)1,Y)) for all
j =1,...,n. Consequently by using Second Step, we know N:Iéat AP'(R, X x X) —
AP(R,Y), defined by\lg(ul, Up) 1= [t — g(up(t),ux(t),t)], is well-defined and continuous.
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And so, for allu € AP*1(R,X) we deduce thajt — Jg(u(t),u'(t),t)] € AP(R,Y), and
we note that

S;g(u(t%“'(t)at) = ﬁ(;fw(t),t)) = ;(S;f(um,t)),

that implies the following equality:

(37) §rg(u(t),U'(1).t) = S F(u(t),b).

From this equality we obtain thdt — f (u(t),t)] € AP (R,Y) whenu € AP™(RR, X),
that permits to say that the operatdf™™* : AP"1(R,X) — AP™L(R,Y), defined by
NZM(u) = [t — f(u(t),1)], is well-defined.

Now we treat the continuity oRZ""*. For allu,u; € AP™1(R,X) we note that the
following majorizations hold:

INF™(u) — NE™ (u) [ enea

] dn+1 dn+l
= INEn1(0)) = NE i 1(0) o+ SUP] gy F(U).0) — g F (0.0

n dn

: d
= INF"02(0) — NF"oifn 1 (1)l -+ SUpl Gr0u(t). U (),1) — G 0(ua(t). 1) )]

_ _ _ d d
< [INF"oinnc1 (u) — NE "oinna (ug) en -+ NG ™(inn (W), ow) —NG™(inna(un), ) fer.

And sinceNfz’”, NG, inn,1 and & are continuous operators, the compositibiis o ing 1
anng o (iNpt1, dt) are also continuous. Then by using the last previous inequalities, we
deduce thah?""* : AP™1(R, X) — AP™1(R,Y) is continuous. O

Before to treat the differentiability of the nonlinear opera\lﬁrwe need an additional
lemma of differential calculus.

Lemma 7.3. LetW € C™1(X x R,Y), with ne N,, and let pg € C"(R, X).
Then, for all(g,t) € R x R, the following equality holds:

d d" d" d
Ge g PP +ea),t) = Foo-W(p(t) +e.q(t).1).

Proof. We proceed by induction ame N,.

First Step:n = 1. By doing a straightforward calculation, we verify trh%t%w(p(t) +

e.q(t),t) and$ LW(p(t) +e.q(t),t) are both equal to

DW(p(t) +e.q(t),t)-((a(t), 0), (P'(t) +&.d (1), 1)) +DW(p(t) +£.q(t),1).((d(t),0)).
Second Step: induction assumptionron 1.

Third Step: the case. We use the induction assumption on the mapptgs C"((X x

X) x R,Y) defined by¥1((p1, p2),t) := DW(p1,t).(p2,1). And so we have the equality:

d dnt : : d"* d / /
5 gt PL((P), P (1) +.(a(t), d (1)),1) = Gz g P1((PM), P (1) +e.(a(t), 4 (1), ).
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Note that

Wa((p(t), P'(t)) +e.(q(t),d (1)),t) = DW(p(t) +e.q(t),1)-((p'(t) +e.d (1), 1)

d
= i P(p(t) +.0(t),1),
and so we obtain the following equality:

d d?1 d d-1dd
de gr=t g TP +ed(t),t) = Frmg = L WIREH) +.q(t). ).

Then by using the symmetry of the second differentia(tof) — W(p(t) +¢€.q(t),t), we
deduce from the previous equality the following ones:

d d" d-1dd da" d

&ﬁq’(p( )+eq(t),t) = Wa&‘“(p(t)ﬂmt), )= ﬁ&W(p( ) 4£.q(t),1).

O

Remark7.4. This last lemma is in the spirit of a classical result on second-order partial
derivatives like it is exposed in [25], Theorem 3.3, p. 92. Note that we cannot simplify the
proof of Lemma 7.3 by saying that the functit) — w(p(t) +£.q(t),t) is (n+1)-times
differentiable and by using the symmetry of the total differential of order.

Theorem 7.5. Let f € APU(X x R,Y) NC™1(X x R,Y) such that
DKf € APU(X xR, L ((X xR)X,Y)) for all k = 1 .,n+1. Then the superposition operator
NZ : AP"(R,X) — AP(R,Y), defined by iK(u) tH f(u(t), )] is continuously differen-

tiable on AP (R, X), and for alluve AP"(R, X) we have: DN (u).v = [t — Dyf (u(t),t).v(t)].

