不同供氧方式对水库底泥氮磷释放的影响* ## 袁文权 张锡辉 张丽萍 (清华大学深圳研究生院环境工程与管理研究中心,深圳 518057) 提 要 采用实验室模拟试验,研究了三种供氧方式——曝气、投加过氧化氢和投加过氧化钙对水库底泥氮磷释放的影响。研究结果表明(1)溶解氧是控制底泥氮磷释放的重要因素,厌氧条件能加速底泥释放磷和氨氮(2)曝气、投加过氧化氢和投加过氧化钙均能显著提高底部水体的溶氧水平,并能有效抑制底泥氮磷的释放。三种供氧方式对底泥释磷的控制效率依次为:投加 CaO_2 >曝气>投加 H_2O_2 、对氨氮释放的控制效率则为:曝气>投加 CaO_2 >投加 H_2O_3 . 关键词 底泥 氮磷释放 厌氧 充氧 分类号 P512.32 底泥一般系指江河湖库的沉积物,是自然水域的重要组成部分. 氮、磷能通过颗粒物吸附、沉淀、水生生物死亡沉积等方式蓄存在底泥中;在适当条件下,氮和磷能从底泥中释放出来,为水生生物的生长提供必要的营养元素,进而加剧水体的富营养化。有研究表明,厌氧条件是促使底泥释放氮磷的主要原因。因此,改善底部水体的溶氧条件,对于修复受污染水体,改善水体的营养状况具有重要的意义. 目前,世界上采用较多的供氧方式是对江河湖库的底部水体曝气充氧^[3],这种供氧方式需要为曝气设备提供机械动力,建设成本和维护费用较高;对于面积大、水力条件复杂的江河湖库,其实际操作难以实现.因此,开发简便易行、成本低廉的供氧技术具有重要的工程意义. H₂O₂和 CaO₂均能与水反应产生氧气,具有与曝气类似的供氧效果.目前,过氧化氢和过氧化钙已经在固体废物的生化处理^[4]、土壤的生物修复^[4-6]和有机废水处理^[5]等领域得到了较为广泛的应用,但在水环境修复领域,尚未有研究者尝试.由于这两种供氧方式简单,易于操作,且成本低廉,因而是可行的新型供氧技术.本文采用专门设计的小型装置,比较了曝气、投加过氧化氢和投加过氧化钙三种供氧方式对底泥氮磷释放的影响. ## 1 材料和方法 ### 1.1 受试底泥 底泥样品和试验水样均采自深圳市西沥水库. 实验采样点位于水库主坝前 (平均水深 9.6 m) ,用自制的沉积物采样器采集表层底泥(0-10 cm),送至实验室进行底质分析和氮磷的释放试验.采样过程用 Magellan 手持式 GPS 定位仪定位 ,保证采样位置的准确性. 底泥经完全混合后 ,用重量法测定底泥含水率(?)和挥发性有机质(VSS)的含量 (8) ;金属元素 ^{*} 国家 863 计划" 南方地区安全饮用水保障技术"(2002AA601120)与深圳市水务局资助项目" 深圳市西沥水库内源污染调查与研究"联合资助。2003-06-29 收稿。2003-09-28 收修改稿。 袁文权 ,男 ,1979 年生 ,联系地址 :清华大学环境科学与工程系 ,邮编 :100084; Email: ywq01@mails.tsinghua.edu.cn (铁和锰)的分析采用 USEPA3050B 方法对样品进行预处理 ,并用 ICP-MS(Hp4500+型)测定处理后的水样^[9] ;总磷和总氮采用土壤理化标准分析法测定^[7] ;pH 则用 Orion pH 计直接插入经预处理后的新鲜底泥(水:底泥=1:2,5)中测定^[9].表 1 列举了西沥水库底泥的几项主要理化性质. 表 1 受试底泥的主要理化性质 Tab.1 Selected main physico-chemical properties of the experimental sediments | 底泥参数 | рН | 含水率(%) | VSS(%) | 总磷(mg/g) | 总氮(mg/g) | 总铁(mg/g) | 总锰(mg/g) | |------|------|--------|--------|----------|----------|----------|----------| | 数值 | 7.13 | 62.14 | 12.44 | 1.49 | 4.34 | 42.95 | 2.07 | ## 1.2 模拟试验 实验装置为自制的有机玻璃反应器(内径 154 mm ,高 300 mm). 实验前 ,用空气泵对实验 水样预充氧 8 h ,使初始溶解氧含量大于 $7.0\,\mathrm{mg/L}$. 从反应器顶部加入完全混合后的新鲜底泥 ,反应器内底泥高度为 $10\,\mathrm{cm}$;然后用虹吸法加入实验水样 ,调整水样高度为 $15\,\mathrm{cm}$;加水样时应尽量避免底泥扰动. 试验主要包括以下两步 (1))厌氧释放试验 :拧紧带有密封圈的反应器瓶盖 ,将反应器置于生化培养箱内 ,温度控制在 $20\pm0.5\,^\circ\mathrm{C}$. (2))供氧试验 :厌氧释放试验 $15\,\mathrm{d}$ 后 ,由反应器顶部一次性投加 H_2O_2 和 CaO_2 ,加盖密封试验 $10\,\mathrm{d}$;其中 ,过氧化氢(30%)投加量为 $156\,\mathrm{mI}$ (DO 理论释放量约为 $7.87\,\mathrm{mg/L}$),过氧化钙(化学纯)投加量为 $0.099\,\mathrm{g}$ DO 理论释放量为 $7.87\,\mathrm{mg/L}$),以氧化钙(化学纯)投加量为 $0.099\,\mathrm{g}$ DO 理论释放量为 理论释放量 为 现象 ### 1.3 数据处理 底泥氮磷的释放量用下式进行计算: $$R=V(C_n-C_o)+\sum_{i=1}^n V_iC_i$$ 其中 R 为底泥氮磷的释放量(mg),V 为反应装置中剩余水样的体积 (L) \mathcal{L}_n 为第 n 次采样时营养物的浓度 (mg/L) \mathcal{L}_0 为初始营养物浓度 (mg/L) \mathcal{N}_i 为每次采样量 (L) \mathcal{L}_i 为第 i 次采样时营养物的浓度(mg/L). 