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Abstract

The purpose of the paper is to determine fine spectrum of newly introduced opera-
tor ∆v on the sequence spacec0. The operator∆v on c0 is defined by∆vx = (vnxn−
vn−1xn−1)∞

n=0 with x−1 = 0, wherev = (vk) is either constant or strictly decreasing
sequence of positive real numbers such thatlim

k→∞
vk = L > 0 and sup

k
vk ≤ 2L. In this

paper, it is shown that spectrumσ(∆v,c0) =
{

α ∈ C :
∣∣1− α

L

∣∣≤ 1
}

, the point spectrum
σp(∆v,c0) = φ if v is a constant andσp(∆v,c0) = {vn} if v is a strictly decreasing se-
quence. We have also obtained the results on continuous spectrumσc(∆v,c0), residual
spectrumσr(∆v,c0) and fine spectrum of the operator∆v onc0.

AMS Subject Classification:47A10; 40J05; 46A45.
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1 Introduction

Let v = (vk) be either constant or strictly decreasing sequence of positive real numbers
satisfying

lim
k→∞

vk = L > 0 and (1.1)

sup
k

vk ≤ 2L. (1.2)
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We introduce the operator∆v on the sequence spacec0 as follows,
∆v : c0 → c0 is defined by,

∆vx = ∆v(xn) = (vnxn−vn−1xn−1)∞
n=0 with x−1 = 0.

It is easy to verify that the operator∆v can be represented by the matrix

∆v =




v0 0 0 . . .
−v0 v1 0 . . .

0 −v1 v2 . . .
...

...
...

...


 . (1.3)

The fine spectrum of the difference operator∆ over the sequence spacesc0 andc is
determined by B. Altay and F. Basar [3]. Complete study of the spectrum such as the point
spectrum, the continuous spectrum, the residual spectrum of the operator∆ on the sequence
spacesc0 andc is made by these authors. The fine spectrum of the Cesaro operator on
the sequence spacelp is studied by Gonzalez [9], where1 < p < ∞ while weighted mean
matrices of operators onlp is investigated by Cartlidge [7]. The spectrum of the Cesaro
operator on the sequence spacesc0 andbv is also investigated by Reade [6] and Okutoyi [8]
respectively. The fine spectrum of the Rhally operators on the sequence spacesc0 andc is
studied by Yildirim [10]. Recently, the fine spectra of the cesaro operator over the sequence
spacec0 is determined by Akhmedov and Basar [1].

In this paper, we determine the spectrum, the point spectrum, the continuous spectrum
and the residual spectrum of the operator∆v on the sequence spacec0. The results of this
paper not only generalize the corresponding results of [3] but also give results for some
more operators.

2 Preliminaries, Background and Notation

Let X andY be the Banach spaces andT : X →Y be a bounded linear operator. We denote
the range ofT asR(T), where

R(T) = {y∈Y : y = Tx, x∈ X},
and the set of all bounded linear operators onX into itself is denoted byB(X). Further, the
adjoint T? of T is a bounded linear operator on the dualX? of X defined by(T?φ)(x) =
φ(Tx), for all φ ∈ X? andx∈ X.

Let X 6= {θ} be a complex normed space andT : D(T)→ X be a linear operator with
domainD(T)⊆ X. With T, we associate the operatorTα = (T−αI), whereα is a complex
number andI is the identity operator onD(T). The inverse ofTα (if exists) is denoted by
T−1

α , i.e.

T−1
α = (T−αI)−1

and call it the resolvent operator ofT. It is easy to verify thatT−1
α is linear ifTα is linear.

Many properties ofTα andT−1
α depend onα, and spectral theory is concerned with

those properties. We are interested in the set of allα in the complex plane such thatT−1
α
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exists/T−1
α is bounded/ domain ofT−1

α is dense inX. In this paper, we have made an effort
to find the characterizations of spectrum and fine spectrum of the operator∆v on sequence
spacec0.

Firstly, we give below definitions and known results which will be used in the sequel.

Definition 2.1. ([4], pp. 371) LetX 6= {θ} be a complex normed space andT : D(T)→ X
be a linear operator with domainD(T) ⊂ X. A regular value ofT is a complex numberα
such that
(R1) T−1

α exists,
(R2) T−1

α is bounded,
(R3) T−1

α is defined on a set which is dense inX.

