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ABSTRACT

Niiler’s model of the general wind-driven ocean circulation is reformulated in a quasigeostrophic framework
and solved analytically to first order of the perturbative expansion, both for interior and boundary layer regions.
On this basis, the nonlinear unconditional stability of the solution is proven by means of the Lyapunov direct
method.

1. Introduction

The basic picture of the basin-scale ocean circulation
is founded on the motion of a single-layered fluid in a
bounded region on a beta plane. This is the starting point
of an hierarchy of models arranged with increasing me-
chanical and thermodynamical complexity, in which the
continuous evolution of numerical techniques hardly al-
lows one to isolate the most refined model at the mo-
ment. In this paper we focus on the bottom of this hi-
erarchy of models in order to locate preliminarily in a
suitable framework the subject of our investigation, that
is, Niiler’s (1966) model.

The prototype of (oversimplified) inertial circulation
is the Fofonoff (1954) mode that is able to reproduce
qualitatively both the formation region of westward in-
tensified ocean currents and the inertial stream crossing
the basin from coast to coast. However, the inability to
model westward intensification led to consideration of
the Fofonoff mode as purely abstract, until its review
in terms of equilibrium statistical mechanics (Carnevale
and Frederiksen 1987; Griffa and Salmon 1989). The
key step in the evolution is represented by the models
of wind-driven circulation with bottom friction only,
formulated first by Stommel (1948) in a historical linear
version and then by Veronis (1966) in a full nonlinear
context. The investigation of Veronis has been later re-
considered repeatedly, from different points of view. For
instance, Harrison and Stalos (1982) evaluate, in the
framework of the Veronis model, regional vorticity bud-
gets over a wide range of parameter choices. Merkine
et al. (1985) reexamine the visual resemblance between
highly nonlinear solutions of the Veronis model and
Fofonoff’s solution and establish that the apparent re-
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semblance is misleading. Zimmerman (1993) derives
analytically the symmetry presented in the numerical
simulations of Veronis by a perturbation expansion in
the inverse Ekman number, valid in the ‘‘small beta
regime.’’ He also shows that Veronis’ sequence does not
lead to the inertial Fofonoff mode, the latter being orig-
inated from the limit of another sequence in the param-
eter space spanned by the Rossby and Ekman numbers.
Niiler’s model also follows this trend. It explicitly in-
cludes the Fofonoff mode as a precise asymptotic limit
for vanishing forcing dissipation but, at the same time,
retains the basic features of the wind-driven circulation,
like the Sverdrup balance and westward intensification,
even if the wind stress adopted is less realistic than that
taken into account by Veronis.

Common characteristics of the above quoted models
are the uniqueness of boundary conditions (no mass flux
only), the absence of recirculation whatever nonlinearity
may be, and the absence of multiple steady states (Ierley
and Sheremet 1995).

The subsequent step in the evolution, and the last
considered here, comes from the adoption of lateral dif-
fusion of relative vorticity as a frictional parameteriza-
tion. This ingredient, which is a heritage of the Navier–
Stokes equations, has profound implications. For in-
stance, additional, but largely arbitrary, boundary con-
ditions are required besides no mass flux, and these
deeply influence the overall current field. Moreover, in
the regime of marked nonlinearity recirculation devel-
ops in the northwestern corner of the basin. Further-
more, multiple steady solutions are allowed. A detailed
and up-to-date review of these arguments is found in
Pedlosky (1996). A numerical phenomenon that can
arise, especially in the presence of lateral friction and
no-slip boundary conditions, is the generation of insta-
bility, in the sense of the impossibility to achieve a
steady state in correspondence to given points in the
parameter space of the system considered (Bryan 1963;
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Blandford 1971). Since only instability can be numer-
ically detected (stability would require an infinite com-
putation time!) and if instability is not observed in a
system or in another dynamically close to the previous
one, it is expected that stability (in a certain norm) holds.
Thus, this conjecture needs to be proven. This is the
case in Niiler’s model, which is close in a sense to that
of Veronis in the highly nonlinear regime, this last being
able to converge in any case to a steady state.

It is stressed again that Niiler’s model of a full-basin
oceanic circulation investigates analytically the wind-
driven motion of a one-layered ocean in a strongly non-
linear regime and in the presence of bottom friction only
as a dissipative mechanism. The identification of two
modes simultaneously present in the motion, with in-
ertial motion predominant, leads to a particular scaling
of the governing equations that exhibits a weak coupling
between the potential vorticity conservation tendency
and the response to the applied forcing. The meridion-
ally modulated wind stress field is chosen so that the
inertial mode coincides with that of Fofonoff, while the
higher-order correction satisfies the Sverdrup balance in
the interior. The overall solution is a crude truncated
expansion in powers of a proper coupling parameter
constituted by two terms only, the first being just the
Fofonoff mode. In regards to the second term, Niiler
does not give its explicit form but points out only the
Sverdrup balance between this term and the wind curl.

