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Abstract

The purpose of the paper is to determine fine spectrum of newly introduced opera-
tor A, on the sequence spacg The operatol\, on ¢ is defined byAyx = (Vpxp —
Vn—1%n—1)meo With x_1 = 0, wherev = (v) is either constant or strictly decreasing
sequence of positive real numbers such Eimtv;< =L >0andsupv < 2L. In this

paper, it is shown that spectrumgAy, co) = {a € C: |1 — &| < 1}, the point spectrum
0p(Qv,Co) = @if vis a constant andp(Ay, Co) = {vn} If Vvis a strictly decreasing se-
quence. We have also obtained the results on continuous spesd(Amcy), residual
spectrunmo; (Ay, Co) and fine spectrum of the operatlyy on co.

AMS Subiject Classification: 47A10; 40J05; 46A45.
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1 Introduction

Let v= (v) be either constant or strictly decreasing sequence of positive real numbers
satisfying

Ilim w = L>0and (1.2)
supw < 2L (1.2)
k
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We introduce the operatdy;, on the sequence spacgas follows,
Ay : cp — g is defined by,

Ax = Dy(Xn) = (VnXn — Vn—1Xn—1) o With x_3 = 0.

It is easy to verify that the operatdy, can be represented by the matrix

Vo 0 0
—Vo V1 0o ...

The fine spectrum of the difference operafopver the sequence spaagsandc is
determined by B. Altay and F. Basar [3]. Complete study of the spectrum such as the point
spectrum, the continuous spectrum, the residual spectrum of the opematahe sequence
spacexp andc is made by these authors. The fine spectrum of the Cesaro operator on
the sequence spatgis studied by Gonzalez [9], whefie< p < o while weighted mean
matrices of operators olp is investigated by Cartlidge [7]. The spectrum of the Cesaro
operator on the sequence spageandbvis also investigated by Reade [6] and Okutoyi [8]
respectively. The fine spectrum of the Rhally operators on the sequence spanes is
studied by Yildirim [10]. Recently, the fine spectra of the cesaro operator over the sequence
spacec is determined by Akhmedov and Basar [1].

In this paper, we determine the spectrum, the point spectrum, the continuous spectrum
and the residual spectrum of the operaipion the sequence spacg The results of this
paper not only generalize the corresponding results of [3] but also give results for some
more operators.

2 Preliminaries, Background and Notation

Let X andY be the Banach spaces ahd X — Y be a bounded linear operator. We denote
the range ofl asR(T), where

RT)={yeY: y=Tx xeX},

and the set of all bounded linear operatorsxoimto itself is denoted by3(X). Further, the
adjoint T* of T is a bounded linear operator on the dialof X defined by(T*@) (x) =
@(Tx), for all pe X* andx € X.

Let X £ {6} be a complex normed space ahd D(T) — X be a linear operator with
domainD(T) C X. With T, we associate the operaffy = (T —al), wherea is a complex
number and is the identity operator o®(T). The inverse offly (if exists) is denoted by
T, L ie.

T, l=(T—al)?

and call it the resolvent operator of It is easy to verify thal, ! is linear if Ty is linear.
Many properties offy and T, * depend oo, and spectral theory is concerned with
those properties. We are interested in the set of afl the complex plane such th#g?
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exists/T; 1 is bounded/ domain df; ! is dense irX. In this paper, we have made an effort
to find the characterizations of spectrum and fine spectrum of the op&radorsequence
spaceco.

Firstly, we give below definitions and known results which will be used in the sequel.

Definition 2.1. ([4], pp. 371) LetX # {6} be a complex normed space ahdD(T) — X
be a linear operator with domaid(T) C X. A regular value ofT is a complex numben
such that

(R1) T, ! exists,

(R2) T, 1 is bounded,

(R3) T, ! is defined on a set which is denseXn

Theresolvent sep(T, X) of T is the set of all regular values of T. Its complement
o(T,X) = C\ p(T,X) inthe complex plan€ is called thespectrurmof T. Furthermore, the
spectruno(T, X) is partitioned into three disjoint sets as follows:

The point spectrunop(T, X) is the set of allx € C such thafl, ! does not exist. The
element ofop(T, X) is calledeigenvalueof T.