Proof. By using the high-order chain rule, [1] p. 92, we know that, when AP"(R, X)
and 1< k < n, by settingJ (t) := (u(t),t), é’tk f(u(t),t) = D*(foU)(t).(1,...,1) is equal to
a linear combination of terms if the following form:

D'f(U(t)).(D1*U(1).(1,...,1),...,DIU(t).(1,...,1))

D UMV, TU 1) = D (U0 t0). 03, (), 8)
St T dit dtis 70 dti g
where6j,, is equal to zero or to 1.

The operatou — dt,mu is continuously differentiable fro!P"(R, X) into AP°(R, X)
since it is linear continuous. The operator— 6;, is continuously differentiable from
AP(R,X) into AP°(R,X) since it is constant. When< k < n, we haveD! f continu-
ously differentiable and by using Theorem 5.1 we know tklr_%;\’-tf is continuously differ-
entiable fromAP°(R, X) into AP°(R, X). The canonical injectioin, from AP"(R, X) into
AP°(R,X) is continuously differentiable since it is linear continuous. And then the oper-
atoru— [t — DJf(u(t),t)] which is equal td\3; oiny is continuously differentiable as a
composition of continuously differentiable operators. The opedfars; (X x R)',Y) x
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(X xR) =Y, defined byM;(T,(Z,...,2)) :=T.(Z,..;,2), is continuously differentiable
since it isn-linear continuous. Consequently the operator

) dj1 dji
s [t D' (), )- (G U0, 8i)s oo g UlD), 85,)]

is continuously differentiable fromP"(R, X) into AP°(R,Y) as a composition of contin-
uously differentiable operators. And since a combination of continuously differentiable
operators is continuously differentiable, we can assert that the following assertion holds.

(38) The operatof : AP"(R, X) — APY(R,Y), defined by

S(u):=[t— cj’tkk f(u(t),t)], is continuously differentiable.

Now we fixu € AP (R, X). From (38) we know that the following assertion holds:

(39) Forallk=1,...,nand for alle > 0 there existg)X > 0 such that , for a € AP"(R, X),
if ||V]|cr < nk then we have

SURez | 45 F(U(t) +V(),1) — S F(u(t),1) — (DY) ()] < &.[[v]cr.

By using Theorem 5.1 and the &het-differentiability ofN? o in, note that the asser-
tion (39) remains valid fok = 0. SinceS is Fréechet-differentiable a, we know that
DS(u).v= %‘E:OS((U—I—&V) which means that

1 dk dk
lim SUpII (d E Fu(t) +ev(t),t) — TS f(u(t),t)) — (DS(u).v)(t)[| =0

e—0tcRr

and so we have, for alle R,

1 dK d«

lim(= (:tk f(u(t)+ev(t),t)— wf(u(t),t)) —D&(u).v)(t)) =0

e—0 €

that gives us the following equality
(40) (DS(U)V)(t) = &, Sxf(u) +ev(0),0) forallt € R.

And then, by using Lemma 7.3, and by noting that we héﬁiof(u(t) +ev(t),t) =
Dy f(u(t),t).v(t), we obtain

(41) (DSc(u)v)(t) = L (DeF(u(t),b).v(1)) for all t € R,

And so by using (39), (41) and Theorem 5.1, by settipg= minogkgnn‘g/n+l > 0, we
obtain that for alle > O there exist$)e > 0 such that for al € AP"(R,X), if ||V[lcn < ne
then we have
INF(u+v) = NF(U) = A(u)-Vljer =
k dk

zongpu ST V0.0 — S (UD),0) ~ S (DU, D V)] <2
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that proves the Echet-differentiability oNf2 atu and that we have
DN?(u).v = [t — Dxf(u(t),t).v(t)]. To establish the continuity ®? we begin to note that,
whenu,us,v € AP'(RR, X) with ||v|]cn < 1, the following inequalities hold:

d dk . dk
IDNF(u)-v — DNF(ty).-Vi[en = I(;]SUIOII gk (Pxd (1), 1).v(1) = 5 (Dxj (a (1), 1) VD)) |

n

= 2 supl|(DS(u).v)(t) = (BS(u)-v)(V)]| = Z IDS(u).v—DS(U1) V[

k=o0teR

< % |DSc(u) — DSc(un) || (apo(e.x), AP X)) -

And by taking the supremum on thec AP'(IR, X) such that||v||cn < 1, we obtain the
following inequality:

n

[IDNZ(u).v— DNF(U1).V|| £ (AP (R X) APR X)) < > IDSc(u) — DSc(un) || £(apn(r x) AP X))
o

And since théDS; are continuous we deduce from the last inequality Eigf is continuous.
O

8 Asymptotically Almost Periodic Functions

In this sectionX andY are Banach spaces.