The assumed smallness of the coupling has two im-
portant consequences:

1) The flow pattern is close to that of Fofonoff and the
inertial boundary layer expands toward the interior,
opposing to the east–west asymmetry typical of the
Sverdrup balance with the tendency to a complete
east–west invariance;

2) The southward drift of the interior is clearly de-
pressed with respect to the value taken in the dis-
sipative regime.

These facts show that, in spite of the different form
of the adopted wind stress, the streamlines of Niiler’s
model are in some accordance with the numerical so-
lutions of Veronis, in the strongly nonlinear regime ob-
tained by using a very similar homogeneous model.

Since a steady state was actually reached in all the
numerical experiments of Veronis, it is quite reasonable
to conjecture that Niiler’s solution is also stable. The
aim of the present paper is to study this point thoroughly
in order to prove the nonlinear unconditional stability
of Niiler’s solution with respect to a given norm by
deriving a special time evolution of the norm above
which is neither conserved (as in the case of the Fo-
fonoff mode) nor tends necessarily to zero (as in the
case of the Stommel–Veronis solution in the dissipative
regime (Crisciani et al. 1994).

To this purpose, Niiler’s model is reformulated in the
quasigeostrophic framework (section 2), and then (sec-
tion 3) the analytical form of the overall solution is

deduced by boundary layer methods. In section 4 an
upper bound of the time derivative of the perturbation
norm square is explicitly evaluated, thus achieving the
results we have anticipated.

2. Niiler’s model revisited

Niiler’s model is restated in the framework of the
quasigeostrophic dynamics governed by the following
dimensional (starred) vorticity equation:

]c
2 *J (c , ¹ c ) 1 b* * * * ]x*

21
25 z ·= 3 t 2 k¹ c , (x , y ) ∈ D , (1)* * * * * * *rH

with no-mass flux boundary condition

c* 5 0 (x*, y*) ∈ ]D*. (2)

The original notation is used, so

f0 1/2k 5 E ,V2

where f 0 is the Coriolis parameter and EV is the vertical
Ekman number.

In that part of the ocean basin D* far removed from
the boundaries and in addition to the Sverdrup mode
excited by the wind stress t* and having the amplitude

t 0U 5 , (3)S rHbL

where t 0 is the typical intensity of t*, the dominant
dynamical equilibrium permits a free zonal flow, whose
amplitude is denoted by Uf . In the assumed strongly
nonlinear regime,

Uf k US (4)

and Uf is taken as velocity scale. Near the boundaries
the typical velocity is Uf L/l, where l 5 (Uf /b)1/2 is
the width of the inertial region.

To find the relation between Uf and US, we integrate
(1) over the area enclosed by the circuit C coinciding
with a streamline of c*. The result is

1 u · d l 5 0,t ·d l 2 k R (5)*R *rH CC

where u* 5 3 =*c*. With the aid of (3), the first
2

z
term of (5) is of the order of USbL, while the second
one is kUf L/l, so, equating the two quantities and re-
calling the dependence of l on Uf , one obtains the re-
lation

b1/2US 5 .1/2kU f (6)

At this point, the nondimensional version of (1) for
c 5 c*/(Uf L) can be deduced by substituting (3) and
(6) into (1), which yields
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1/2
2U ]c U U Uf S S f2 2J(c, ¹ c) 1 5 z ·= 3 t 2 ¹ c,

2 21 2bL ]x U U bLf f

and putting

1/2U Uf S« 5 , d 5 , (7)
21 2bL Uf

the final version can be written as

]c
2 2« J(c, ¹ c) 1

]x

2

25 d(z ·= 3 t 2 «¹ c), (x, y) ∈ D, (8)

with the boundary condition

c 5 0, (x, y) ∈ ]D, (9)

which comes from (2).
Note that, since l K L and « 5 l/L, « , O(1).