The resolvent setρ(T,X) of T is the set of all regular valuesα of T. Its complement
σ(T,X) =C\ρ(T,X) in the complex planeC is called thespectrumof T. Furthermore, the
spectrumσ(T,X) is partitioned into three disjoint sets as follows:

Thepoint spectrumσp(T,X) is the set of allα ∈ C such thatT−1
α does not exist. The

element ofσp(T,X) is calledeigenvalueof T.
The continuous spectrumσc(T,X) is the set of allα ∈ C such thatT−1

α exists and
satisfies(R3) but not(R2), that is,T−1

α is unbounded.
The residual spectrumσr(T,X) is the set of allα ∈ C such thatT−1

α exists but do not
satisfy(R3), that is, the domain ofT−1

α is not dense inX. The condition(R2) may or may
not holds good.

Goldberg’s classification of operatorTα = (T−αI) (see [11], pp. 58) : LetX be a Banach
space andTα = (T−αI) ∈ B(X), whereα is a complex number. Again letR(Tα) andT−1

α
be denote the range and inverse of the operatorTα respectively, then following possibilities
may occur;
(A) R(Tα) = X,
(B) R(Tα) 6= R(Tα) = X,
(C) R(Tα) 6= X,
and
(1) Tα is injective andT−1

α is continuous,
(2) Tα is injective andT−1

α is discontinuous,
(3) Tα is not injective.

Remark2.2. Combining (A), (B), (C) and (1), (2), (3); we get nine different states. These
are labelled byA1, A2, A3, B1, B2, B3, C1, C2 andC3. We useα ∈ B2σ(T,X) means the
operatorTα ∈ B2, i.e. R(Tα) 6= R(Tα) = X andTα is injective butT−1

α is discontinuous.
Similarly others. Ifα is a complex number such thatTα ∈ A1 or Tα ∈ B1, thenα belongs to
the resolvent setρ(T,X) of T on X. The other classification gives rise to the fine spectrum
of T.

By w, we denote the space of all real or complex valued sequences. We writel1 for the
space of all absolutely summable sequences, i.e.l1 = {x = (xk) : ∑ |xk|< ∞} andc0 denote
the space of all null sequences.

Definition 2.3. ([5], pp. 220-221) Letλ, µ be two nonempty subsets of the spacew of all
real or complex sequences andA = (ank) an infinite matrix of complex numbersank, where
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n,k∈ N = {0,1,2, · · ·}. For everyx = (xk) ∈ λ and every integern we write

An(x) = ∑
k

ankxk, (2.1)

where the sum without limits is always taken fromk = 0 to k = ∞. The sequenceAx =
(An(x)), if it exists, is called the transformation ofx by the matrixA. We say thatA∈ (λ, µ)
if and only if Ax∈ µ wheneverx∈ λ.

Lemma 2.4. ([2], pp. 129) The matrixA = (ank) gives rise to a bounded linear operator
T ∈ B(c0) fromc0 to itself if and only if
(1) the rows ofA in l1 and theirl1 norms are bounded,
(2) the columns ofA are inc0.

Note: The operator norm ofT is the supremum of thel1 norms of the rows.

Lemma 2.5. ([11], pp. 59)T has a dense range if and only ifT∗ is one to one, whereT∗

denotes the adjoint operator of the operatorT.

Lemma 2.6. ([11], pp. 60) The adjoint operatorT∗ of T is onto if and only ifT has a
bounded inverse.

3 The Fine Spectrum of the Operator∆v on the Sequence Space
c0

In this section, we compute the spectrum and the fine spectrum of the operator∆v on the
sequence spacec0. Throughout this paper, the sequencev = (vK) satisfies equations (1.1)
and (1.2).

Theorem 3.1. ∆v : c0 → c0 is a bounded linear operator and‖∆v‖(c0,c0) = 2 sup
k

(vk).

Proof. Proof is simple. So we omit.

Theorem 3.2. The Spectrum of∆v onc0 is given by

σ(∆v,c0) =
{

α ∈ C :
∣∣∣1− α

L

∣∣∣≤ 1
}

.