Lemma8.1. Let f € AAPU(X xR,,Y) and Ke P:(X). Then the restriction of f to kK R,
is uniformly continuous.

Proof. We fix € > 0 and we consideT = T(K, %) > 0 and/ = (K, §) > 0 provided by

the definition off € AAPU(X x R,Y); see Section 2. Sind®, T + ¢+ 2] is compact, the
productK x [0, T + ¢+ 2] is also compact, and by using the classical Heine theorem, we
know that the restriction of at this product is uniformly continuous, that permits to obtain
the following assertion:

(42) There exists) € (0,1) such that, for alks,x; € K and for allty,t, € [0, T + ¢+ 2], if
HX]_—X2|| <n and if‘tl—tz‘ <n, then we havﬁf(xl,tl) — f(Xz,tz)H < %

Now we fix Xy, X2 € K such that|x; —xz|| < n andty,t; € Ry such thaft; —ta| <n.

First casety, t> € [0,T]. Then by using (42) we havgf (x,t1) — f(x,t2)|| < § <e.

Second casdj € [0, T] andt; > T. Note that we have —t; = |t —ty| <n < 1, that
impliest; <t1j +1<T+1<T+/¢+2, and then by using (42) we obtajif (xi,t1) —
f(Xz,tz)H < % <eE.

Third caset; > T andt, > T. We setr := —t; + T + 1, and then there existse [r,r + /]
such that|f(zt+1) — f(zt)|| < §forallze Kand forallt > T.
We notethat-t1 +T+1<t1<-t1+T+1+/thatimpliesT+1<t1+T1<T+1+/<
T+/£4+2,and we also note tht+1 <t +nN+1<t1+14+1<T+£+ 2. Then by using
(42) we obtain the following inequality:
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(43) [[f(x1,t1+7) — f(x,t+T)|| < &

By taking into account the role df, sincet; > T andt, > T we obtain the following
inequalities:

(44) || f(X]_,t]_—{—T) — f(X]_,tl)H < % and||f(x2,t2+T) — f(Xz,tz)H < %

By using (43) and (44) we have:
1 (xa,t1) = F O, ) [| < 1 (xa,ta) = FOx i + D[+ ([0, +T) = O, 2 + D)

€
+H 0tz +1) = f 0, )| < 35 =e¢.

The previous proof is very similar to the proof of proposition 10, p.42, in [42].

Lemma 8.2. Let f € AAPU(X xR.,Y). Then for all Ke Z(X) and alle > 0 there exists
0 =0(K,€) > 0such that, for all xc K and all ze X, if |[x—z|| < dthen we havg f (x,t) —
f(zt)|| <e forallt e R,.

The proof of Lemma 8.2 is similar to this one of Lemma 3.7, by replacing the use of
Lemma 3.1 by the use of Lemma 8.1.

Lemma 8.3. Let f € AAPU(X x Ry,Y) and ue AAR(R, X). Then we have
[t — f(u(t),t)] € AAPR,,Y).

This result is due to Zaidman [28]; it permits us to define the following superposition
operator

(45) N3 : AAP(R.,X) — AAP(R.,Y), N3(u) := [t — f(u(t),t)].

Theorem 8.4. Let f: X x Ry — Y be a mapping. Then the two following assertions are
equivalent.

(i) feAAPUX xR,,Y).

(if) The superposition operatoriNdefined in (45), is continuous from
AARR,,X) into AARR.,Y).

Proof. (i=1ii). We fixu € AAP(R;,X) ande > 0. We setK := u(R.). We know that
K € 2:(X), [42], Lemma p. 37. Then we considé@= (K,&) > 0 provided by Lemma
8.2. Whenv € AAP(R, X) is such that|v— ul|. <, then by using Lemma 8.2, we obtain
|| f(v(t),t) — f(u(t),t)|| <eforallt >0, that meansN3(v) — N3(u) . <.

(il = i). SinceN3(AAP(R,,X) C AAP(R,,Y), whenx € X we defineu(t) := x for
all't > 0, and since we have, € AAP(R,,X), we obtain that — f(x,t) = f(ux(t),t) =
N3 (uy)(t) lies toAAP(R.,Y). And consequently we obtain the following assertion.