Moreover, inequality (4) implies d , O(1).
Niiler’s solution is based on the expansion of c in

powers of d, truncated at the first order; that is,

c ø c0 1 dc1. (10)

Then, substitution of (10) into (8) and (9) determines
to the zeroth and first order in d the following problems
for c0 and c1 respectively:

]c02 2« J(c , ¹ c ) 1 5 0, (x, y) ∈ D (11)0 0 ]x

c 5 0, (x, y) ∈ ]D (12)0

2 2 2« [J(c , ¹ c ) 1 J(c , ¹ c )]0 1 1 0

2]c1 21 5 z ·= 3 t 2 «¹ c ,0]x

(x, y) ∈ D (13)

c 5 0, (x, y) ∈ ]D. (14)1

Niiler was able to prove that the choice

«2¹2c0 1 y 5 c0, (15)

identically satisfies (11) and is consistent with (13) if a
wind stress of the form

t 5 ( 1 3y 2 y2) it̃ (16)

is postulated in the square fluid domain

D 5 {(x, y) : 0 # x # 1, 0 # y # 1},

where is an arbitrary constant. Thus, in the presencet̃
of the forcing (16), the highly nonlinear regime is con-
stituted by the superposition of the Fofonoff mode c0,
which is the solution of problem (11), (12) with the
first-order contribution c1. In the basin interior (I) this
last field satisfies the Sverdrup balance

2]c1I 5 z ·= 3 t , (17)
]x

as is apparent from (13) if the terms proportional to «
and «2, growing only near the boundaries, are disre-
garded.

Note that, from (16),

·= 3 t 5 2y 2 3.
2

z (18)

The only information about the interior flow given by
Niiler comes from (17), (18) and is represented by Eq.
(26) of the original paper.

Finally, from (11), (13), and (18) one obtains the
equation

J(c0, «2¹2c1 2 c1) 5 2y 2 3 2 «¹2c0, (19)

which will be useful in what follows.

3. On the solution of Niiler’s model

The analytical expression of c1 is not given in the
original paper of Niiler but it must be preliminarily de-
termined in order to investigate the stability of the basic
state (10). Consider first the situation in the basin in-
terior, where Eq. (17) holds. We introduce the transform

(x, y) → (1 2 x, y) (20)

of D into itself, which is simply the mirror reflection of
D with respect to the midbasin longitude, and define
c(x, y) 5 c(1 2 x, y). With reference to the identity

1 1
c 5 (c 1 c ) 1 (c 2 c )1 1 1 1 12 2

we put

c1 5 cs 1 ca, (21)

where cs 5 (c1 1 c1)/2 and ca 5 (c1 2 c1)/2.
Obviously, cs 5 cs and ca 5 2ca. In the interior,
(21) is denoted as

c1I 5 csI 1 caI. (22)

Substitution of (22) into (17) gives

]c ]csI aI1 5 2y 2 3, (23)
]x ]x

and the application of transform (20) to (23) yields

]c ]csI aI2 1 5 2y 2 3. (24)
]x ]x

From (23) and (24) we obtain both

]csI 5 0 (25)
]x

and

c 5 (2y 2 3)x 1 G(y), (26)aI

where G is any function of y. Equation (25) shows that
csI is purely zonal, while the antisymmetric behavior of
caI, that is to say caI(1 2 x, y) 5 2caI(x, y), implies,
via (26), that
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1
c 5 (2y 2 3) x 2 . (27)aI 1 22

If the same procedure is followed by substituting (21)
into (19), we see that cs satisfies the equation J(c0,
«2¹2cs 2 cs) 5 0; that is to say

«2¹2cs 2 cs 5 P(c0). (28)

Since in the interior c0I 5 y [recall (15)], Eq. (28) im-
plies that csI 5 2P(y): This equation is consistent with
(25) whatever the function P may be. Therefore, in the
interior the complete solution is

cI 5 y 1 dcsI(y) 1 dcaI(x, y),

where the O(d) contribution of csI is arbitrary due to
the arbitrariness of the function P(c0) appearing in (28).
This fact allows one to choose, on simplicity grounds,
P(c0) 5 0 and hence cs 5 0. This, since the solution
of the problem,

2 2« ¹ c 2 c 5 0, (x, y) ∈ Ds s

c 5 0, (x, y) ∈ ]D,s

is identically vanishing.
Thus, recalling (27), we have

1
c 5 (2y 2 3) x 2 . (29)1I 1 22

The streamlines of the interior come from the equation
c0I 1 dc1I 5 p, which can be written under the form
of a function y(x) as

1
p 1 3d x 21 22

y (x) 5 ,p

1
1 1 2d x 21 22

where the parameter p (0 , p , 1) singles out each
streamline. One immediately verifies that dyp/dx is al-
ways positive, while d2yp/dx2 is always negative in the
fluid domain D. This last result should provide a more
detailed flow path, represented schematically in Fig. 3
of Niiler’s original paper.

Once the interior solution (29) is given, one can apply
boundary layer methods to deduce the complete solution
up to the first order in d.