氨氮、磷、铁和锰的释放速率采用一元线性回归法计算. ## 2 结果与讨论 #### 2.1 供氧前后溶解氧的变化特征 六手的口俗胜手的文化特征 图 1 供氧处理前后溶解氧随时间的变化规律 Fig.1 Variations of dissolved oxygen with time before and after oxygenation treatments 厌氧释放实验前期(0-3 d) ,底泥迅速消耗水中溶解氧 ,DO 由反应初始时的 $7.0~\mathrm{mg/L}$ 下 图 2 供氧前后水体中氨氮、硝态氮和总磷随时间的变化规律 Fig.2 Variations of water column ammonia, nitrate, and total phosphorus with incubation time before and after oxygenation treatments 降到 0.2 mg/L 以下 ,之后反应体系处于厌氧状态(图 1). 底泥耗氧速率可以用线性回归法计算 ,结果为 $0.55 \text{ g/(m}^2 \cdot \text{d}$). 厌氧释放试验进行 15 d 后,通过对水体持续曝气,DO 含量能够维持在 7.5 mg/L 以上;投加过氧化氢后,水中 DO 含量在短时间内达到 5.3 mg/L,随后 DO 被部分消耗,至实验结束时,DO 含量为 3.0 mg/L,通过投加过氧化钙,水体 DO 能上升至 6.0 mg/L 以上,并能维持较长时间.就供氧效果来看,三种供氧方式均能显著提高 DO 含量,使反应体系处于好氧状态. ## 2.2 底泥氮磷的厌氧释放 好氧条件下(0-3 d),体系内氨氮和硝态氮的含量变化不大. 进入厌氧状态后,底泥释放氨氮的能力得到了显著的提高(图 2),氨氮浓度在体系进入厌氧状态后 10d 内即接近峰值(0.497 mg/L);而硝态氮浓度则逐渐下降,厌氧释放实验结束时,硝态氮含量低于0.1 mg/L.线性回归计算结果表明:厌氧条件下,氨氮的释放速率为4.52 mg/(m²·d);而好氧条件下,氨氮的释放速率仅为0.27 mg/(m²·d)(表 2),可见厌氧条件是促成底泥释放氨氮的重要因素. DO 也是影响底泥释磷的重要因素. 好氧条件下,磷的释放速率为 0.01 mg/(m².d);此时体系内铁锰含量也较低,铁锰的释放速率基本为零. 进入厌氧状态后,体系内氧化还原电位显著降低(表 3),磷含量由好氧条件下的平均20.7 μg/L 上升至厌氧释放实验结束时的115.3 μ g/L ,磷的释放速率为 1.30 mg/(m²·d) ;厌氧试验结束时 ,铁和锰的含量分别为 0.71 mg/L 和 6.26 mg/L ,远大于好氧条件下铁锰的平均含量(分别为 0.00 mg/L 和 0.005 mg/L),对总磷、铁和锰的释放数据进行相关性分析 :铁和磷之间的相关系数为 0.800 ,锰和磷之间的相关系数为 0.772 ,说明西沥水库底泥中铁、锰和磷三者之间存在某种耦合转化关系[11]. ## 2.3 充氧后体系内氮、磷的变化规律 厌氧释放试验结束后,对反应体系进行曝气、投加 H_2O_2 或投加 CaO_2 处理,这三种供氧处理方式对底泥氮、磷释放的控制效果如图 3 所示. 通过对反应体系进行曝气 ,氨氮含量由释放实验结束时(第 15 d)的 0.497 mg/L 下降到曝气结束时(第 26 d)的 0.160 mg/L ;而硝态氮则由释放实验结束时的 0.103 mg/L 逐渐上升到曝 图 3 三种供氧方式对西沥水库底泥释放磷和氨氮的影响 Fig.3 Effects of three oxygenation treatments on the release of phosphorus and ammonia from sediments, Xili Reservoir 气结束时的 0.363 mg/L. 投加过氧化氢虽然提高了反应体系的溶解氧水平,但在投加药剂之后,氨氮和硝态氮的平均浓度分别为 0.468 mg/L 和 0.190 mg/L,与释放实验结束时基本相同;这可能与过氧化氢灭活微生物有关. 投加过氧化钙后,氨氮含量逐渐下降,硝态氮逐渐上升,氮素的变化规律与曝气处理方式下基本类似. 实验发现:曝气处理使水中氨氮含量下降了64.5%;投加过氧化钙后,水中氨氮含量下降了38.0%;而投加过氧化氢后,氨氮含量仅下降了13.2%. 