Proof. The proof of this theorem is divided into two parts. In the first part, we show that
σ(∆v,c0)⊆

{
α ∈ C :

∣∣1− α
L

∣∣≤ 1
}

, which is equivalent to show that

α ∈ C with
∣∣∣1− α

L

∣∣∣ > 1 impliesα /∈ σ(∆v,c0).

In the second part, we establish the reverse inequality, i.e.
{

α ∈ C :
∣∣∣1− α

L

∣∣∣≤ 1
}
⊆ σ(∆v,c0).

Let α ∈ C with
∣∣1− α

L

∣∣ > 1. Clearly,α = L as well asα = vk, for all k do not satisfied.
So, α 6= L andα 6= vk, for all k. We get(∆v−αI) = (ank) is a triangle and hence has an
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inverse. Thus,(∆v−αI)−1 = (bnk),
where

(bnk) =




1
(v0−α)

0 0 . . .

v0

(v0−α)(v1−α)
1

(v1−α)
0 . . .

v0v1

(v0−α)(v1−α)(v2−α)
v1

(v1−α)(v2−α)
1

(v2−α)
. . .

...
...

...
...




.

We have(∆v−αI)−1 ∈ (c0,c0) if and only if

(1) series
∞

∑
k=0

|bnk| is convergent, for eachn∈ N andsup
n

∞

∑
k=0

|bnk|< ∞ ;

(2)lim
n→∞

|bnk|= 0, for eachk∈ N.

Now, we will show that the series
∞

∑
k=0

|bnk| is convergent, for eachn∈ N.

Let Sn =
∞

∑
k=0

|bnk|. Then,

Sn =
∣∣∣∣

v0v1 · · ·vn−1

(v0−α)(v1−α) · · ·(vn−α)

∣∣∣∣+ · · ·+
∣∣∣∣

vn−1

(vn−1−α)(vn−α)

∣∣∣∣+
∣∣∣∣

1
vn−α

∣∣∣∣ .

Clearly, for eachn∈ N, the series
∞

∑
k=0

|bnk| is convergent.

Next, we show thatsup
n

Sn is finite. Let β = lim
n→∞

∣∣∣∣
vn−1

vn−α

∣∣∣∣. As modulus function is

continuous, so

β =
1∣∣1− α

L

∣∣ . (3.1)

Which shows that0 < β < 1 and gives

lim
n→∞

1
|vn−α| = lim

n→∞

(∣∣∣∣
vn−1

vn−α

∣∣∣∣
∣∣∣∣

1
vn−1

∣∣∣∣
)

=
β
L

. (3.2)

We have,

Sn =
∣∣∣∣

vn−1

vn−α

∣∣∣∣Sn−1 +
∣∣∣∣

1
vn−α

∣∣∣∣ .

Taking limit both sides of above equation and using equations (3.1) and (3.2), we get

lim
n→∞

Sn =
β
L

(
1

1−β

)
< ∞.

Since(Sn) is a sequence of positive real numbers andlim
n→∞

Sn < ∞, sosup
n

Sn < ∞.
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Again sinceβ = lim
n→∞

∣∣∣∣
vn−1

vn−α

∣∣∣∣ < 1, therefore

∣∣∣∣
vn−1

vn−α

∣∣∣∣ < 1, for largen and consequently

lim
n→∞

|bn0|= lim
n→∞

∣∣∣∣
v0v1 · · ·vn−1

(v0−α)(v1−α) · · ·(vn−α)

∣∣∣∣ = 0.

Similarly, we can show thatlim
n→∞

|bnk|= 0, for all k = 1,2,3, · · · .
Thus,

(∆v−αI)−1 ∈ B(c0) for α ∈ C with
∣∣∣1− α

L

∣∣∣ > 1. (3.3)

Now, we show that the domain of the operator(∆v−αI)−1 is dense inc0, this statement
holds if and only if the range of the operator(∆v−αI) is dense inc0. Since we have
(∆v−αI)−1 ∈ (c0,c0), this is equivalent to the range of the operator(∆v−αI) is dense in
c0.
This shows that,

σ(∆v,c0)⊆
{

α ∈ C :
∣∣∣1− α

L

∣∣∣≤ 1
}

. (3.4)