With reference to one (say K, K 5 S, N, W, E) of
the four boundaries of D, Fofonoff’s solution can be
written as

c0 5 y 1 ,(K)f0 (30)

while the O(d) terms take the form

c1 5 c1I 1 .(K)f1 (31)

Now, substitution of (30) and (31) into (19) leads to the
equation

(K ) 2 2 (K ) (K ) (K )J(f , « ¹ f 2 f ) 2 J(f , c )0 1 1 0 1I

]
2 2 (K ) (K ) 2 (K )2 (« ¹ f 2 f ) 5 2«¹ f . (32)1 1 0]x

At this point, Eq. (32) must be solved separately for
each boundary, making use of the analytical form of the
correction , which is known from Fofonoff’s solu-(K)f0

tion. For instance, in the southern boundary 5 0(S)f0

and, in terms of the boundary layer coordinate h 5
«21y, Eq. (32) takes the form

2 2] ] 1 ]
2 (S) (S)« 1 f 2 f 5 0.1 12 2 21 2[ ]]x ]x « ]h

The dominant balance is

2 (S) (S)] ]f ]f1 12 5 0.
21 2]h ]x ]x

Moreover, must satisfy the following boundary con-(S)f1

ditions:
(S)lim f 5 01

h→1`

and
(S)c (x, 0) 1 f (x, 0) 5 0.1I 1

The boundary layer correction is therefore

1
(S)f (x, h) 5 3 x 2 exp(2h),1 1 22

and the complete solution, valid for the interior and the
southern boundary layer, is

1 y
(S)c 5 x 2 2y 2 3 1 3 exp 2 . (33)1 1 2 1 2[ ]2 «

The procedure for the other boundaries is analogous,
even if it is slightly more involved because of the pres-
ence of the nonvanishing functions (K 5 N, W, E).(K)f0

Here the results are summarized.

Northern boundary: It is known that 5 2exp[(y 2(N)f0

1)/«]. Using the approximation ]c1I/]x ø 21 near y
5 1 in the development of the second term of (32),
one achieves the solution, valid for the interior and
the northern boundary layer,

1 y 2 1
(N )c 5 x 2 2y 2 3 1 exp . (34)1 1 2 1 2[ ]2 «

Western boundary: In this boundary layer 5 2y(W)f0

exp(2x/«). As before, with the aid of the approximation
]c1I/]y ø 21 near x 5 0, the solution obtained is

1 1 x
(W )c 5 (2y 2 3) x 2 1 exp 2 . (35)1 1 2[ ]2 2 «

Eastern boundary: We simply have (x, y) 5(E)c1

(1 2 x, y) and hence(W)2c1
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FIG. 1. Sketch of the streamlines of c1 obtained from the boundary
layer solutions (33), (34), (35), and (36). The double-gyre system
generates a southward interior drift and two northward intensified
currents along the meridional boundaries.

FIG. 2. Plot of the total solution c 5 c0 1 dc1 (continuous line)
superimposed to the Fofonoff solution c0 (dashed line) vs longitude,
both evaluated at the midbasin latitude y 5 ½. To make the difference
between these solutions perceptible, the values « 5 d 5 1021 and «
5 1021, d 5 0 have been used respectively. The asymmetry of c
with respect to c0 is related, for increasing values of the longitude,
to the western intensified boundary current (northward), the south-
ward drift of the interior, and the eastern weakened boundary current
(southward).

FIG. 3. Plot of the total solution (continuous lines) compared with
that of Fofonoff (dashed line) vs latitude, for « 5 d 5 1021. The
upper branch refers to x 5 ⅓, the lower one to x 5 ⅔. The different
slope of these branches in the proximity of the zonal boundaries, in
y 5 0 and y 5 1, are caused by the divergence or convergence of
the interior meridional current (reported in Fig. 1) near these bound-
aries, which modulates the intensity of the local zonal current.

1 1 x 2 1
(E )c 5 (2y 2 3) x 2 2 exp . (36)1 1 2[ ]2 2 «

A remarkable property of the partial solutions (33),
(34), (35), and (36) is that each of them satisfies the
equation

1
2 2 (K ) (K )« ¹ c 2 c 5 2 x (2y 2 3)1 1 1 22

K 5 S, N, W, E,

and therefore one can establish for the whole domain
the extrapolation

1
2 2« ¹ c 2 c ø 2 x (2y 2 3), (37)1 1 1 22

which approximates «2¹2c1 2 c1 near the corners of
the basin where boundary layer techniques cannot be
applied. Note that ¹2 is proportional to «22, so the(K)c1

accuracy of (37) does not depend on «. Equation (37)
will be useful in next section.