(46) Forallxe X, f(x,.) € AAP(R,,Y).
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We consider the operatt} : x — uy from X into AAP(R,X). SinceU is a linear isom-
etry,U is continuous and consequently the compositie U is continuous fronX into
AAP(R,,Y). Note that(N3 o U (x))(t) = f(ux(t),t) = f(x,t) and so we have:

(47) The mapping — f(x,.) is continuous fronX into AAP(R,,Y).

Consequently, when we fiX € 2;(X), x— f(x,.) is uniformly continuous oK that gives
us the following assertion.

(48) For allK € 2(X) and for alle > 0, there exists) = n(K,€) > 0 such that, for all
x,ze K, if [[x—2| <nimplies|/f(x,t) - f(zt)| < forallt e R,.

We fix K € P(X) and we consider a finite list of elemensxy, ..., X, € K such thak C

UL 12B(xi,n) wheren is provided by (48). After (46) we know thd{x;,.) € AARR,,Y)
foralli=1,...,n. Itis easy to see thao,...,0, f(x;,.),0,...,0) € AAP(R,,Y"), and since a
finite sum of asymptotically almost periodic functions is asymptotically almost periodic, we
obtain that(f(xq,.),..., f(%;,.),...f (Xn,.)) = ¥1L1(0,...,0, f(x;,.),0,...,0) € AAP(R,,Y"),

and so we have the following assertion.

(49) For alle > 0 there exist > 0 andT > 0 such that, for alt € R, there exists € [r,r +T]
satisfying|| f (x,t +1) — f(x,t)|| < § forallt > T and foralli = 1,..,n.

Letx € K. We choosg between 1 and such that|x—X;|| <n. Thenwhern > T, by using
(48) and (49) we obtain the following inequalities:

IF0t+T) = F )| < Ot +T) = TGt DI+ 70, +T) = £ x|

3
HIF(x.0) — F(x D)l <35 =¢,
that provides the following assertion

(50) ForallK € Z(X) and for alle > 0 there exist > 0 andT > 0 such that, for ali € R,
there existg € [r,r 4 1] satisfying|| f (x,t +- 1) — f(x,t)[| < £ forallt > T and for all
xe K.

Note that (50) is the second condition 6o belong toAAPU(X x R.,Y). Now it suffices
to prove thatf is continuous orX x R. Let ((xn,tn))n be a sequence of element0k R .
which converges towar(k,,t,). For alln € N, we have

1 (%0, tn) — F O L) T < 1O, t) = (X ta) [+ 1T (%, t) — (8|

<05 ) = (s e+ 10X tn) = F X L)

By using (47) we have ligL« || f (X1,.) — f(Xs,.)|le = 0, and by using (46) we know that
f(X.,.) is continuous and so we have lim. || f (X.,tn) — f(X.,t.)|| = 0. Then by using the
last previous inequalities we obtain lms f (X,,th) = f(X,,t.) that proves the continuity
of f. O]

We note that the previous proof Gf— ii) is similar to the second proof of Theorem
3.5 given in Section 3.
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Theorem 8.5. Let f € AAPU(X x R,.,Y) such that the partial Rechet-differential Rf (x,t)
exists for all(x,t) € X x Ry and such that Rf € AAPU(X x R, L(X,Y)).

Then the superposition operato@l\defined in (45), is continuously &chet-differentiable
from AARR ;, X) into AARR,Y), and we have DR(u).v= [t — Dy f (u(t),t).v(t)] for all
u,ve AAPR,, X).

The proof of Theorem 8.5 is similar to this one of Theorem 5.1 by replacing the use of
Theorem 3.5 by the use of Theorem 8.4, and by replacing the use of Lemma 3.4 by the use
of Lemma 8.3.

9 Almost Automorphic Functions

In this sectionX is a complete metric space a¥ds a Banach space.

Lemma 9.1. LetQ be a subset of X. the C°(Q,Y) and if ve AA(R, X) is such that/(R)
is contained inQ, then we haveov e AAR,Y).

Lemma 9.1 is Theorem 2.1.5, p. 14 in [33].

Lemma 9.2. Let f € AAU(X x R,Y), K € P(X), and ne N,. Then there exist Ne N,,
cl e C(K,R) and d'€ AARR,Y) forall j =1,...,Nq such that the following approximation
holds.

Nn
(52) | jZlc?(x)a?(t) —f(x,t)| <1 forallxeKandforallteR.