Conversely, it is required to show
{

α ∈ C :
∣∣∣1− α

L

∣∣∣≤ 1
}
⊆ σ(∆v,co). (3.5)

We prove inclusion (3.5) under the assumption thatα 6= L as well asα 6= vk, for all k,
i.e. one of the conditions of Definition 2.1 fails. Letα ∈ C with

∣∣1− α
L

∣∣ ≤ 1. Clearly
(∆v−αI) is a triangle and hence(∆v−αI)−1 exists. So condition(R1) is satisfied but(R2)
fails as can be seen below:

Now supposeα ∈ C with
∣∣1− α

L

∣∣ < 1. Thenβ = lim
n→∞

∣∣∣∣
vn−1

vn−α

∣∣∣∣ > 1. This means that
∣∣∣∣

vn−1

vn−α

∣∣∣∣ > 1, for largen and consequently

lim
n→∞

|bn0|= lim
n→∞

∣∣∣∣
v0v1 · · ·vn−1

(v0−α)(v1−α) · · ·(vn−α)

∣∣∣∣ 6= 0.

Hence

(∆v−αI)−1 /∈ B(c0) for α ∈ C with
∣∣∣1− α

L

∣∣∣ < 1. (3.6)

Now, we considerα ∈ C with
∣∣1− α

L

∣∣ = 1, i.e. |L−α| = L, which implies|vk−α| ≤
|vk| , for all k, therefore

1
|vk| ≤

1
|vk−α| , for all k. Using this inequality, we have

Sn =
∣∣∣∣

v0v1 · · ·vn−1

(v0−α)(v1−α) · · ·(vn−α)

∣∣∣∣+ · · ·+
∣∣∣∣

vn−1

(vn−1−α)(vn−α)

∣∣∣∣+
∣∣∣∣

1
vn−α

∣∣∣∣≥
(n+1)

vn
.

Therefore, sup
n

Sn ≥ sup
n

[
(n+1)

vn

]
= ∞. So condition(R2) fails. Hence

(∆v−αI)−1 /∈ B(c0) for α ∈ C with
∣∣∣1− α

L

∣∣∣ = 1. (3.7)
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Now, we prove the inclusion (3.5) under the assumption thatα = L as well asα = vk, for all k.
We have

(∆v−vkI)x =




(v0−vk)x0

−v0x0 +(v1−vk)x1

−v1x1 +(v2−vk)x2
...

−vk−2xk−2 +(vk−1−vk)xk−1

−vk−1xk−1

−vkxk +(vk+1−vk)xk+1
...




.

If (vk = L) is a constant sequence, then
(∆v−vkI)x = θ ⇒ x0 = 0, x1 = 0, x2 = 0, · · · .

This shows that, the operator(∆v−αI) is one to one, butR(∆v−αI) is not dense inc0. So
condition(R3) fails. HenceL ∈ σ(∆v,c0).

Furthermore, If(vk) is a strictly decreasing sequence, then for fixedk,

(∆v−vkI)x = θ

⇒ x0 = 0, x1 = 0, · · · ,xk−1 = 0, xn+1 =
(

vn

vn+1−vk

)
xn, for all n≥ k. This shows that

(∆v−vkI) is not injective. So condition(R1) fails. Hencevk ∈ σ(∆v,c0), for all k∈ N.

Whenα = L, then|vk−α|< |vk|, for all k and hence
1
|vk| <

1
|vk−α| , for all k.

Thus,

Sn =
∣∣∣∣

v0v1 · · ·vn−1

(v0−α)(v1−α) · · ·(vn−α)

∣∣∣∣+ · · ·+
∣∣∣∣

vn−1

(vn−1−α)(vn−α)

∣∣∣∣+
∣∣∣∣

1
vn−α

∣∣∣∣ >
(n+1)

vn
.

Therefore, sup
n

Sn > sup
n

[
(n+1)

vn

]
= ∞. So condition(R2) fails. Hence

(∆v−αI)−1 /∈ B(c0) for α = L. (3.8)

So,L ∈ σ(∆v,c0). Thus, in this case alsovk ∈ σ(∆v,c0), for all k∈ N andL ∈ σ(∆v,c0).
This shows that,

{
α ∈ C :

∣∣∣1− α
L

∣∣∣≤ 1
}
⊆ σ(∆v,c0) (3.9)

From inclusions (3.4) and (3.9), we get

σ(∆v,c0) =
{

α ∈ C :
∣∣∣1− α

L

∣∣∣≤ 1
}

.