The continuous spectruno(T,X) is the set of alla € C such thatT, ! exists and
satisfieg R3) but not(R2), that is,T; ! is unbounded.

The residual spectrunw, (T, X) is the set of allx € C such thafT, ! exists but do not
satisfy(R3), that is, the domain of,; ! is not dense iX. The condition(R2) may or may
not holds good.

Goldberg's classification of operatorTy = (T —al) (see [11], pp. 58) : LeX be a Banach
space andy = (T —al) € B(X), wherea is a complex number. Again I&(Ty) andT;*

be denote the range and inverse of the opertoespectively, then following possibilities
may occur;

(A) R(Ta) =X,

(B) R(Tcx) 7& R(Tot) =X,

(C) R(Ta) # X,

and

(1) Ty is injective andT, 1 is continuous,

(2) Tq is injective andT, ! is discontinuous,

(3) Ty is not injective.

Remark2.2 Combining (A), (B), (C) and (1), (2), (3); we get nine different states. These
are labelled byA;, Ay, Ag, B1, By, B3, C;, C; andCsz. We usea € Bpo(T, X) means the
operatorTy € By, i.e. R(Ty) # R(Tq) = X and Ty is injective butT,;? is discontinuous.
Similarly others. Ifa is a complex number such thgf € A; or Ty € By, thena belongs to
the resolvent sgi(T,X) of T on X. The other classification gives rise to the fine spectrum
of T.

By w, we denote the space of all real or complex valued sequences. WewWatehe
space of all absolutely summable sequencesijie.{x= (X) : 3 |Xk| < «} andcy denote
the space of all null sequences.

Definition 2.3. ([5], pp. 220-221) Lef\, i be two nonempty subsets of the spacef all
real or complex sequences afve- (ank) an infinite matrix of complex numbeggy, where
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nkeN={0,1,2,---}. For everyx = (x) € A and every integen we write

An(X) = Zankxk, (2.1)

where the sum without limits is always taken frdm= 0 to k = . The sequencéx =
(An(x)), if it exists, is called the transformation by the matrixA. We say thaA € (A, L)
if and only if Axe pwheneverx € A.

Lemma 2.4. ([2], pp. 129) The matriXA = (ank) gives rise to a bounded linear operator
T € B(co) fromcg to itself if and only if

(1) the rows oA in I; and theirl; norms are bounded,

(2) the columns oA are in cp.

Note: The operator norm df is the supremum of thig norms of the rows.

Lemma 2.5. ([11], pp. 59) T has a dense range if and onlyTf is one to one, whergé*
denotes the adjoint operator of the operafar

Lemma 2.6. ([11], pp. 60) The adjoint operatof * of T is onto if and only ifT has a
bounded inverse.

3 The Fine Spectrum of the OperatorA, on the Sequence Space
Co

In this section, we compute the spectrum and the fine spectrum of the opiyatorthe
sequence spaag. Throughout this paper, the sequence (vk ) satisfies equations (1.1)
and (1.2).

Theorem 3.1. Ay : ¢p — Cp is @ bounded linear operator anf\y|| (¢, ¢,) = 2 SUHVk)-
k

Proof. Proof is simple. So we omit. O

Theorem 3.2. The Spectrum ai, oncy is given by
o}
o(Ay, Co) {GEC. ’1 L‘ _1}.

Proof. The proof of this theorem is divided into two parts. In the first part, we show that
o(Ayv,co) C {a € C:|1— 2| <1}, which is equivalent to show that

a € C with ‘1— %’ > limpliesa ¢ o(Ay, Co).
In the second part, we establish the reverse inequality, i.e.
{0( eC: ‘1—%‘ < 1} Co(Ay,Co).

Leta € C with }1— %\ > 1. Clearly,a = L as well asa = v, for all k do not satisfied.
So,a # L anda # v, for all k. We get(A, — al) = (ank) is a triangle and hence has an
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inverse. Thus(A, —al )=t = (bn),

where
1
(Vo— @) 0
Vo 1 0
()= | Mo~ —a) i) .
(Mo—a)(vi—a)(v2—a) (vi—a)(va—a) (v2—a)

We have(Av al)~1 € (co, o) if and only if

(1) serlesz |bnk| is convergent, for eache N andsupz |brk| < 0 ;
n k=0
(2)I|m |bnk| =0, for eachk € N.

