Communications in M athematicalAnaIysis
Volume 6, Number 1, pp. 1-7 (2009) www.commun-math-anal.org
ISSN 1938-9787

PERIODICITY FOR A COOPERATIVE SYSTEM ON
TIME SCALES

KEJUN ZHUANG*
School of Statistics and Applied Mathematics
Anhui University of Finance and Economics
Bengbu, 233030, P.R. China

(Communicated by Martin Bohner)

Abstract

In this paper, by using the method of coincidence degree theory, we explore the exis-
tence of periodic solutions for a cooperative ecological model on time scales.
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1 Introduction

Recently, the continuation theorem of coincidence degree theory has been widely applied to
the existence problems of periodic solutions in differential equations and difference equa-
tions, such as [1] and [10]. However, the research methods and results are similar. We
cannot refrain from asking whether there is a unified way to investigate these problems.
The theory of calculus on time scales, which was initiated by Stefan Hilger [8], well solved
these problems and unified the differential and difference analysis. In [2] and [3], Bohner
and Fan systematically studied the existence of periodic solutions of dynamic equations on
time scales of predator—prey type and competition type.

Motivated by [1] and [2], we consider the cooperative ecological system on time scales

as follows:
. et
RO =) (1= 155 e — e, (1.1)
ex(t) '
Xp(t) =ra(t) (1- m - Cz(t)QXZ(t)> ;

wherea;, b, ¢ andr;(i = 1,2) are rd—continuous positive—periodic functions on time
scalesT. Setu (t) = €4, up(t) = €2®, if T =R, then (1.1) can be reduced to the follow-
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ing form:

{ Ug(t) = ra(t)ue(t) Elmaﬁ%wcﬂt)“ﬂt);’ (1.2)

Ua(t) = ra(t)Ua(t) (1 - gt — Co()ua(t) )

which was constructed by May in [6}; denotes the density of population. The existence
of one population enlarges the carrying capacity of the other population.
If T=Z, system (1.1) is reformulated as

ur(k+1) = ur(k)expqra(k) (1— WM —ca(ku(k)) ¢, (13
Ua(k+ 1) = a(k) exp{ 12(K) ( 1 - ot — C2(w(k) ) |

in [1], Bai and Fan proved the existence of positive periodic solutions vahdm, ¢; and

ri(i = 1,2) are positivew—periodic sequences.

In this paper, we mainly explore the periodic solutions of (1.1) by the continuation
theorem in coincidence degree theory. With the help of an integral inequality on time scales
established in [9], we can find the sharp priori bounds and improve existence criteria for
periodic solutions.

The paper is organized as follows. In the next section, we present some preliminary
results about the calculus on time scales and the continuation theorem. In Section 3, the
sufficient conditions for the existence of periodic solutions for (1.1) are obtained.

2 Preliminaries

For the convenience of reading, we first present some basic definitions and lemmas about
time scales and the continuation theorem of the coincidence degree theory, more details can
be found in [4], [5] and [7].

A time scal€T is an arbitrary nonempty closed subset of real numBershroughout
this faper, we assume that the time sdalis unbounded above and below, suchiRa¥,
and z[2k, 2k+1].

Let f : T — R andt € T. Then we defing?(t) to be the number (provided it exists)
with the property that given arg/> 0, there is a neighborhodd of t such that

[ f(a(t)) — f(s)— FA(t)(a(t) —s)| < elo(t) —s| for all seU.

In this casef4(t) is called the delta (or Hilger) derivative éfatt. Moreover,f is said to
be delta or Hilger differentiable dff if fA(t) exists for allt € T. Obviously, if T =R, then
fA(t) = f/(t); if T = Z, thenf(t) = f(t+ 1) — f(t) = Af(t). Then we define

f(t)At=F(s)—F(r) for r,seT.
Letw > 0, the time scal& is assumed to b@—periodic, that ig € T impliest +we T.

The set of rd-continuous functiorfs. T — R will be denoted byC4(T). We denote

1Z k+w

k=min{R"NT}, lp,=[kk+wNT, g= g(s)As= — g(s)As,
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whereg € C4(T) is anw—periodic real function, i.eg(t + w) = g(t) for all t € T.
The following lemma from [9] will be used in the proof of our main results and can help
to improve many existence criteria for periodic solutions.

