Communications in Mathematical Analysis

Volume 6, Number 1, pp. 8–21 (2009) ISSN 1938-9787

ON THE FINE SPECTRUM OF THE GENERALIZED DIFFERENCE OPERATOR Δ_v OVER THE SEQUENCE SPACE c_0

P. D. SRIVASTAVA*

Department of Mathematics Indian Institute of Technology Kharagpur - 721302, India

SUDHANSHU KUMAR[†]

Department of Mathematics Indian Institute of Technology Kharagpur - 721302, India

(Communicated by Toka Diagana)

Abstract

The purpose of the paper is to determine fine spectrum of newly introduced operator Δ_v on the sequence space c_0 . The operator Δ_v on c_0 is defined by $\Delta_v x = (v_n x_n - v_{n-1}x_{n-1})_{n=0}^{\infty}$ with $x_{-1} = 0$, where $v = (v_k)$ is either constant or strictly decreasing sequence of positive real numbers such that $\lim_{k\to\infty} v_k = L > 0$ and $\sup_k v_k \le 2L$. In this paper, it is shown that spectrum $\sigma(\Delta_v, c_0) = \{\alpha \in \mathbb{C} : |1 - \frac{\alpha}{L}| \le 1\}$, the point spectrum $\sigma_p(\Delta_v, c_0) = \phi$ if *v* is a constant and $\sigma_p(\Delta_v, c_0) = \{v_n\}$ if *v* is a strictly decreasing sequence. We have also obtained the results on continuous spectrum $\sigma_c(\Delta_v, c_0)$, residual spectrum $\sigma_r(\Delta_v, c_0)$ and fine spectrum of the operator Δ_v on c_0 .

AMS Subject Classification: 47A10; 40J05; 46A45.

Keywords: Spectrum of an operator, Sequence space c_0 .

1 Introduction

Let $v = (v_k)$ be either constant or strictly decreasing sequence of positive real numbers satisfying

$$\lim_{k \to \infty} v_k = L > 0 \text{ and} \tag{1.1}$$

$$\sup_{k} v_k \leq 2L. \tag{1.2}$$

^{*}E-mail address: pds@maths.iitkgp.ernet.in

[†]E-mail address: sudhanshu_tomar@yahoo.com

We introduce the operator Δ_{ν} on the sequence space c_0 as follows,

 $\Delta_{v}: c_{0} \rightarrow c_{0}$ is defined by,

$$\Delta_{v}x = \Delta_{v}(x_{n}) = (v_{n}x_{n} - v_{n-1}x_{n-1})_{n=0}^{\infty} \text{ with } x_{-1} = 0.$$

It is easy to verify that the operator Δ_{ν} can be represented by the matrix

$$\Delta_{\nu} = \begin{pmatrix} \nu_0 & 0 & 0 & \dots \\ -\nu_0 & \nu_1 & 0 & \dots \\ 0 & -\nu_1 & \nu_2 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}.$$
(1.3)

The fine spectrum of the difference operator Δ over the sequence spaces c_0 and c is determined by B. Altay and F. Basar [3]. Complete study of the spectrum such as the point spectrum, the continuous spectrum, the residual spectrum of the operator Δ on the sequence spaces c_0 and c is made by these authors. The fine spectrum of the Cesaro operator on the sequence space l_p is studied by Gonzalez [9], where $1 while weighted mean matrices of operators on <math>l_p$ is investigated by Cartlidge [7]. The spectrum of the Cesaro operator on the sequence spaces c_0 and bv is also investigated by Reade [6] and Okutoyi [8] respectively. The fine spectrum of the Rhally operators on the sequence spaces c_0 and c is studied by Yildirim [10]. Recently, the fine spectra of the cesaro operator over the sequence space c_0 is determined by Akhmedov and Basar [1].

In this paper, we determine the spectrum, the point spectrum, the continuous spectrum and the residual spectrum of the operator Δ_{ν} on the sequence space c_0 . The results of this paper not only generalize the corresponding results of [3] but also give results for some more operators.

2 Preliminaries, Background and Notation

Let *X* and *Y* be the Banach spaces and $T : X \to Y$ be a bounded linear operator. We denote the range of *T* as R(T), where

$$R(T) = \{ y \in Y : y = Tx, x \in X \},\$$

and the set of all bounded linear operators on *X* into itself is denoted by B(X). Further, the adjoint T^* of *T* is a bounded linear operator on the dual X^* of *X* defined by $(T^*\phi)(x) = \phi(Tx)$, for all $\phi \in X^*$ and $x \in X$.

Let $X \neq \{\theta\}$ be a complex normed space and $T : D(T) \to X$ be a linear operator with domain $D(T) \subseteq X$. With *T*, we associate the operator $T_{\alpha} = (T - \alpha I)$, where α is a complex number and *I* is the identity operator on D(T). The inverse of T_{α} (if exists) is denoted by T_{α}^{-1} , i.e.

$$T_{\alpha}^{-1} = (T - \alpha I)^{-1}$$

and call it the resolvent operator of T. It is easy to verify that T_{α}^{-1} is linear if T_{α} is linear.

Many properties of T_{α} and T_{α}^{-1} depend on α , and spectral theory is concerned with those properties. We are interested in the set of all α in the complex plane such that T_{α}^{-1}

exists/ T_{α}^{-1} is bounded/ domain of T_{α}^{-1} is dense in X. In this paper, we have made an effort to find the characterizations of spectrum and fine spectrum of the operator Δ_{ν} on sequence space c_0 .

Firstly, we give below definitions and known results which will be used in the sequel.

Definition 2.1. ([4], pp. 371) Let $X \neq \{\theta\}$ be a complex normed space and $T: D(T) \to X$ be a linear operator with domain $D(T) \subset X$. A regular value of T is a complex number α such that

(R1) T_{α}^{-1} exists, (R2) T_{α}^{-1} is bounded, (R3) T_{α}^{-1} is defined on a set which is dense in *X*.