This completes the proof.
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Theorem 3.3. The point spectrum of the operator∆v overc0 is given by

σp(∆v,c0) =





φ, i f (vk) is a constant sequence.

{v0,v1,v2, · · ·}, i f (vk) is a strictly decreasing sequence.

Proof. The proof of this theorem is divided into two cases.
Case(i): Suppose(vk) is a constant sequence. Consider∆vx = αx, for x 6= θ = (0,0, · · ·) in
c0, which gives

v0x0 = αx0

−v0x0 +v1x1 = αx1

−v1x1 +v2x2 = αx2
...

−vk−1xk−1 +vkxk = αxk
...





(3.10)

Let xt is the first non-zero entry of the sequencex = (xn), so we get−vt−1xt−1 +vtxt = αxt

which impliesα = vt and from the equation

−vtxt +vt+1xt+1 = αxt+1.

we getxt = 0, which is a contradiction to our assumption.
Therefore,

σp(∆v,c0) = φ.

Case(ii): Suppose(vk) is a strictly decreasing sequence. Consider∆vx = αx, for x 6= θ =
(0,0, · · ·) in c0, which gives system of equations (3.10).

Supposeα = v0, then

xk =
(

vk−1

vk−v0

)
xk−1

=
[

vk−1vk−2 · · ·v0

(vk−v0)(vk−1−v0) · · ·(v1−v0)

]
x0, for all k≥ 1.

We takex0 6= 0, then get non-zero solution of the equation(∆v−v0I)x = θ.
Similarly if α = vk, for all k≥ 1, thenxk−1 = 0, xk−2 = 0, · · · , x0 = 0 and

xn+1 =
(

vn

vn+1−vk

)
xn, for all n≥ k

=
[

vnvn−1 · · ·vk

(vn+1−vk)(vn−vk) · · ·(vk+1−vk)

]
xk, for all n≥ k.

We takexk 6= 0, then get non-zero solution of the equation(∆v−vkI)x = θ.
Thus,

σp(∆v,c0) = {v0,v1,v2, · · ·} .

This completes the proof.
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Let T : c0 → c0 be a bounded linear operator having matrix representationA and the
dual space ofc0 denoted byc∗0, then we known that the adjoint operatorT∗ : c∗0 → c∗0 is
defined by the transpose of the matrixA. Further, it is also known thatc∗0 is isomorphic to

l1, the space of all absolutely summable sequences, with the norm‖x‖=
∞

∑
k=0

|xk|.
We now obtain point spectrum of the dual operator∆∗v of ∆v over the spacec∗0.

Theorem 3.4. The point spectrum of the operator∆∗v overc∗0 is

σp(∆∗v,c
∗
0) =

{
α ∈ C :

∣∣∣1− α
L

∣∣∣ < 1
}

.

Proof. Suppose∆∗v f = α f for θ 6= f ∈ c∗0 ∼= l1, where

∆∗v =




v0 −v0 0 . . .
0 v1 −v1 . . .
0 0 v2 . . .
...

...
...

...


 and f =




f0
f1
f2
...


 .

This gives,

fk =
(

vk−1−α
vk−1

)
fk−1, for all k≥ 1.

Hence

| fk|=
∣∣∣∣
vk−1−α

vk−1

∣∣∣∣ | fk−1|, for all k≥ 1. (3.11)

But,

|vk−1−α| ≤ vk−1−L+ |L−α|
⇒

∣∣∣∣
vk−1−α

vk−1

∣∣∣∣ < 1, for all k = 1,2,3, · · · , provided
∣∣∣1− α

L

∣∣∣ < 1.

Using equation (3.11), we get

| fk|< | fk−1|, for all k= 1,2,3, · · · and consequentlylim
k→∞

| fk|
| fk−1| < 1.

So
∞

∑
k=0

| fk|< ∞.

Hence
∣∣∣1− α

L

∣∣∣ < 1 ⇒
∞

∑
k=0

| fk|< ∞.