供氧处理后,磷又从水体重新迁移至底泥:曝气、投加 H_2O_2 和投加 CaO_2 三种处理方式下,磷的释放速率分别为-0.69 $mg/(m^2\cdot d)$,-0.49 $mg/(m^2\cdot d)$ 和-1.42 $mg/(m^2\cdot d)$;三种供氧方式对底泥释磷的控制效率则分别为 67.01% 32.50%和 93.02%,可见投加 CaO_2 对磷的控制效果最为明显. 供氧处理后,铁、锰含量也发生明显下降: - (1)曝气充氧后,铁和锰的释放速率分别为 $-79.56 \text{ mg/(m}^2 \cdot \text{d})$ 和 $-9.77 \text{ mg/(m}^2 \cdot \text{d})$,其数值与 厌氧释放条件下基本相同(表 2). - (2) 股加过氧化钙后,铁锰释放速率(分别为 $-83.01~\text{mg/(m}^2 \cdot \text{d})$ 和 $-109.05~\text{mg/(m}^2 \cdot \text{d})$)的绝对值均大于曝气充氧条件,这除了与投加过氧化钙提高水体的氧化还原电位相关外(表3),过氧化钙和水反应产生的氢氧根也是加速铁、锰含量迅速下降的原因;在碱性条件下,氧化态 Fe (III)和 Mn(IV)容易与氢氧根结合,生成氢氧化合物,同时吸附磷酸根,发生沉淀,并导致水体中铁、锰和磷含量的下降. - (3) 过氧化氢处理下,本文未对铁锰含量进行测定,但就体系内 Eh 升高、磷含量下降以及 | | 表 2 不同 | 实验条件 | 井下 ,氨 | 氮、总码 | ^隣 、总铁 | 和总锰 | 释放逐 | 速率(| mg/(m ² | ·d))的比 | 较 | |-------|-------------|--------|---------|---------|-----------------------|-------|-------|-----|--------------------|-----------|------------| | Tab.2 | Comparisons | of the | release | rates o | of NH ₄ +. | TP. F | e and | Mn | under | different | conditions | | —————
迁移速率 | 好氫阶段 | 厌氢条件 | 供氧试验 | | | | |---------------|------------------------|-------|--------|----------------------------------|---------------------|--| | 工物处平 | X] =\P] P X | 八丰沃 | 曝气充氧 | 投加 H ₂ O ₂ | 投加 CaO ₂ | | | 氨氮 | 0.27 | 4.52 | -3.85 | -0.78 | -2.60 | | | 总磷 | 0.01 | 1.30 | -0.69 | -0.49 | -1.42 | | | 总锰 | 0.00 | 78.10 | -79.56 | $\mathbf{N}\mathbf{A}^*$ | -109.05 | | | 总铁 | 0.00 | 9.59 | -9.77 | \mathbf{NA}^* | -83.01 | | ^{*} NA表示数据不可得. 表 3 不同实验条件下,水体中 pH、Eh 和 DO 的比较 Tab.3 Comparisons of water column pH, Eh and DO under different conditions | | 好氧阶段 | —————————
厌氧条件 | 供氧试验 | | | | |----------|------------|-------------------|------|----------------------------------|---------------------|--| | | X] =(P)[PX | 八半八十 | 曝气充氧 | 投加 H ₂ O ₂ | 投加 CaO ₂ | | | рН | 7.32 | 6.87 | 7.16 | 7.09 | 10.26 | | | DO(mg/L) | 7.5 | 0.02 | 7.5 | 3.0 | 6.0 | | | Eh(mV) | 406 | 104 | 457 | 506 | 347 | | 过氧化氢的强氧化作用来看,水体中铁锰含量也应该发生下降,但这还有待于进一步证实. ## 2.4 三种供氧方式在工程实践中的应用 上述三种供氧方式对受污染水环境的修复均具有一定的工程意义:曝气能提高底泥/水界面的溶氧水平和氧化还原电位,因而能有效抑制底泥中铁型磷和锰型磷的释放;曝气充氧也有利于氨氮、有机质等物质发生降解,因而能起到改善水质的目的. 过氧化氢是一种强氧化剂,其标准氧化还原电位仅次于臭氧,高于高锰酸钾、次氯酸和二氧化氯,它能直接氧化有机污染物和微生物的细胞质,并能降解水体和底泥中的有机污染物;在有 Fe²+存在时,过氧化氢会发生分解,并产生氧化性极强的 OH 自由基(氧化还原电位为 2.8 mV),从而使绝大多数有机污染物发生降解^①;此外,过氧化氢只含有氢和氧两种元素,其分解产物为水和氧气,因此不会引入外来污染物. 