The resolvent set $\rho(T,X)$ of T is the set of all regular values α of T. Its complement $\sigma(T,X) = \mathbb{C} \setminus \rho(T,X)$ in the complex plane \mathbb{C} is called the *spectrum* of T. Furthermore, the spectrum $\sigma(T,X)$ is partitioned into three disjoint sets as follows:

The point spectrum $\sigma_p(T,X)$ is the set of all $\alpha \in \mathbb{C}$ such that T_{α}^{-1} does not exist. The element of $\sigma_p(T, X)$ is called *eigenvalue* of T.

The *continuous spectrum* $\sigma_c(T,X)$ is the set of all $\alpha \in \mathbb{C}$ such that T_{α}^{-1} exists and satisfies (R3) but not (R2), that is, T_{α}^{-1} is unbounded.

The *residual spectrum* $\sigma_r(T,X)$ is the set of all $\alpha \in \mathbb{C}$ such that T_{α}^{-1} exists but do not satisfy (R3), that is, the domain of T_{α}^{-1} is not dense in X. The condition (R2) may or may not holds good.

Goldberg's classification of operator $T_{\alpha} = (T - \alpha I)$ (see [11], pp. 58) : Let X be a Banach space and $T_{\alpha} = (T - \alpha I) \in B(X)$, where α is a complex number. Again let $R(T_{\alpha})$ and T_{α}^{-1} be denote the range and inverse of the operator T_{α} respectively, then following possibilities may occur;

(A) $R(T_{\alpha}) = X$, (B) $R(T_{\alpha}) \neq \overline{R(T_{\alpha})} = X$, (C) $R(T_{\alpha}) \neq X$, and (1) T_{α} is injective and T_{α}^{-1} is continuous, (2) T_{α} is injective and T_{α}^{-1} is discontinuous,

(3) T_{α} is not injective.

Remark 2.2. Combining (A), (B), (C) and (1), (2), (3); we get nine different states. These are labelled by A_1 , A_2 , A_3 , B_1 , B_2 , B_3 , C_1 , C_2 and C_3 . We use $\alpha \in B_2\sigma(T,X)$ means the operator $T_{\alpha} \in B_2$, i.e. $R(T_{\alpha}) \neq \overline{R(T_{\alpha})} = X$ and T_{α} is injective but T_{α}^{-1} is discontinuous. Similarly others. If α is a complex number such that $T_{\alpha} \in A_1$ or $T_{\alpha} \in B_1$, then α belongs to the resolvent set $\rho(T,X)$ of T on X. The other classification gives rise to the fine spectrum of T.

By w, we denote the space of all real or complex valued sequences. We write l_1 for the space of all absolutely summable sequences, i.e. $l_1 = \{x = (x_k) : \sum |x_k| < \infty\}$ and c_0 denote the space of all null sequences.

Definition 2.3. ([5], pp. 220-221) Let λ , μ be two nonempty subsets of the space w of all real or complex sequences and $A = (a_{nk})$ an infinite matrix of complex numbers a_{nk} , where $n, k \in \mathbf{N} = \{0, 1, 2, \dots\}$. For every $x = (x_k) \in \lambda$ and every integer *n* we write

$$A_n(x) = \sum_k a_{nk} x_k, \tag{2.1}$$

where the sum without limits is always taken from k = 0 to $k = \infty$. The sequence $Ax = (A_n(x))$, if it exists, is called the transformation of x by the matrix A. We say that $A \in (\lambda, \mu)$ if and only if $Ax \in \mu$ whenever $x \in \lambda$.

Lemma 2.4. ([2], pp. 129) The matrix $A = (a_{nk})$ gives rise to a bounded linear operator $T \in B(c_0)$ from c_0 to itself if and only if (1) the rows of A in l_1 and their l_1 norms are bounded,

(2) the columns of A are in c_0 .

Note: The operator norm of T is the supremum of the l_1 norms of the rows.

Lemma 2.5. ([11], pp. 59) T has a dense range if and only if T^* is one to one, where T^* denotes the adjoint operator of the operator T.

Lemma 2.6. ([11], pp. 60) The adjoint operator T^* of T is onto if and only if T has a bounded inverse.

3 The Fine Spectrum of the Operator Δ_v on the Sequence Space c_0

In this section, we compute the spectrum and the fine spectrum of the operator Δ_v on the sequence space c_0 . Throughout this paper, the sequence $v = (v_K)$ satisfies equations (1.1) and (1.2).

Theorem 3.1. $\Delta_{v} : c_{0} \to c_{0}$ is a bounded linear operator and $\|\Delta_{v}\|_{(c_{0},c_{0})} = 2 \sup(v_{k})$.

Proof. Proof is simple. So we omit.

Theorem 3.2. The Spectrum of Δ_v on c_0 is given by

$$\sigma(\Delta_{\nu}, c_0) = \left\{ \alpha \in \mathbf{C} : \left| 1 - \frac{\alpha}{L} \right| \le 1 \right\}.$$

Proof. The proof of this theorem is divided into two parts. In the first part, we show that $\sigma(\Delta_{\nu}, c_0) \subseteq \{\alpha \in \mathbb{C} : |1 - \frac{\alpha}{L}| \le 1\}$, which is equivalent to show that

$$\alpha \in \mathbf{C}$$
 with $\left|1 - \frac{\alpha}{L}\right| > 1$ implies $\alpha \notin \sigma(\Delta_{\nu}, c_0)$.