Now, we will show that the seriei)]bmd is convergent, for eachme N.
LetS, = z |brk|. Then,
K=0

1
Vh—o|’

VoVi--Vn-1
(Vo—0)(vp—0)---(Vh— @)

Vn-1
(Vh—1—0a)(Vh— Q)

S= -t +

00

Clearly, for eacm € N, the series%|bnk\ is convergent.
k=

Next, we show thalsups1 is finite. Letp = r!lm v 10( . As modulus function is
— 00 h—
continuous, S0
1
B= (3.1)
1 ¢
Which shows tha® < 3 < 1 and gives
. Vn-1 1 B
= lim =-. 3.2
n—o |V | nwo( Vn—0O | |Vho1 > L (3.2)
We have,
o Vn_l 1
S= ya— S1+ y—

Taking limit both sides of above equation and using equations (3.1) and (3.2), we get

s =1 (1)

Since(S,) is a sequence of positive real numbers %indSn < 00, SOSUPS, < 0.
— 00 n
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Again since3 = r!im ani_l <1, therefore‘ VV”_l < 1, for largen and consequently
=% | Vn — n—
. . VoVi---Vn-1
lim |bo| = lim =0.
nl—>oo| n0| nl—>oo (VQ—G) (V]_—(x)"'(Vn—CX)
Similarly, we can show the#m |bk =0, forallk=1,2,3,---.
Thus,
(A, —al)~t € B(co) for a € C with )1—%’>1. (3.3)

Now, we show that the domain of the operattyy — al )~ is dense irco, this statement
holds if and only if the range of the operat@k, — al) is dense incy. Since we have
(Ay—al)~t € (co, o), this is equivalent to the range of the opergiy — al ) is dense in
Co-

This shows that,

G(Av,co)g{aec:’l—%lgl}. (3.4)
Conversely, it is required to show
{aeC:‘l—%‘ gl}go(AV,co). (3.5)

We prove inclusion (3.5) under the assumption that L as well asu # v, for all k,
i.e. one of the conditions of Definition 2.1 fails. Lete C with [1— 2| < 1. Clearly
(A, —al) is a triangle and hend@, — al)~! exists. So conditiofiR1) is satisfied bufR2)
fails as can be seen below:

Now supposex € C with ]1— %| <1 ThenB= rI]im anfl > 1. This means that
— 00 h—
Vn-1 > 1, for largen and consequently
Vp—a
. . VoV1---Vn-1
lim |byo| = lim 0.
nl—>oo| nol nl—>oo (Vo—0)(vi—0)---(Vp— @) 7
Hence
(By—al) L ¢ B(co) for a € C with )1—%] <1 (3.6)

Now, we considen € C with \1—% =1, i.e. |L—a| =L, which implies|vx—a| <

1
|Vk|, for all k, therefore— <

—— for all k. Using this inequality, we have
vl = e—a J ey

1
Vh— O

VoVi--+Vn-1
(Vo—a)(vp—a)---(vh— @)

(n+1)

Vn

> (n+l)‘
Vn

Vn-1
(Vh-1—a)(Vh— )

Si= -t +

Therefore, sup$, > sup[ } = o0, So condition(R2) fails. Hence
n n

(B —al)~ ¢ B(co) for a  C with )17%‘:1. 3.7)
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Now, we prove the inclusion (3.5) under the assumptiondhat as well asx = v, for all k.
We have

(Vo — Vk)Xo
—VoXo + (V1 — Vk)X1
—ViX1 + (V2 — Vi) X2

Ay — vl )X = )
(By=vid) Vi 2Xk—2 + (Vi1 — Vi) X1

—Vk—1Xk—1
—VieXic + (Vi1 — Vi) X1

If (v = L) is a constant sequence, then
(Ay—wl)x=0 =x=0,x=0,x=0,---.
This shows that, the operat@k, —al) is one to one, buR(A, — al) is not dense irty. So
condition(R3) fails. Hencel € o(Ay, Co).
Furthermore, Ifv) is a strictly decreasing sequence, then for fiked

(Ay—wl)x=0

Vn

=X=0 x=0,-,%1=0, Xpr1 = <> Xn, forall n> k. This shows that
Vi1 — Vk

(Av —wl) is not injective. So conditio(R1) fails. Hencevi € o (A, Co), for allk € N.