过氧化钙是一种固态无机过氧化物,微溶于水;从过氧化钙与水反应的机理来看,可将过氧化钙视为缓释性的"固态"过氧化氢^[3] 过氧化钙和水反应后,能提高水体 pH 值,而在碱性条件(pH>8)下,磷酸根很容易与钙离子发生共沉淀,并主要以磷灰石 Cas(PO);OH 形式存在[12]. 在实际的工程实践中,必须了解这三种供氧方式的操作特性及其应用前景,从而能在工程应用中针对水环境修复的不同对象和目的,采取相应的供氧方式,并达到预期的效果;同时还需兼顾各种处理方式的实效性、经济性及其对水生态环境的危害. 表 4 所列是三种供氧方式优、缺点的比较 ,从该表可以看出 :虽然曝气充氧已经有了丰富的实践经验 ,但其动力损耗较大 ,建设成本和维护费用也相应较高. 相对于曝气充氧 ,投加过氧化氢和过氧化钙在建设成本、常规维护、动力消耗和操作手段均能显现其优越性 ,但这两种方式均缺乏工程实践 ,而且还存在如下问题 (1)过氧化氢在自然界中很容易分解 ,绝大多数氧分子不能被好氧微生物有效利用 ,过氧化氢达一定浓度后 ,对微生物还有一定的灭活作用 (2) ① 张丽萍. 清华大学地表水质研究. 清华大学硕士学位论文 2002 | | • | | | |------|---------|----------------------------------|---------------------| | 操作特性 | 曝气充氧 | 投加 H ₂ O ₂ | 投加 CaO ₂ | | 所需设备 | 曝气设备 | 投药装置/船只 | 投药装置/船只 | | 建设成本 | 较高 | 较低 | 较低 | | 常规维护 | 需长期维护 | 无需长期维护 | 无需长期维护 | | 动力消耗 | 较大 | 很小 | 很小 | | 操作手段 | 灵活 | 灵活 | 灵活 | | 抑磷效果 | 较好 | 一般 | 最佳 | | 抑氮效果 | 最佳 | 一般 | 较好 | | 实践经验 | 丰富 | 较少 | 较少 | | 其他缺点 | 空气充氧效果 | 分解过快 | 提高 pH 和碱度 | | | 差 ,纯氧充氧 | | 危及水生态环境[14,15] | | | 成本高 | | | 表 4 三种供氧方式的优、缺点比较 Tab.4 Comparison of three oxygenation methods 有研究表明[13,14],过量投加氢氧化钙会使水生植物死亡,因而投加过氧化钙对水生态环境也有一定的潜在危害. ## 3 结论 - (1)溶解氧是控制底泥氮磷释放的重要因素,厌氧条件利于底泥加速释放氨氮和磷.释放实验过程中,铁和磷之间的相关系数为0.800,锰和磷之间的相关系数为0.772,说明西沥水库底泥中铁、锰和磷三者之间存在着耦合转化关系. - (2)曝气、投加过氧化氢和过氧化钙均能显著提高底泥/水体系的溶氧水平和氧化还原电位,且能有效控制底泥氮磷的释放.三种供氧方式对底泥释磷的控制效率依次为:投加过氧化钙>曝气>投加过氧化钙>投加过氧化钙>投加过氧化氢. ### 参考文献 - 1 张锡辉. 水环境修复工程学原理与应用. 北京:化学工业出版社,2002,48-51 - 2 张丽萍 ,袁文权 ,张锡辉. 底泥污染物释放动力学研究. 环境污染治理技术与设备, 2003,4(2):22-26 - 3 Marc W Beutel, Alex J Horne. A review of the effects of hypolimnetic oxygenation on lake and reservoir water quality. Journal of Lake and Reservoir Management, 1999, 15(4):285–297 - 4 Arienzo M. Degradation of 2,4,6-trinitrotoluence in water and soil slurry utilizing a calcium peroxide compound. *Chemosphere*, 2000, 40: 331-337 - 5 Daniel M White, Robert L Irvine, Craig R Woolard. The use of solid peroxides to stimulate growth of aerobic microbes in tundra. *Journal of Hazardous Materials*, 1998, **57**: 71–78 - 6 Daniel M White, Robert L Irvine. Use of calcium peroxide to provide oxygen for contaminant biodegradation in a saturated soil. *Journal of Hazardous Materials*, 1999, B69: 25–39 - 7 中国科学院南京土壤研究所.土壤理化分析. 