In the second part, we establish the reverse inequality, i.e.

$$\left\{ \boldsymbol{\alpha} \in \mathbf{C} : \left| 1 - \frac{\boldsymbol{\alpha}}{L} \right| \leq 1 \right\} \subseteq \boldsymbol{\sigma}(\Delta_{\nu}, c_0).$$

Let $\alpha \in \mathbf{C}$ with $|1 - \frac{\alpha}{L}| > 1$. Clearly, $\alpha = L$ as well as $\alpha = v_k$, for all *k* do not satisfied. So, $\alpha \neq L$ and $\alpha \neq v_k$, for all *k*. We get $(\Delta_v - \alpha I) = (a_{nk})$ is a triangle and hence has an inverse. Thus, $(\Delta_v - \alpha I)^{-1} = (b_{nk})$, where

$$(b_{nk}) = \begin{pmatrix} \frac{1}{(v_0 - \alpha)} & 0 & 0 & \dots \\ \frac{v_0}{(v_0 - \alpha)(v_1 - \alpha)} & \frac{1}{(v_1 - \alpha)} & 0 & \dots \\ \frac{v_0 v_1}{(v_0 - \alpha)(v_1 - \alpha)(v_2 - \alpha)} & \frac{v_1}{(v_1 - \alpha)(v_2 - \alpha)} & \frac{1}{(v_2 - \alpha)} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

We have $(\Delta_{\nu} - \alpha I)^{-1} \in (c_0, c_0)$ if and only if (1) series $\sum_{k=0}^{\infty} |b_{nk}|$ is convergent, for each $n \in \mathbb{N}$ and $\sup_{n} \sum_{k=0}^{\infty} |b_{nk}| < \infty$; (2) $\lim |b_{nk}| = 0$, for each $k \in \mathbb{N}$.

Now, we will show that the series
$$\sum_{k=0}^{\infty} |b_{nk}|$$
 is convergent, for each $n \in \mathbf{N}$.
Let $S_n = \sum_{k=0}^{\infty} |b_{nk}|$. Then,
 $S_n = \left| \frac{v_0 v_1 \cdots v_{n-1}}{(v_0 - \alpha)(v_1 - \alpha) \cdots (v_n - \alpha)} \right| + \cdots + \left| \frac{v_{n-1}}{(v_{n-1} - \alpha)(v_n - \alpha)} \right| + \left| \frac{1}{v_n - \alpha} \right|$

Clearly, for each $n \in \mathbf{N}$, the series $\sum_{k=0}^{\infty} |b_{nk}|$ is convergent.

Next, we show that $\sup_{n} S_n$ is finite. Let $\beta = \lim_{n \to \infty} \left| \frac{v_{n-1}}{v_n - \alpha} \right|$. As modulus function is continuous, so

$$\beta = \frac{1}{\left|1 - \frac{\alpha}{L}\right|}.\tag{3.1}$$

|.

Which shows that $0 < \beta < 1$ and gives

$$\lim_{n \to \infty} \frac{1}{|v_n - \alpha|} = \lim_{n \to \infty} \left(\left| \frac{v_{n-1}}{v_n - \alpha} \right| \left| \frac{1}{|v_{n-1}|} \right| \right) = \frac{\beta}{L}.$$
(3.2)

We have,

$$S_n = \left| \frac{v_{n-1}}{v_n - \alpha} \right| S_{n-1} + \left| \frac{1}{v_n - \alpha} \right|.$$

Taking limit both sides of above equation and using equations (3.1) and (3.2), we get

$$\lim_{n\to\infty}S_n=\frac{\beta}{L}\left(\frac{1}{1-\beta}\right)<\infty.$$

Since (S_n) is a sequence of positive real numbers and $\lim_{n\to\infty} S_n < \infty$, so $\sup_n S_n < \infty$.

Again since $\beta = \lim_{n \to \infty} \left| \frac{v_{n-1}}{v_n - \alpha} \right| < 1$, therefore $\left| \frac{v_{n-1}}{v_n - \alpha} \right| < 1$, for large *n* and consequently $\lim_{n \to \infty} |b_{n0}| = \lim_{n \to \infty} \left| \frac{v_0 v_1 \cdots v_{n-1}}{v_n - \alpha} \right| = 0$

$$\lim_{n\to\infty} |b_{n0}| = \lim_{n\to\infty} \left| \frac{v_0 v_1 \cdots v_{n-1}}{(v_0 - \alpha) (v_1 - \alpha) \cdots (v_n - \alpha)} \right| = 0.$$

Similarly, we can show that $\lim_{n\to\infty} |b_{nk}| = 0$, for all $k = 1, 2, 3, \cdots$. Thus,

$$(\Delta_{\nu} - \alpha I)^{-1} \in B(c_0) \text{ for } \alpha \in \mathbb{C} \text{ with } \left|1 - \frac{\alpha}{L}\right| > 1.$$
 (3.3)

Now, we show that the domain of the operator $(\Delta_{\nu} - \alpha I)^{-1}$ is dense in c_0 , this statement holds if and only if the range of the operator $(\Delta_{\nu} - \alpha I)$ is dense in c_0 . Since we have $(\Delta_{\nu} - \alpha I)^{-1} \in (c_0, c_0)$, this is equivalent to the range of the operator $(\Delta_{\nu} - \alpha I)$ is dense in c_0 .