Converse follows from the fact that,
∞

∑
k=0

| fk|< ∞ ⇒ lim
k→∞

| fk|
| fk−1| < 1

⇒ lim
k→∞

∣∣∣∣
vk−1−α

vk−1

∣∣∣∣ < 1

⇒
∣∣∣1− α

L

∣∣∣ < 1.
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Hence

∞

∑
k=0

| fk|< ∞ ⇒
∣∣∣1− α

L

∣∣∣ < 1.

Therefore,

∣∣∣1− α
L

∣∣∣ < 1 ⇔
∞

∑
k=0

| fk|< ∞.

This means that,f ∈ c∗0 if and only if f0 6= 0 and
∣∣1− α

L

∣∣ < 1.
Thus,

σp(∆∗v,c
∗
0) =

{
α ∈ C :

∣∣∣1− α
L

∣∣∣ < 1
}

.

This completes the proof.

Next theorem gives the characterization of residual spectrumσr(∆v,c0) of operator∆v

on sequence spacec0.

Theorem 3.5. Residual spectrumσr (∆v,c0) of operator∆v overc0 is

σr(∆v,c0) =





{
α ∈ C :

∣∣1− α
L

∣∣ < 1
}

, i f (vk) is a constant sequence.

{
α ∈ C :

∣∣1− α
L

∣∣ < 1
}\{v0,v1,v2, · · ·} , i f

(vk) is a strictly decreasing sequence.

Proof. The proof of this theorem is divided into two cases.
Case(i): Let(vk) be a constant sequence. Forα∈C with

∣∣1− α
L

∣∣ < 1, the operator(∆v−αI)
is a triangle except forα = L and consequently the operator(∆v−αI) has an inverse. Further
by Theorem 3.3, the operator(∆v−αI) is one to one forα = L and hence has an inverse.

But by Theorem 3.4, the operator(∆v−αI)∗ = ∆∗v − αI is not one to one forα ∈
C with

∣∣1− α
L

∣∣ < 1. Hence by Lemma 2.5, the range of the operator(∆v−αI) is not dense
in c0. Thus,

σr (∆v,c0) =
{

α ∈ C :
∣∣∣1− α

L

∣∣∣ < 1
}

.

Case(ii): Let(vk) be a strictly decreasing sequence withlim
k→∞

vk = L. For α ∈ C such that
∣∣1− α

L

∣∣ < 1, the operator(∆v−αI) is a triangle except forα = vk, for somek ∈ N and
consequently the operator(∆v−αI) has an inverse. Further by Theorem 3.3, the operator
(∆v−αI) is not one to one forα = vk, for somek∈ N. So(∆v−αI)−1 does not exist.

But by Theorem 3.4,(∆v−αI)∗ = ∆∗v−αI is not one to one forα∈C with
∣∣1− α

L

∣∣ < 1.
Hence by Lemma 2.5, the range of the operator(∆v−αI) is not dense inc0. Thus,

σr(∆v,c0) =
{

α ∈ C :
∣∣∣1− α

L

∣∣∣ < 1
}
\{v0,v1,v2, · · ·} .

This completes the proof.
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Now we established the result for continuous spectrumσc(∆v,c0) of operator∆v on
sequence spacec0.

Theorem 3.6. Continuous spectrumσc(∆v,c0) of operator∆v overc0 is

σc(∆v,c0) =





{
α ∈ C :

∣∣1− α
L

∣∣ = 1
}

, i f (vk) is a constant sequence.

{
α ∈ C :

∣∣1− α
L

∣∣ = 1
}\{v0} , i f (vk) is a strictly decreasing sequence.

Proof. The proof of this theorem is divided into two cases.
Case(i): Let(vk) be a constant sequence. Forα∈C with

∣∣1− α
L

∣∣ = 1, the operator(∆v−αI)
is a triangle and has an inverse. The inverse of the operator(∆v−αI) is discontinuous by
statement (3.7). Therefore,(∆v−αI) has an unbounded inverse.

But by Theorem 3.4, the operator(∆v−αI)∗ = ∆∗v−αI is one to one forα ∈ C with∣∣1− α
L

∣∣ = 1. Hence by Lemma 2.5, the range of the operator(∆v−αI) is dense inc0. Thus,

σc(∆v,c0) =
{

α ∈ C :
∣∣∣1− α

L

∣∣∣ = 1
}

.