Whena = L, then|vx — a| < |w/, for all k and henc < ——, forallk.
‘ k | ‘ k‘ ﬁVT(’ ’Vk—a‘
Thus,
VoV1 - Vn-1 Vn_1 1 (n+1)

— 44 > .

S (Vo—0)(vp—0)---(Vh—a) (Vh—1—0a)(Vh— Q) Vh— O Vi
(n+1) L ,
Therefore, supS, > sup | = So condition(R2) fails. Hence
n n n
(Ay—al)~t ¢ B(c) fora = L. (3.8)

So,L € a(Ay, ¢o). Thus, in this case alsg € o(Ay, ¢), for allk € N andL € o(Ay, Co).
This shows that,

{aeC:‘l—%‘gl}go(A\,,c@) (3.9)
From inclusions (3.4) and (3.9), we get
o(by,c0) = {aec: )17%‘ <1}.

This completes the proof. O
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Theorem 3.3. The point spectrum of the operatéyy overcy is given by

@, if (w) is a constant sequence

Op(Qv,Co) =
{vo,v1,V2,--- }, if (W) is a strictly decreasing sequence

Proof. The proof of this theorem is divided into two cases.
Case(i): Supposer) is a constant sequence. Considgx = ax, for x# 8 = (0,0,---) in
Co, Which gives

VoXo = UXo

—VoXo + V1X1 = 00Xy
—V1X1 + V2Xo = OX2
. (3.10)

—Vk—1Xk—1 + VikXk = OXk

Let x is the first non-zero entry of the sequemce (xp), SO we get-Vt_1%_1 + kX = 0%
which impliesa = v and from the equation

—ViXt + Vi1 %41 = 041
we getx = 0, which is a contradiction to our assumption.
Therefore,
GD(AV7CO) =0

Case(ii): Supposévy) is a strictly decreasing sequence. Consilfigr= ax, for x # 0 =
(0,0,---) in co, which gives system of equations (3.10).

Supposea = v, then

. Vk-1
Xk = (Vk—VO> Xk—1

[ Vk—1Vk—2---Vo
(Vk — Vo) (Vk—1— Vo) - - - (V1 — Vo)

We takexp # 0, then get non-zero solution of the equatidy — vol )x = 6.
Similarly if a = v, forallk> 1, thenx,_1 =0, xc_2=0, ---, Xo=0and

] Xo, forall k> 1.

Vin
Xn = ————— | Xy, foralln>k
i <Vn+1—Vk>

{ VnVn—1- " Vk

(V1 — Vi) (Vn — Vi) - - (Viers — Vi)
We takexy # 0, then get non-zero solution of the equatidy — vkl )x = 6.
Thus,

}xk, foralln> k.

GP(AW CO) = {V07V17V2> e } .

This completes the proof. O
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Let T : co — co be a bounded linear operator having matrix represent#@tiand the
dual space oty denoted bycy, then we known that the adjoint operafbf : ¢j — cj is
defined by the transpose of the mat#ix Further, it is also known tha% is isomorphic to

l1, the space of all absolutely summable sequences, with the [pdfre Z)\xk|
We now obtain point spectrum of the dual operaipof A, over the space;,.

Theorem 3.4. The point spectrum of the operatfy{ overcy is

Op(Ay,Cp) = {a eC: ’1—%’ <1}.

Proof. Suppose\;f =af for 8 # f € ¢ =1, where

Vo —Vo 0 o fo
. 0 A1 -V ... fy
AV = 0 0 ) ce. and f = f2
This gives,
fio = <V"‘1_ “) fi_1, forall k> 1.
Vk-1
Hence
| = | k1= K> 1. 3.11)
But,
Vk-1—0a] < We1—L+[L—a]
Verm 9 o 1 forallk=1,2,3,-, provided‘l—g‘ <1
Vk—1 L
Using equation (3.11), we get
f
| fk| <|fk-1], forallk=1,2,3,--- and consequentlym "1 k‘ | <1l
k—1

So z | fk| < oo.
k=0

Hence
‘1—g‘<1 = oo]f\<c>o
] 2, =

Converse follows from the fact that,

d f
|fel <0 = lim [ <1
& k—00 |fk 1|

Vk—1— 0O
Vik—1
a
177} 1.
-gl<

= |im

k—o0
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Hence
> a
%|fk]<oo = ‘1——’<1.
& L
Therefore,
‘1 O(‘<1 & 3 | fie| < o0
] 2, /M=

This means thatf € ¢ if and only if fo # 0 and]l— %| <1
Thus,

op(Ay,Cp) = {0( eC: ’1— E’ < 1}.
This completes the proof. O

Next theorem gives the characterization of residual spectruis,, co) of operatord,
on sequence spacg.