This shows that,

$$\sigma(\Delta_{\nu}, c_0) \subseteq \left\{ \alpha \in \mathbf{C} : \left| 1 - \frac{\alpha}{L} \right| \le 1 \right\}.$$
(3.4)

Conversely, it is required to show

$$\left\{ \boldsymbol{\alpha} \in \mathbf{C} : \left| 1 - \frac{\boldsymbol{\alpha}}{L} \right| \le 1 \right\} \subseteq \boldsymbol{\sigma}(\Delta_{\nu}, c_{o}).$$
(3.5)

We prove inclusion (3.5) under the assumption that $\alpha \neq L$ as well as $\alpha \neq v_k$, for all k, i.e. one of the conditions of Definition 2.1 fails. Let $\alpha \in \mathbf{C}$ with $|1 - \frac{\alpha}{L}| \leq 1$. Clearly $(\Delta_v - \alpha I)$ is a triangle and hence $(\Delta_v - \alpha I)^{-1}$ exists. So condition (R1) is satisfied but (R2) fails as can be seen below:

Now suppose $\alpha \in \mathbf{C}$ with $\left|1 - \frac{\alpha}{L}\right| < 1$. Then $\beta = \lim_{n \to \infty} \left|\frac{v_{n-1}}{v_n - \alpha}\right| > 1$. This means that $\left|\frac{v_{n-1}}{v_n - \alpha}\right| > 1$, for large *n* and consequently

$$\lim_{n\to\infty} |b_{n0}| = \lim_{n\to\infty} \left| \frac{v_0 v_1 \cdots v_{n-1}}{(v_0 - \alpha)(v_1 - \alpha) \cdots (v_n - \alpha)} \right| \neq 0.$$

Hence

$$(\Delta_{\nu} - \alpha I)^{-1} \notin B(c_0) \text{ for } \alpha \in \mathbf{C} \text{ with } \left|1 - \frac{\alpha}{L}\right| < 1.$$
 (3.6)

Now, we consider $\alpha \in \mathbb{C}$ with $|1 - \frac{\alpha}{L}| = 1$, i.e. $|L - \alpha| = L$, which implies $|v_k - \alpha| \le |v_k|$, for all *k*, therefore $\frac{1}{|v_k|} \le \frac{1}{|v_k - \alpha|}$, for all *k*. Using this inequality, we have

$$S_n = \left| \frac{v_0 v_1 \cdots v_{n-1}}{(v_0 - \alpha)(v_1 - \alpha) \cdots (v_n - \alpha)} \right| + \cdots + \left| \frac{v_{n-1}}{(v_{n-1} - \alpha)(v_n - \alpha)} \right| + \left| \frac{1}{v_n - \alpha} \right| \ge \frac{(n+1)}{v_n}.$$

Therefore, $\sup_{n} S_n \ge \sup_{n} \left\lfloor \frac{(n+1)}{v_n} \right\rfloor = \infty$. So condition (R2) fails. Hence

$$(\Delta_{\nu} - \alpha I)^{-1} \notin B(c_0) \text{ for } \alpha \in \mathbf{C} \text{ with } \left|1 - \frac{\alpha}{L}\right| = 1.$$
 (3.7)

Now, we prove the inclusion (3.5) under the assumption that $\alpha = L$ as well as $\alpha = v_k$, for all *k*. We have

$$(\Delta_{v} - v_{k}I)x = \begin{pmatrix} (v_{0} - v_{k})x_{0} \\ -v_{0}x_{0} + (v_{1} - v_{k})x_{1} \\ -v_{1}x_{1} + (v_{2} - v_{k})x_{2} \\ \vdots \\ -v_{k-2}x_{k-2} + (v_{k-1} - v_{k})x_{k-1} \\ -v_{k-1}x_{k-1} \\ -v_{k}x_{k} + (v_{k+1} - v_{k})x_{k+1} \\ \vdots \end{pmatrix}.$$

If $(v_k = L)$ is a constant sequence, then

$$(\Delta_{\nu}-\nu_k I)x=\theta \quad \Rightarrow x_0=0, \ x_1=0, \ x_2=0,\cdots.$$

This shows that, the operator $(\Delta_{\nu} - \alpha I)$ is one to one, but $R(\Delta_{\nu} - \alpha I)$ is not dense in c_0 . So condition (R3) fails. Hence $L \in \sigma(\Delta_{\nu}, c_0)$.

Furthermore, If (v_k) is a strictly decreasing sequence, then for fixed *k*,

$$(\Delta_v - v_k I) x = \theta$$

 $\Rightarrow x_0 = 0, \ x_1 = 0, \dots, x_{k-1} = 0, \ x_{n+1} = \left(\frac{v_n}{v_{n+1} - v_k}\right) x_n, \text{ for all } n \ge k. \text{ This shows that} \\ (\Delta_v - v_k I) \text{ is not injective. So condition (R1) fails. Hence } v_k \in \sigma(\Delta_v, c_0), \text{ for all } k \in \mathbb{N}. \\ \text{When } \alpha = L, \text{ then } |v_k - \alpha| < |v_k|, \text{ for all } k \text{ and hence } \frac{1}{|v_k|} < \frac{1}{|v_k - \alpha|}, \text{ for all } k. \\ \text{Thus,} \end{cases}$

$$S_n = \left| \frac{v_0 v_1 \cdots v_{n-1}}{(v_0 - \alpha)(v_1 - \alpha) \cdots (v_n - \alpha)} \right| + \cdots + \left| \frac{v_{n-1}}{(v_{n-1} - \alpha)(v_n - \alpha)} \right| + \left| \frac{1}{v_n - \alpha} \right| > \frac{(n+1)}{v_n}.$$

Therefore, $\sup_{n} S_n > \sup_{n} \left[\frac{(n+1)}{v_n} \right] = \infty$. So condition (R2) fails. Hence

$$(\Delta_{\nu} - \alpha I)^{-1} \notin B(c_0) \text{ for } \alpha = L.$$
(3.8)

So, $L \in \sigma(\Delta_{\nu}, c_0)$. Thus, in this case also $\nu_k \in \sigma(\Delta_{\nu}, c_0)$, for all $k \in \mathbb{N}$ and $L \in \sigma(\Delta_{\nu}, c_0)$. This shows that,

$$\left\{ \boldsymbol{\alpha} \in \mathbf{C} : \left| 1 - \frac{\boldsymbol{\alpha}}{L} \right| \le 1 \right\} \subseteq \boldsymbol{\sigma}(\Delta_{\nu}, c_0)$$
(3.9)

From inclusions (3.4) and (3.9), we get

$$\sigma(\Delta_{\nu}, c_0) = \left\{ \alpha \in \mathbf{C} : \left| 1 - \frac{\alpha}{L} \right| \le 1 \right\}.$$

This completes the proof.