上海:上海科学技术出版社,1978 - 8 Chen Guang-Hao, Leong I-Man, Liu Jian et al. Study of oxygen uptake by Tidal River Sediment. Water Research, 1999, **33**(13), 2905-2912 - 9 USEPA, Method 3050B: Acid digestion of sediments, sludges and soils. http://www.epa.gov/epaoswer/hazwaste/test/pdfs/3050b.pdf - 11 美国公共卫生协会编著. 水和废水标准检验法. 宋仁元等译. 北京:中国建筑工业出版社.1985 - 12 Marc Watson Beutel. Dynamics and control of nutrient, metal and oxygen fluxes at the profundal sediment-water interface of lakes and reservoirs. PhD thesis, University of California, Berkeley, 2000 - 13 Moore P A Jr, Reddy K R. Role of Eh and pH on phosphorus geochemistry in sediments of Lake Okeechobee, Florida. J Environ Qual. 1994, 23, 955–964 - 14 Sharon Reedyk, Ellie E Prepas, Patricia A Chambers. Effects of single Ca(OH)₂ doses on phosphorus concentration and macrophyte biomass of two boreal eutrophic lakes over 2 years. Freshwater Biology, 2001. 46: 1075–1087 - 15 Patricia A Chambers, Ellie E Prepas, Mary E Ferguson, et al. The effects of lime addition on aquatic macrophytes in hard water: in situ and microcosm experiments. Freshwater Biology, 2001, 46: 1121-1138 ## Effects of Different Oxygenation Treatments on the Release of Nitrogen and Phosphorus from Reservoir Sediments ### YUAN Wenquan ZHANG Xihui & ZHANG Liping (Research Center for Environmental Engineering & Management, Shenzhen Graduate School, Tsinghua University, Shenzhen 518057, P.R.China) #### **Abstract** This paper investigated effects of three oxygenation methods—aeration, hydrogen peroxide doses and calcium peroxide doses—on the release of N and P from reservoir sediments under simulated conditions. The results showed that: (1)Dissolved oxygen is the main parameter controlling the release of N and P; anaerobic condition can stimulate the release of NH4 $^+$ and P from reservoir sediments. (2)Aeration, H_2O_2 doses and CaO_2 doses can generally enhance the DO levels in the hypolimnetic water body. Both N and P release from sediments were inhibited under these three treatments. In laboratory studies involving three different oxygenation methods, the efficiency of the control of phosphorus release was in the order of CaO_2 doses>aeration> H_2O_2 doses, while the efficiency of the control of ammonia was in the order of aeration> CaO_2 doses> H_2O_2 doses. Keywords: Sediment; nitrogen and phosphorus release; anaerobic; oxygenation