Theorem 3.5. Residual spectrurag; (Ay, o) of operatorA, overcy is

{aeC:|1-¢| <1}, if (w) is aconstant sequence
O-r(AV’CO): {GGC:‘1—%‘<l}\{V@,V1,V2,--'},if
(w) is a strictly decreasing sequence

Proof. The proof of this theorem is divided into two cases.

Case(i): Le{(vy) be a constant sequence. Boe C with |1— £ | < 1, the operato(A, —al)

is atriangle except fax = L and consequently the operatdx, — al ) has an inverse. Further

by Theorem 3.3, the operat@h, — al) is one to one foo = L and hence has an inverse.
But by Theorem 3.4, the operatéd, —al)* = A} — al is not one to one fon €

C with \1— %\ < 1. Hence by Lemma 2.5, the range of the oper&fgr— al ) is not dense

in cg. Thus,

or (Ay,Co) = {aeC: ’1—%‘ <1}.

Case(ii): Let(w) be a strictly decreasing sequence V\ﬂiﬂn vk = L. Fora € C such that

|1— %\ < 1, the operatofA, —al) is a triangle except foa = v, for somek € N and
consequently the operatoh, — al) has an inverse. Further by Theorem 3.3, the operator
(A —al) is not one to one fon = vy, for somek € N. So(A, —al)~* does not exist.

But by Theorem 3.4(A, — al)* = A} —al is not one to one fom € C with [1— | < 1.
Hence by Lemma 2.5, the range of the operéfgr— al ) is not dense irtp. Thus,

or (Ay,Co) = {0( eC: ‘1—%‘ < 1}\{vo,v1,vz,~-}.

This completes the proof. O
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Now we established the result for continuous spectayd,,cy) of operatord, on
sequence spacs.

Theorem 3.6. Continuous spectrum(Ay, Co) of operatorA, overcy is

{aeC:|1-¢|=1},if (%) is aconstant sequence

oc(Bv,Co) =
{aeC:|1-8|=1}\{vo}, if (w)is a strictly decreasing sequence

Proof. The proof of this theorem is divided into two cases.
Case(i): Lef(vy) be a constant sequence. Bog C with |1— &| = 1, the operato(A, —al)
is a triangle and has an inverse. The inverse of the opefator al) is discontinuous by
statement (3.7). Thereforg), — al ) has an unbounded inverse.

But by Theorem 3.4, the operatth, — al )* = Ay — al is one to one fo € C with
|1— %\ = 1. Hence by Lemma 2.5, the range of the operéfqr— al) is dense ircy. Thus,

oc(by,co) = {aec: ‘17%‘ =1}.

Case(ii): Let(w) be a strictly decreasing sequence Wllim vk = L. Fora e C with

|1— %\ = 1, the operatofA, — al) is a triangle except may ke = vp and consequently
the operatofA, — al) has an inverse. Further by Theorem 3.3, the opefétpr al ) is not
one to one foo = vp. So(A, —al)~! does not exist. The inverse of the operaityy — al )
is discontinuous by statement (3.7). Therefdfg,— al ) has an unbounded inverse.

But by Theorem 3.4, the operatth, —al)* = Ay —al is one to one foo € C with
|1— %] = 1. Hence by Lemma 2.5, the range of the operéfqr— al ) is dense irco. Thus,

a
oc(by,c0) = {areC: ‘1— E’ =1} {wo}.
This completes the proof. O

Theorem 3.7. If a satisfie§1— 2| > 1, then(A, —al) € Ay,

Proof. It is required to show that the operatdk, — al) is bijective and has a continuous
inverse fora € C with }1— %\ > 1. Sincea # v, thereforg(A, —al) is a triangle. Hence it
has an inverse. The inverse of the operéfgr— al ) is continuous foo € C with ]1— %} >

1 by statement (3.3). Also the equatih, — al )x = y givesx = (A, —al )1y, i.e.