Theorem 3.3. The point spectrum of the operator Δ_v over c_0 is given by

$$\sigma_p(\Delta_v, c_0) = \begin{cases} \phi, if(v_k) \text{ is a constant sequence.} \\ \{v_0, v_1, v_2, \cdots\}, if(v_k) \text{ is a strictly decreasing sequence.} \end{cases}$$

Proof. The proof of this theorem is divided into two cases.

Case(i): Suppose (v_k) is a constant sequence. Consider $\Delta_v x = \alpha x$, for $x \neq \theta = (0, 0, \dots)$ in c_0 , which gives

Let x_t is the first non-zero entry of the sequence $x = (x_n)$, so we get $-v_{t-1}x_{t-1} + v_tx_t = \alpha x_t$ which implies $\alpha = v_t$ and from the equation

$$-v_t x_t + v_{t+1} x_{t+1} = \alpha x_{t+1}.$$

we get $x_t = 0$, which is a contradiction to our assumption. Therefore,

$$\sigma_p(\Delta_v, c_0) = \phi.$$

Case(ii): Suppose (v_k) is a strictly decreasing sequence. Consider $\Delta_v x = \alpha x$, for $x \neq \theta = (0, 0, \dots)$ in c_0 , which gives system of equations (3.10).

Suppose $\alpha = v_0$, then

$$x_{k} = \left(\frac{v_{k-1}}{v_{k} - v_{0}}\right) x_{k-1}$$

= $\left[\frac{v_{k-1}v_{k-2}\cdots v_{0}}{(v_{k} - v_{0})(v_{k-1} - v_{0})\cdots (v_{1} - v_{0})}\right] x_{0}$, for all $k \ge 1$.

We take $x_0 \neq 0$, then get non-zero solution of the equation $(\Delta_v - v_0 I)x = \theta$.

Similarly if $\alpha = v_k$, for all $k \ge 1$, then $x_{k-1} = 0$, $x_{k-2} = 0$, \cdots , $x_0 = 0$ and

$$x_{n+1} = \left(\frac{v_n}{v_{n+1} - v_k}\right) x_n, \text{ for all } n \ge k$$
$$= \left[\frac{v_n v_{n-1} \cdots v_k}{(v_{n+1} - v_k)(v_n - v_k) \cdots (v_{k+1} - v_k)}\right] x_k, \text{ for all } n \ge k.$$

We take $x_k \neq 0$, then get non-zero solution of the equation $(\Delta_v - v_k I)x = \theta$. Thus,

$$\sigma_p(\Delta_v, c_0) = \{v_0, v_1, v_2, \cdots\}.$$

This completes the proof.

Let $T: c_0 \to c_0$ be a bounded linear operator having matrix representation A and the dual space of c_0 denoted by c_0^* , then we known that the adjoint operator $T^*: c_0^* \to c_0^*$ is defined by the transpose of the matrix A. Further, it is also known that c_0^* is isomorphic to

 l_1 , the space of all absolutely summable sequences, with the norm $||x|| = \sum_{k=0}^{\infty} |x_k|$.

We now obtain point spectrum of the dual operator Δ_{ν}^* of Δ_{ν} over the space c_0^* .

Theorem 3.4. The point spectrum of the operator Δ_v^* over c_0^* is

$$\sigma_p(\Delta_{\nu}^*, c_0^*) = \left\{ \alpha \in \mathbf{C} : \left| 1 - \frac{\alpha}{L} \right| < 1 \right\}.$$

Proof. Suppose $\Delta_{\nu}^* f = \alpha f$ for $\theta \neq f \in c_0^* \cong l_1$, where

$$\Delta_{\nu}^{*} = \begin{pmatrix} v_{0} & -v_{0} & 0 & \dots \\ 0 & v_{1} & -v_{1} & \dots \\ 0 & 0 & v_{2} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \text{ and } f = \begin{pmatrix} f_{0} \\ f_{1} \\ f_{2} \\ \vdots \end{pmatrix}.$$

This gives,

$$f_k = \left(\frac{v_{k-1} - \alpha}{v_{k-1}}\right) f_{k-1}, \text{ for all } k \ge 1.$$

Hence

$$|f_k| = \left|\frac{v_{k-1} - \alpha}{v_{k-1}}\right| |f_{k-1}|, \text{ for all } k \ge 1.$$
(3.11)

But,

$$\begin{aligned} |v_{k-1} - \alpha| &\leq v_{k-1} - L + |L - \alpha| \\ \Rightarrow \left| \frac{v_{k-1} - \alpha}{v_{k-1}} \right| &< 1, \text{ for all } k = 1, 2, 3, \cdots, \text{ provided } \left| 1 - \frac{\alpha}{L} \right| < 1. \end{aligned}$$

Using equation (3.11), we get

$$|f_k| < |f_{k-1}|$$
, for all $k = 1, 2, 3, \cdots$ and consequently $\lim_{k \to \infty} \frac{|f_k|}{|f_{k-1}|} < 1$.
So $\sum_{k=0}^{\infty} |f_k| < \infty$.