Case(ii): Let(vk) be a strictly decreasing sequence withlim
k→∞

vk = L. For α ∈ C with
∣∣1− α

L

∣∣ = 1, the operator(∆v−αI) is a triangle except may beα = v0 and consequently
the operator(∆v−αI) has an inverse. Further by Theorem 3.3, the operator(∆v−αI) is not
one to one forα = v0. So(∆v−αI)−1 does not exist. The inverse of the operator(∆v−αI)
is discontinuous by statement (3.7). Therefore,(∆v−αI) has an unbounded inverse.

But by Theorem 3.4, the operator(∆v−αI)∗ = ∆∗v−αI is one to one forα ∈ C with∣∣1− α
L

∣∣ = 1. Hence by Lemma 2.5, the range of the operator(∆v−αI) is dense inc0. Thus,

σc(∆v,c0) =
{

α ∈ C :
∣∣∣1− α

L

∣∣∣ = 1
}
\{v0} .

This completes the proof.

Theorem 3.7. If α satisfies
∣∣1− α

L

∣∣ > 1, then(∆v−αI) ∈ A1.

Proof. It is required to show that the operator(∆v−αI) is bijective and has a continuous
inverse forα ∈C with

∣∣1− α
L

∣∣ > 1. Sinceα 6= vk, therefore(∆v−αI) is a triangle. Hence it
has an inverse. The inverse of the operator(∆v−αI) is continuous forα∈C with

∣∣1− α
L

∣∣ >
1 by statement (3.3). Also the equation(∆v−αI)x = y givesx = (∆v−αI)−1y, i.e.

xn =
(
(∆v−αI)−1y

)
n , n∈ N.

Thus, for everyy∈ c0, we can findx∈ c0 such that

(∆v−αI)x = y, since (∆v−αI)−1 ∈ (c0,c0).

This shows that, the operator(∆v−αI) is onto, i.e.R(∆v−αI) = c0 and hence(∆v−αI) ∈
A1.

Theorem 3.8.Let(vk) be a constant sequence, sayvk = L andα = L. Thenα∈C1σ(∆v,c0).
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Proof. We have,

σp(∆∗v,c
∗
0) =

{
α ∈ C :

∣∣∣1− α
L

∣∣∣ < 1
}

.

For α = L, the operator(∆v−αI)∗ is not one to one. By Lemma 2.5,R(∆v−αI) is not
dense inc0, i.e. R(∆v−αI) 6= c0. Again by Theorem 3.3,α = L does not belong to the set
σp(∆v,c0), therefore the operator(∆v−αI) has an inverse.

To show the operator(∆v−αI)−1 is continuous. By Lemma 2.6, it is enough to show
that(∆v−αI)∗ is onto, i.e. for giveny = (yn) ∈ l1, we have to findx = (xn) ∈ l1 such that
(∆v−αI)∗ x = y. Now, (∆v−αI)∗ x = y, i.e.

−vx1 = y0

−vx2 = y1

...

−vxn = yn−1

...

Thus,−vxn = yn−1, for all n≥ 1 which implies
∞

∑
n=0

|xn|< ∞, sincey∈ l1.

This shows that,(∆v−αI)∗ is onto and henceα ∈C1σ(∆v,c0).

Theorem 3.9. Let (vk) be a constant sequence, sayvk = L andα 6= L, α ∈ σr(∆v,c0). Then
α ∈C2σ(∆v,c0).

Proof. Sinceα 6= L, therefore the operator(∆v−αI) is a triangle. Hence it has an inverse.
For L 6= α ∈ C with

∣∣1− α
L

∣∣ < 1, the inverse of the operator(∆v−αI) is discontinuous by
statement (3.6). Thus,(∆v−αI) is injective and(∆v−αI)−1 is discontinuous.

Again by Theorem 3.4,(∆v−αI)∗ is not one to one forα ∈ C with
∣∣1− α

L

∣∣ < 1. But
Lemma 2.5 yields the fact that the range of the operator(∆v−αI) is not dense inc0, i.e.
R(∆v−αI) 6= c0 and henceα ∈C2σ(∆v,c0).