Proof. By using Remark 2.2, we have € C°(X,AA(R,Y)) where®(x) := [t — f(x,t)].
Consequentlyp(K) is a compact subset &A(R,Y). Then by using the Schauder’s ap-
proximation theorem, cf. Remarque 1, p. 90, in[18] or p. 116-117 in [26], we can assert that
there existsp, : K — Y, ®y(x) := Z?‘glc?(x)a?, wherec] € CO(K,R) andaj € AA(R,Y) for

all j = 1,..., Ny, such thaf|®(x) — @n(x) || < & for all x € K, that proves the lemma. [J

Remark9.3. The converse of Lemma 9.2 is obviously true, but we will not use it.

Lemma 9.4. Let f € AAU(X x R,Y) and ue AA(R, X). Then we havét — f(u(t),t)] €
AA(R,Y).

Proof. We setK := u(R) which is compact [33], Theorem 2.1.3, (v), p. 12. leet
CO(K,R) anda € AA(R,Y). We denote byp: R x Y — Y the bilinear continuous mapping
p(t,y) :=ty, and we define the function: R — R x Y by settingv(t) := (c(u(t)),a(t)). By
using Lemma 9.1 we know thab u is almost automorphic, and by using the definition of
the almost automorphy, we see thvat AA(R,R x Y). Sincec(u(t))a(t) = pov(t) for all

t € R, we have proven the following assertion:

(52) [t — c(u(t))a(t)] € AA(R,Y) whenc € C°(K,R) anda € AA(R,Y).

We consider the mappinfy(x,t) := z'j\'glc?(x)a?(t) provided by Lemma 9.2. Since a finite

sum of almost automorphic functions is almost automorphic too ([33], Theorem 2.1.3, p.
12), by using (52) we obtain thit— fn(u(t),t)] € AA(R,Y). By using (51) we obtain that
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| fa(u(t),t) — f(u(t),t)|| < i for allt € R, and consequently — f(u(t),t)] is almost auto-
morphic as a uniform limit of a sequence of almost automorphic functions, ([33], Theorem
2.1.10). O

Whenf € AAU(X x R,Y) Lemma 9.4 permits us to define the following superposition
operator:

(53) N : AAR,X) — AA(R,Y), Nf(u) := [t — f(u(t),t)].

Lemma 9.5. Let f € AAU(X x R,Y). Then for all Ke 2(X) and for all € > 0O, there
existsd = 8(K, €) > 0 such that, for all xc K and for all ze X, if d(x,z) < 6 then we have
d(f(xt), f(zt)) <eforallt € R.

The proof of Lemma 9.5 is similar to this one of Lemma 3.7 by obtaining (8) from (2).

Theorem 9.6. Let f: X xR — Y be a mapping. Then the two following assertions are
equivalent.

(i) feAAUXxR,Y).

(i) The superposition operatorf\defined in (53), is continuous from
AAR, X) into AAR,Y).

Proof. (i = ii). The proof of this implication is similar to the second proof of Theorem
3.5 by replacing the use of Lemma 3.7 by this one of Lemma 9.5.

(il =1). For allx € X, we consider the constant functign: R — X defined byuy(t) :=x.
Then we havey, € AA(R, X), and sinceNF(AA(R, X)) C AA(R,Y), we obtain thaf (x,.) =
N#(uyx) € AAR,Y), and so (1) is satisfied. Since the mappihgX — AA(R, X), defined

by U(X) := uy, is continuous, and sindm;1 is continuous, the compositidn;‘ou is also
continuous orX. Then by using the Heine theorem, for Elie 2.(X), the mapping

[x+— f(x,.) = Nf oU(x)] is uniformly continuous ofK, that is exactly (2). And so we have

f € AAU(X xR,Y). O

Theorem 9.7. We assume that X and Y are Banach spaces. leARU(X x R,Y) such
that the partial Féchet-differential Rf (x,t) exists for all(x,t) € X x R, and such that
D«f € AAU(X x R, L(X,Y)). Then the superposition operatof Ndefined in (53), is con-
tinuously Féchet-differentiable from AR, X) into AAR,Y), and we have

DNf(u).v= [t — Dyf(u(t),t).v(t)] for all u, ve AA(R, X).

The proof of Theorem 9.7 is similar to this one of Theorem 5.1 by replacing the use of
Theorem 3.5 by this one of Theorem 9.6, and the use of Lemma 3.4 by this one of condition
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