Hence

$$\left|1-\frac{\alpha}{L}\right| < 1 \quad \Rightarrow \quad \sum_{k=0}^{\infty} |f_k| < \infty.$$

Converse follows from the fact that,

$$\sum_{k=0}^{\infty} |f_k| < \infty \quad \Rightarrow \quad \lim_{k \to \infty} \frac{|f_k|}{|f_{k-1}|} < 1$$
$$\Rightarrow \quad \lim_{k \to \infty} \left| \frac{v_{k-1} - \alpha}{v_{k-1}} \right| < 1$$
$$\Rightarrow \quad \left| 1 - \frac{\alpha}{L} \right| < 1.$$

Hence

$$\sum_{k=0}^{\infty} |f_k| < \infty \quad \Rightarrow \quad \left| 1 - \frac{\alpha}{L} \right| < 1.$$

Therefore,

$$\left|1-\frac{\alpha}{L}\right| < 1 \quad \Leftrightarrow \quad \sum_{k=0}^{\infty} |f_k| < \infty.$$

This means that, $f \in c_0^*$ if and only if $f_0 \neq 0$ and $\left|1 - \frac{\alpha}{L}\right| < 1$. Thus,

$$\sigma_p(\Delta_v^*, c_0^*) = \left\{ \alpha \in \mathbf{C} : \left| 1 - \frac{\alpha}{L} \right| < 1 \right\}.$$

This completes the proof.

Next theorem gives the characterization of residual spectrum $\sigma_r(\Delta_v, c_0)$ of operator Δ_v on sequence space c_0 .

Theorem 3.5. Residual spectrum $\sigma_r(\Delta_v, c_0)$ of operator Δ_v over c_0 is

$$\sigma_r(\Delta_{\nu}, c_0) = \begin{cases} \left\{ \alpha \in \mathbf{C} : \left| 1 - \frac{\alpha}{L} \right| < 1 \right\}, if(\nu_k) \text{ is a constant sequence.} \\ \left\{ \alpha \in \mathbf{C} : \left| 1 - \frac{\alpha}{L} \right| < 1 \right\} \setminus \{\nu_0, \nu_1, \nu_2, \cdots\}, if \\ (\nu_k) \text{ is a strictly decreasing sequence.} \end{cases}$$

Proof. The proof of this theorem is divided into two cases.

Case(i): Let (v_k) be a constant sequence. For $\alpha \in \mathbb{C}$ with $|1 - \frac{\alpha}{L}| < 1$, the operator $(\Delta_v - \alpha I)$ is a triangle except for $\alpha = L$ and consequently the operator $(\Delta_v - \alpha I)$ has an inverse. Further by Theorem 3.3, the operator $(\Delta_v - \alpha I)$ is one to one for $\alpha = L$ and hence has an inverse.

But by Theorem 3.4, the operator $(\Delta_{\nu} - \alpha I)^* = \Delta_{\nu}^* - \alpha I$ is not one to one for $\alpha \in \mathbf{C}$ with $|1 - \frac{\alpha}{L}| < 1$. Hence by Lemma 2.5, the range of the operator $(\Delta_{\nu} - \alpha I)$ is not dense in c_0 . Thus,

$$\sigma_r(\Delta_{\nu},c_0)=\left\{\alpha\in\mathbf{C}:\left|1-\frac{\alpha}{L}\right|<1\right\}.$$

Case(ii): Let (v_k) be a strictly decreasing sequence with $\lim_{k\to\infty} v_k = L$. For $\alpha \in \mathbf{C}$ such that $|1 - \frac{\alpha}{L}| < 1$, the operator $(\Delta_v - \alpha I)$ is a triangle except for $\alpha = v_k$, for some $k \in \mathbf{N}$ and consequently the operator $(\Delta_v - \alpha I)$ has an inverse. Further by Theorem 3.3, the operator $(\Delta_v - \alpha I)$ is not one to one for $\alpha = v_k$, for some $k \in \mathbf{N}$. So $(\Delta_v - \alpha I)^{-1}$ does not exist.

But by Theorem 3.4, $(\Delta_v - \alpha I)^* = \Delta_v^* - \alpha I$ is not one to one for $\alpha \in \mathbf{C}$ with $\left|1 - \frac{\alpha}{L}\right| < 1$. Hence by Lemma 2.5, the range of the operator $(\Delta_v - \alpha I)$ is not dense in c_0 . Thus,

$$\sigma_r(\Delta_{\nu},c_0) = \left\{ \alpha \in \mathbf{C} : \left| 1 - \frac{\alpha}{L} \right| < 1 \right\} \setminus \left\{ \nu_0, \nu_1, \nu_2, \cdots \right\}.$$

This completes the proof.

Now we established the result for continuous spectrum $\sigma_c(\Delta_v, c_0)$ of operator Δ_v on sequence space c_0 .

Theorem 3.6. Continuous spectrum $\sigma_c(\Delta_v, c_0)$ of operator Δ_v over c_0 is

$$\sigma_{c}(\Delta_{v},c_{0}) = \begin{cases} \left\{ \alpha \in \mathbf{C} : \left| 1 - \frac{\alpha}{L} \right| = 1 \right\}, \text{ if } (v_{k}) \text{ is a constant sequence.} \\ \left\{ \alpha \in \mathbf{C} : \left| 1 - \frac{\alpha}{L} \right| = 1 \right\} \setminus \{v_{0}\}, \text{ if } (v_{k}) \text{ is a strictly decreasing sequence.} \end{cases}$$

Proof. The proof of this theorem is divided into two cases.

Case(i): Let (v_k) be a constant sequence. For $\alpha \in \mathbf{C}$ with $|1 - \frac{\alpha}{L}| = 1$, the operator $(\Delta_v - \alpha I)$ is a triangle and has an inverse. The inverse of the operator $(\Delta_v - \alpha I)$ is discontinuous by statement (3.7). Therefore, $(\Delta_v - \alpha I)$ has an unbounded inverse.