Lemma 2.1. [9] Let t3,to € I, andt € T. If g: T — R € C4(T) is w—periodic, then

1Z k+w 12 k+w

o) <o)+, IPOBs L g zal) -5  lels

and the constant factdj is the best possible.

Now, we introduce some concepts and a useful result in [7].

Let X,Z be normed vector spacds; DomL C X — Z be a linear mappingyl : X — Z
be a continuous mapping. The mapplhgill be called a Fredholm mapping of index zero
if dimKerL = codimlmL < +oc0 and InL is closed inZ. If L is a Fredholm mapping of
index zero and there exist continuous projectiBnX — X andQ: Z — Z such that InP =
KerL, ImL = KerQ = Im(l — Q), then it follows that.|DomLNKerP: (I —P)X — ImL is
invertible. We denote the inverse of that magdpy If Q is an open bounded subsebafthe
mappingN will be calledL—compact o2 if QN(Q) is bounded an&p(l —Q)N: Q — X
is compact. Since I is isomorphic to Kek, there exists an isomorphisin ImQ — KerL.

Lemma 2.2. (Continuation Theorem) Lét be a Fredholm mapping of index zero aNd
beL—compact or).Suppose

(a) for eachi € (0,1), every solutioru of Lu = ANuis such thau ¢ 0Q;

(b) QNus# 0 for eachu € 0Q N Kerl and the Brouwer degree dggQN, Q NKerl,0} # 0.
Then the operator equatidru = Nu has at least one solution lying in Dam Q.

3 Existence of Periodic Solutions

In this section, we will prove the theorem related to system (1.1). To explore the existence of
periodic solutions of (1.1), we first embed our problem in the frame of coincidence degree
theory. Define

2% ={(u,v) € C(T,R?) : u(t + ®) = u(t),v(t+w) = v(t) forall tecT},
I (uv) [I= @ﬁx{u(t)} + ?gix{v(t)} for (uv)e.2®

It is easy to show tha®’® is a Banach space when it is endowed with the above forin
Let
2y ={(uv) e £*:u=0,v=0},
ZLE = {(u,v) € Z%: (u(t),v(t)) = (hy,hy) e R? for teT}.

Thus, Z5° andZ are both closed linear subspaces#f, 2 = @ £, and dimz’ =
2.

Theorem 3.1. If rj,&,bj andc;,i = 1,2, are positive rd—continuous—periodic functions
on time scale, then (1.1) has at least one—periodic solution.
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Proof. LetX =7 = ¥9,

e
N [ X1 } — [ N1 ] _ |: ri(t) glwq(t)exl(t);

)

t)
X r2(t) (1~ a2(1)+e;;22(t)exl(f) —cp(t)ee

A _
X1 | | X X1 | X1 | | X1
[el=le) elel=elk)=2]
Then Ket = £, ImL = £§°, anddimKerL = 2 = codim ImL. Since InL is closed in
Z, thenL is a Fredholm mapping of index zero. It is easy to find andQ are contin-

uous projections such that Pn= KerL and InL = KerQ = Im(l — Q). Furthermore, the
generalized inverse (o) Kp : ImL — KerP N DomL exists and is given by

R
X2 2(S)As— = | (S)AsAt
Thus R o
k
QN[ X ] = C%karl(t) al(t)'i'elzll(t)exZ(t) cy(t)es®)) At
T 1"kt o) )
x w Kk re(t) l_az(t)-i-bz(t)exl(l)_Cz(t)exzm At
X
Ke(I—Q)N [ x; }
R R R R _
B Rlﬁ X1(S)AS— (%)RkkMRIE X1(S)AsAt — t—k—éRk"*‘*’(t—k)At X1
Sxp(9)hs— LT [T o (9)asAt — (t—k— LTt — k)AL ) % |

Obviously,QN andKp (I — Q)N are continuous. According to Arzela—Ascoli theorem, it is
easy to show thap(I — Q)N(Q) is compact for any open bounded et X andQN(Q)
is bounded. Thus\ is L—compact oM.