Xn == ((A\/*al)_ly)n, n E N
Thus, for everyy € ¢y, we can findk € ¢y such that
(A, —al)x =y, since (A,—al)™t e (co,co).

This shows that, the operat@k, —al) is onto, i.e.R(A, — al) = ¢ and hencéA, —al) €
A O

Theorem 3.8.Let(w) be a constant sequence, say= L anda =L. Thena € C;0(Ay, Co).



On the Fine Spectrum of the Generalized Difference Operstor 19

Proof. We have,
a
Op (4, Cp) = {0( eC: ’l_f‘ < 1}.

For a = L, the operatofA, — al)* is not one to one. By Lemma 2.R(A, — al) is not
dense ircy, i.e. R(Ay — al) # ¢cp. Again by Theorem 3.3y = L does not belong to the set
op(Ay, Co), therefore the operatdh, — al) has an inverse.

To show the operatai\, — al )_1 is continuous. By Lemma 2.6, it is enough to show
that (A, —al)™ is onto, i.e. for givery = (yn) € 1, we have to find = (x») € I3 such that
(Ay—al)*x=y. Now, (A, —al)*x=Yy,i.e.

VX1 = Yo
=V =¥
—VX = Yn-1

00

Thus,—VX, = yn_1, for all n > 1 which implies Zb|xn| < o0, sincey € 1.
n=
This shows that(A, — al )* is onto and hence € C;0(Ay, Co). O

Theorem 3.9. Let(w) be a constant sequence, say= L anda # L, a € o, (Ay, Co). Then
a € C,o(Ay, Co).

Proof. Sincea # L, therefore the operatg@f, — al) is a triangle. Hence it has an inverse.
ForL # a € C with }1— %\ < 1, the inverse of the operat@f, —al) is discontinuous by
statement (3.6). ThusgA, — al) is injective and A, — al )~ is discontinuous.

Again by Theorem 3.4(A, — al)* is not one to one foar € C with |1—%| < 1. But
Lemma 2.5 yields the fact that the range of the oper@gr al) is not dense irty, i.e.
R(Ay —al) # ¢co and hencex € C,0(Ay, Co). O

Theorem 3.10. Let (v) be a strictly decreasing sequence of positive real numbers and
a € o (Ay,Cp). Thena € Co(Ay, Co).

Proof. We have,
a

Sincea # v, for all k, therefore the operatdf, —al ) is a triangle. Hence it has an inverse.
Forvg # a € C with }1— %\ < 1, the inverse of the operat¢f, — al ) is discontinuous by
statements (3.6) and (3.8). Thua, — al) is injective andA, — al) 1 is discontinuous.
Again by Theorem 3.4(A, — al)* is not one to one foar € C with [1—%| < 1. But
Lemma 2.5 yields the fact that the range of the oper@gr al) is not dense irty, i.e.
R(Ay —al) # ¢co and hencex € C,0(Ay, Co). O

Theorem 3.11. Let () be a constant sequence, say= L and a € o¢(Ay,C). Then
a € Boa(Ay, Co).
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Proof. Fora € C with ]1— %| = 1, the operatofA, — al ) is a triangle and has an inverse.
The inverse of the operat@f, — al) is discontinuous by statement (3.7). Thereforg,—
al) has an unbounded inverse. Again by Theorem @4 — al)* is one to one fo €
Cwith |[1— | = 1. By Lemma 2.5, the range of the operatay, — al) is dense irco, i.e.
R(Ay —al) = cp.

Now, we have to show that the operatd, — al) is not surjective. It is sufficient to
show that there is no sequence= (x,) in ¢p such that(A, — al)x =y, for somey € co.
Clearly,y = (1,0,0,---) € co. We have,

n

m, for each n> 0.

(Ay—al)x=y = X =

. 1
therefore|x,| = £, for each n> 0 becausgq1—¢| = 1. Consequentiylim [x,| = T £ 0.
This shows thatx ¢ ¢y and hence the operat@h, —al) is not surjective. O
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