But by Theorem 3.4, the operator $(\Delta_v - \alpha I)^* = \Delta_v^* - \alpha I$ is one to one for $\alpha \in \mathbb{C}$ with $|1 - \frac{\alpha}{L}| = 1$. Hence by Lemma 2.5, the range of the operator $(\Delta_v - \alpha I)$ is dense in c_0 . Thus,

$$\sigma_{c}\left(\Delta_{\nu},c_{0}\right)=\left\{\alpha\in\mathbf{C}:\left|1-\frac{\alpha}{L}\right|=1\right\}.$$

Case(ii): Let (v_k) be a strictly decreasing sequence with $\lim_{k\to\infty} v_k = L$. For $\alpha \in \mathbb{C}$ with $|1 - \frac{\alpha}{L}| = 1$, the operator $(\Delta_v - \alpha I)$ is a triangle except may be $\alpha = v_0$ and consequently the operator $(\Delta_v - \alpha I)$ has an inverse. Further by Theorem 3.3, the operator $(\Delta_v - \alpha I)$ is not one to one for $\alpha = v_0$. So $(\Delta_v - \alpha I)^{-1}$ does not exist. The inverse of the operator $(\Delta_v - \alpha I)$ is discontinuous by statement (3.7). Therefore, $(\Delta_v - \alpha I)$ has an unbounded inverse.

But by Theorem 3.4, the operator $(\Delta_v - \alpha I)^* = \Delta_v^* - \alpha I$ is one to one for $\alpha \in \mathbb{C}$ with $|1 - \frac{\alpha}{L}| = 1$. Hence by Lemma 2.5, the range of the operator $(\Delta_v - \alpha I)$ is dense in c_0 . Thus,

$$\sigma_c(\Delta_{\nu}, c_0) = \left\{ \alpha \in \mathbf{C} : \left| 1 - \frac{\alpha}{L} \right| = 1 \right\} \setminus \{\nu_0\}.$$

This completes the proof.

Theorem 3.7. If α satisfies $\left|1 - \frac{\alpha}{L}\right| > 1$, then $(\Delta_v - \alpha I) \in A_1$.

Proof. It is required to show that the operator $(\Delta_v - \alpha I)$ is bijective and has a continuous inverse for $\alpha \in \mathbb{C}$ with $|1 - \frac{\alpha}{L}| > 1$. Since $\alpha \neq v_k$, therefore $(\Delta_v - \alpha I)$ is a triangle. Hence it has an inverse. The inverse of the operator $(\Delta_v - \alpha I)$ is continuous for $\alpha \in \mathbb{C}$ with $|1 - \frac{\alpha}{L}| > 1$ by statement (3.3). Also the equation $(\Delta_v - \alpha I)x = y$ gives $x = (\Delta_v - \alpha I)^{-1}y$, i.e.

$$x_n = \left((\Delta_v - \alpha I)^{-1} y \right)_n, \ n \in \mathbb{N}.$$

Thus, for every $y \in c_0$, we can find $x \in c_0$ such that

$$(\Delta_v - \alpha I)x = y$$
, since $(\Delta_v - \alpha I)^{-1} \in (c_0, c_0)$.

This shows that, the operator $(\Delta_v - \alpha I)$ is onto, i.e. $R(\Delta_v - \alpha I) = c_0$ and hence $(\Delta_v - \alpha I) \in A_1$.

Theorem 3.8. Let (v_k) be a constant sequence, say $v_k = L$ and $\alpha = L$. Then $\alpha \in C_1 \sigma(\Delta_v, c_0)$.

Proof. We have,

$$\sigma_p\left(\Delta_{\nu}^*, c_0^*\right) = \left\{\alpha \in \mathbf{C} : \left|1 - \frac{\alpha}{L}\right| < 1\right\}.$$

For $\alpha = L$, the operator $(\Delta_{\nu} - \alpha I)^*$ is not one to one. By Lemma 2.5, $R(\Delta_{\nu} - \alpha I)$ is not dense in c_0 , i.e. $\overline{R(\Delta_{\nu} - \alpha I)} \neq c_0$. Again by Theorem 3.3, $\alpha = L$ does not belong to the set $\sigma_p(\Delta_{\nu}, c_0)$, therefore the operator $(\Delta_{\nu} - \alpha I)$ has an inverse.

To show the operator $(\Delta_v - \alpha I)^{-1}$ is continuous. By Lemma 2.6, it is enough to show that $(\Delta_v - \alpha I)^*$ is onto, i.e. for given $y = (y_n) \in l_1$, we have to find $x = (x_n) \in l_1$ such that $(\Delta_v - \alpha I)^* x = y$. Now, $(\Delta_v - \alpha I)^* x = y$, i.e.

$$\begin{array}{rcl}
-vx_1 &=& y_0 \\
-vx_2 &=& y_1 \\
&\vdots \\
-vx_n &=& y_{n-1} \\
&\vdots \\
\end{array}$$

Thus, $-vx_n = y_{n-1}$, for all $n \ge 1$ which implies $\sum_{n=0}^{\infty} |x_n| < \infty$, since $y \in l_1$.

This shows that, $(\Delta_{\nu} - \alpha I)^*$ is onto and hence $\alpha \in C_1 \sigma(\Delta_{\nu}, c_0)$.

Theorem 3.9. Let (v_k) be a constant sequence, say $v_k = L$ and $\alpha \neq L$, $\alpha \in \sigma_r(\Delta_v, c_0)$. Then $\alpha \in C_2 \sigma(\Delta_v, c_0)$.

Proof. Since $\alpha \neq L$, therefore the operator $(\Delta_{\nu} - \alpha I)$ is a triangle. Hence it has an inverse. For $L \neq \alpha \in \mathbb{C}$ with $|1 - \frac{\alpha}{L}| < 1$, the inverse of the operator $(\Delta_{\nu} - \alpha I)$ is discontinuous by statement (3.6). Thus, $(\Delta_{\nu} - \alpha I)$ is injective and $(\Delta_{\nu} - \alpha I)^{-1}$ is discontinuous.