Theorem 3.10. Let (vk) be a strictly decreasing sequence of positive real numbers and
α ∈ σr(∆v,c0). Thenα ∈C2σ(∆v,c0).

Proof. We have,

σr(∆v, l1) =
{

α ∈ C :
∣∣∣1− α

L

∣∣∣ < 1
}
\{v0,v1,v2, · · ·} .

Sinceα 6= vk, for all k, therefore the operator(∆v−αI) is a triangle. Hence it has an inverse.
For vk 6= α ∈ C with

∣∣1− α
L

∣∣ < 1, the inverse of the operator(∆v−αI) is discontinuous by
statements (3.6) and (3.8). Thus,(∆v−αI) is injective and(∆v−αI)−1 is discontinuous.

Again by Theorem 3.4,(∆v−αI)∗ is not one to one forα ∈ C with
∣∣1− α

L

∣∣ < 1. But
Lemma 2.5 yields the fact that the range of the operator(∆v−αI) is not dense inc0, i.e.
R(∆v−αI) 6= c0 and henceα ∈C2σ(∆v,c0).

Theorem 3.11. Let (vk) be a constant sequence, sayvk = L and α ∈ σc(∆v,c0). Then
α ∈ B2σ(∆v,c0).
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Proof. For α ∈ C with
∣∣1− α

L

∣∣ = 1, the operator(∆v−αI) is a triangle and has an inverse.
The inverse of the operator(∆v−αI) is discontinuous by statement (3.7). Therefore,(∆v−
αI) has an unbounded inverse. Again by Theorem 3.4,(∆v−αI)∗ is one to one forα ∈
C with

∣∣1− α
L

∣∣ = 1. By Lemma 2.5, the range of the operator(∆v−αI) is dense inc0, i.e.
R(∆v−αI) = c0.

Now, we have to show that the operator(∆v−αI) is not surjective. It is sufficient to
show that there is no sequencex = (xn) in c0 such that(∆v−αI)x = y, for somey ∈ c0.
Clearly,y = (1,0,0, · · ·) ∈ c0. We have,

(∆v−αI)x = y ⇒ xn =
Ln

(L−α)n+1 , for each n≥ 0.

therefore|xn| = 1
L , for each n≥ 0 because

∣∣1− α
L

∣∣ = 1. Consequentlylim
n→∞

|xn| = 1
L
6= 0.

This shows that,x /∈ c0 and hence the operator(∆v−αI) is not surjective.

Acknowledgments

The author thanks the referees for their careful reading of the manuscript and insightful
comments.

References

[1] A. M. Akhmedov and F. Basar, On the fine spectrum of the Cesaro operator inc0,
Math. J. Ibaraki Univ., Vol. 36 (2004) 25–32.

[2] A. Wilansky, Summability through Functional Analysis,North-Holland Mathematics
Studies, North-Holland, Amsterdam, Vol. 85, 1984.

[3] B. Altay and F. Basar, On the fine spectrum of the difference operator∆ over the
sequence spacesc0 andc, Information Sciences, Vol. 168 (2004) 217–224.

[4] E. Kreyszig, Introductory Functional Analysis With Applications,John Wiley and
Sons Inc. New York-Chichester-Brisbane-Toronato, 1978.

[5] I. J. Maddox,Elements of Functional Analysis, Cambridge University Press, 1988.

[6] J. B. Reade, On the spectrum of the Cesaro operator, Bull. Lond. Math. Soc. 17 (1985)
263–267.

[7] J. P. Cartlidge,Weighted Mean Matrices as Operators onlp, Ph.D. Dissertation, Indi-
ana University, 1978.

[8] J. T. Okutoyi, On the spectrum ofC1 as an operator onbv, Commun. Fac. Sci. Univ.
Ank. Ser.A1, Vol. 41 (1992) 197–207.

[9] M. Gonzalez, The fine spectrum of the Cesaro operator inlp (1< p< ∞), Arch. Math.,
Vol. 44 (1985) 355–358.



Best Approximation for Weierstrass Transform 21

[10] M. Yildrim, On the spectrum and fine spectrum of the compact Rhally operators,
Indian J. Pure Appl. Math., Vol. 27, No. 8 (1996) 779–784.

[11] S. Goldberg, Unbounded Linear Operators,Dover Publications, Inc. New York, 1985.