Now, we are in the position to build up the suitable open bounded subset the
application of the continuation theorem. For the operator equation ANu, whereA €
(0,1), we have

et
X%(t) = )\rl(t) 1- al(t)+b11 t)exz(t) - Cl(t)eXl(t) ) (3 l)
ee(t) '
X%(t) = )\rz(t) 1-— m — Cz(t)exz(t) .

Assume thatxy,x2)" € X is a solution of system (3.1) for a certaine (0,1). Integrating
(3.1) on both sides frorkto k+ w, we get

(3.2)

From (3.1) and (3.2), we have

z k+w z k+w

XAt < ) ro(t) <1+
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Z k+w Z

Xo|At <

Since(x1(t),%(t))T € X, there exis€;,ni € lo,i = 1,2, such that

%(&) = min{x ().

() = max{x (1)}
From the first equation of (3.2) and (3.3), we get

so we have

e?(l(al) < [

ricL
From the second equation of (3.2) and (3.3), we can obtain

gl o 12
r>Co

Similarly, from the first equation of (3.2) and (3.4)
Z k+w r (t)
nw < e <1 +ry(t)c t>At

1 ) an() 1(t)ea(t)

—
= exlml)(x)fl +ricCq,
a1
thus,

exl(nl) > '

NI =

T _
8 (s)|As < In —= + 100,
1
r1C,
) _
X5 (9)|As < In —= + Hw
2 X2(s)[As < @Jrz,
and _
X8 (s)|As > In
7, OISz
1
Z
1 k+w
5 bsas=n

- r_lwa

X2(t) > %2(n2)

— — .
2 +r2C

2(t)
t) (1 co(t)e2l) | At = 2f5w.
ra(t) ( + 2a0) £ bty +Co(t) 2

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)
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From (3.5) to (3.8), we have

r —
max |x1(t)] < max In— +rw,|In——=|+rw; =Ry,
te[kk+w) c e% +r10y
) —
max |xz(t)] < max In— +row, |In—"=|+rw; =Rs.
te[kk+0) e ‘% +15C

Clearly, Ry andR; are independent of. LetM = R; + R, + Ry, whereRy is taken suffi-
ciently large such that for the following algebraic equations
_ R
{ o — 4 e =0,

ay(t)+ba(t)e (3.9)

i — 17kt r(t)e .
rz - I‘2C26y - o k mAt — 07

every solution(x*,y*)T of (3.9) satisfieg (x*,y*)T ||< M. Now, we defineQ = {(x1,%)" €

X, || (x1,%)" ||< M}. Then it is clear tha® verifies the requirement (a) of Lemma 2.2. If
(x1,%2)T € 0QNKerL = dQNR?, then(x,%2) " is a constant vector iR? with || (x,%2)" ||=
IX1] + |X2| = M. If (3.9) has at least a solution, then

e — 1" k+ ri(tes
o ][ - )
XZ I‘z—@exz—a) k WA‘: 0
if (3.9) has no solution, then
X1 0
%7 o]
Moreover, define
R
_ 1N k+w  ra(t)ed
O(x1, X, ) = [ r_l_”clgl } SRk, AU 7 O
) bl R ey o 2
ro —Cs ~% Kk mO) bt At

wherep € [0,1] is a parameter. Ifx;,x2)" € dQ NKerL, then(xy, Xz, 1) # 0. In addition,
we can easily see that the algebraic equaipq,x2,0) = 0 has a unique solution iR2.
Thus the invariance of homotopy produces

degJQN,QNKerL,0) = degQN,QnNKerL,0)
ded @(x1,X2,1),QNKerL,0)
deg @(x1,X%2,0), QN KerL,0)
= 1

By now, we have verified tha® fulfills all requirements of Lemma 2.2, therefore, system
(1.1) has at least orte—periodic solution in DorhN Q. The proof is complete. O

Remark3.2 From Theorem 3.1, we can see that (1.1) has at leastwrperiodic solu-

tion provided that the coefficients of (1.1) are rd—continu@ugeriodic functions on time
scalesT. Thus, the special cases (1.2) and (1.3) both have at least-eperiodic solution

under certain conditions. This study shows that the results we obtained are more general-
ized than those in [1]. Moreover, the priori bounds for periodic solutions are more accurate
than those in [1].
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