Again by Theorem 3.4, $(\Delta_{\nu} - \alpha I)^*$ is not one to one for $\alpha \in \mathbb{C}$ with $|1 - \frac{\alpha}{L}| < 1$. But Lemma 2.5 yields the fact that the range of the operator $(\Delta_{\nu} - \alpha I)$ is not dense in c_0 , i.e. $\overline{R(\Delta_{\nu} - \alpha I)} \neq c_0$ and hence $\alpha \in C_2 \sigma(\Delta_{\nu}, c_0)$.

Theorem 3.10. Let (v_k) be a strictly decreasing sequence of positive real numbers and $\alpha \in \sigma_r(\Delta_v, c_0)$. Then $\alpha \in C_2 \sigma(\Delta_v, c_0)$.

Proof. We have,

$$\sigma_r(\Delta_{\nu}, l_1) = \left\{ \alpha \in \mathbf{C} : \left| 1 - \frac{\alpha}{L} \right| < 1 \right\} \setminus \left\{ \nu_0, \nu_1, \nu_2, \cdots \right\}.$$

Since $\alpha \neq v_k$, for all *k*, therefore the operator $(\Delta_v - \alpha I)$ is a triangle. Hence it has an inverse. For $v_k \neq \alpha \in \mathbb{C}$ with $|1 - \frac{\alpha}{L}| < 1$, the inverse of the operator $(\Delta_v - \alpha I)$ is discontinuous by statements (3.6) and (3.8). Thus, $(\Delta_v - \alpha I)$ is injective and $(\Delta_v - \alpha I)^{-1}$ is discontinuous.

Again by Theorem 3.4, $(\Delta_{\nu} - \alpha I)^*$ is not one to one for $\alpha \in \mathbb{C}$ with $|1 - \frac{\alpha}{L}| < 1$. But Lemma 2.5 yields the fact that the range of the operator $(\Delta_{\nu} - \alpha I)$ is not dense in c_0 , i.e. $\overline{R(\Delta_{\nu} - \alpha I)} \neq c_0$ and hence $\alpha \in C_2 \sigma(\Delta_{\nu}, c_0)$.

Theorem 3.11. Let (v_k) be a constant sequence, say $v_k = L$ and $\alpha \in \sigma_c(\Delta_v, c_0)$. Then $\alpha \in B_2 \sigma(\Delta_v, c_0)$.

Proof. For $\alpha \in \mathbf{C}$ with $\left|1 - \frac{\alpha}{L}\right| = 1$, the operator $(\Delta_{\nu} - \alpha I)$ is a triangle and has an inverse. The inverse of the operator $(\Delta_{\nu} - \alpha I)$ is discontinuous by statement (3.7). Therefore, $(\Delta_{\nu} - \alpha I)$ has an unbounded inverse. Again by Theorem 3.4, $(\Delta_{\nu} - \alpha I)^*$ is one to one for $\alpha \in \mathbf{C}$ with $\left|1 - \frac{\alpha}{L}\right| = 1$. By Lemma 2.5, the range of the operator $(\Delta_{\nu} - \alpha I)$ is dense in c_0 , i.e. $\overline{R(\Delta_{\nu} - \alpha I)} = c_0$.

Now, we have to show that the operator $(\Delta_v - \alpha I)$ is not surjective. It is sufficient to show that there is no sequence $x = (x_n)$ in c_0 such that $(\Delta_v - \alpha I)x = y$, for some $y \in c_0$. Clearly, $y = (1, 0, 0, \dots) \in c_0$. We have,

$$(\Delta_v - \alpha I)x = y \implies x_n = \frac{L^n}{(L - \alpha)^{n+1}}, \text{ for each } n \ge 0.$$

therefore $|x_n| = \frac{1}{L}$, for each $n \ge 0$ because $|1 - \frac{\alpha}{L}| = 1$. Consequently $\lim_{n \to \infty} |x_n| = \frac{1}{L} \ne 0$. This shows that, $x \notin c_0$ and hence the operator $(\Delta_v - \alpha I)$ is not surjective.

Acknowledgments

The author thanks the referees for their careful reading of the manuscript and insightful comments.

References

- A. M. Akhmedov and F. Basar, On the fine spectrum of the Cesaro operator in c₀, Math. J. Ibaraki Univ., Vol. 36 (2004) 25–32.
- [2] A. Wilansky, Summability through Functional Analysis, *North-Holland Mathematics Studies, North-Holland, Amsterdam*, Vol. 85, 1984.
- [3] B. Altay and F. Basar, On the fine spectrum of the difference operator Δ over the sequence spaces c_0 and c, *Information Sciences*, Vol. 168 (2004) 217–224.
- [4] E. Kreyszig, Introductory Functional Analysis With Applications, John Wiley and Sons Inc. New York-Chichester-Brisbane-Toronato, 1978.
- [5] I. J. Maddox, *Elements of Functional Analysis*, Cambridge University Press, 1988.
- [6] J. B. Reade, On the spectrum of the Cesaro operator, Bull. Lond. Math. Soc. 17 (1985) 263–267.
- [7] J. P. Cartlidge, Weighted Mean Matrices as Operators on l_p, Ph.D. Dissertation, Indiana University, 1978.
- [8] J. T. Okutoyi, On the spectrum of C_1 as an operator on *bv*, *Commun. Fac. Sci. Univ. Ank. Ser.* A_1 , Vol. 41 (1992) 197–207.
- [9] M. Gonzalez, The fine spectrum of the Cesaro operator in l_p (1 \infty), Arch. Math., Vol. 44 (1985) 355–358.

- [10] M. Yildrim, On the spectrum and fine spectrum of the compact Rhally operators, *Indian J. Pure Appl. Math.*, Vol. 27, No. 8 (1996) 779–784.
- [11] S. Goldberg, Unbounded Linear Operators, Dover Publications, Inc. New York, 1985.