The field c1 given by (33), (34), (35), and (36) rep-
resents a double gyre, generating a southward interior
current together with two northward return currents
close to x 5 0 and x 5 1. The superposition of these
currents with those of Fofonoff’s solution, having op-
posite sign in the western and eastern side, explains both
the western intensification and the eastern weakening
of the complete solution (10). The southward drift of
the interior originates from the convergence in x 5 ½
of the zonal current along the northern boundary, while
the divergence, at the same longitude, of the zonal cur-
rent along the southern boundary feeds the northward

return flow. The streamlines of c1 are sketched in Fig.
1. Some features of the total solution c0 1 dc1 are
pointed out in Figs. 2 and 3.

4. Stability analysis of the solution
First, the following time-dependent version of Eq. (8)

is postulated:
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2] ]c
2 2 2 2¹ c 1 « J(c, ¹ c) 1 5 d(z ·= 3 t 2 «¹ c).

]t ]x
(38)

From the stability point of view, only the sign of the
time derivative is relevant, so multiplication of ]¹2c/]t
by some scale factor does not change the conclusions.
The perturbed state c is the superposition of the steady
basic state (10) with a time-dependent perturbation, ex-
pressed as w0 1 dw1, in order to keep the problem for
w0 separate from that for w1. Substitution of c 5 c0 1
w0 1 d(c1 1 w1) into (38) gives, to the zeroth and first
order in d, the following equations:

]
2 2 2¹ w 5 2« J(c , ¹ w ) 1 J(c , w )0 0 0 0 0]t

2 22 « J(w , ¹ w ) (39)0 0

]
2 2 2 2 2¹ w 5 2« J(w , ¹ c ) 1 « J(¹ w , c )1 0 1 1 0]t

2 2 2 21 « J(¹ w , w ) 2 « J(c , ¹ w )1 0 1 0

2 2 22 J(w , c ) 2 « J(w , ¹ w ) 2 «¹ w .1 0 1 0 0 (40)

In the deduction of (39) and (40) use has been made of
(11), (13), and (15) involving only the basic-state com-
ponents.

Consider now Eq. (39). Multiplication by

1
2¹ w 2 w0 02«

and the subsequent integration on D with the aid of
boundary condition (9) yields

1 d 1
2 2 2(¹ w ) 1 |=w | dx dy 5 0; (41)E 0 02[ ]2 dt «D

that is, the conservation of the perturbation norm

1/2
1

2 2 2n(w ) 5 (¹ w ) 1 |=w | dx dy . (42)0 E 0 025 6[ ]«D

Equation (41) states the stability of Fofonoff’s mode c0

with respect to the norm (42). It is not a new result, as
Eq. (15) with boundary conditions (12) satisfies the con-
ditions for nonlinear stability of c0 formerly established
by Arnold’s (1965).

It is quite natural to extend the norm (42) to the
complete perturbation w0 1 dw1, thus obtaining for the
square norm the equation

2n (w 1 dw )0 1

1
2 2 2ø n (w ) 1 2d ¹ w ¹ w 1 =w ·=w dx dy,0 E 0 1 0 121 2«D

(43)

where the O(d2) terms have been disregarded in accor-
dance with the statement of Niiler’s model. From (43),
recalling (41), we have within this approximation

d ] ] 1 ] 1 ]
2 2 2 2 2n (w 1 dw ) 5 2d ¹ w ¹ w 1 ¹ w ¹ w 1 =w · =w 1 =w · =w dx dy, (44)0 1 E 0 1 1 0 1 1 02 21 2dt ]t ]t « ]t « ]tD

The first two terms appearing in the integral of (44) can
be evaluated directly by using (39) and (40). About the
term

]
=w · =w0 1]t

one can use the identity

] ] ]
2w ¹ w 5 = · w =w 2 =w · =w0 1 0 1 0 11 2]t ]t ]t

and therefore again (40) and the boundary condition w0

5 0 along ]D. The procedure is analogous to evaluate
the last integral. The final result of this cumbersome
computation is

d
2n (w 1 dw )0 1dt

2 2 2 25 2d (« ¹ c 2 c )J(w , ¹ w ) dx dy 2 «n (w ) .E 1 1 0 0 0[ ]
D

(45)

Note that w1 does not appear in the rhs of (45). A short
comment about (45): Equation (43) implies that, up to
first order in d,

dn2(w0) 5 dn2(w0 1 dw1). (46)

The square norm n2(w0) is conserved [Eq. (41)], so from
(46) we have

d
2dn (w 1 dw ) 5 0.0 1dt

Since we are working with truncated expansions, this
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last equation does not imply the conservation of n2(w0

1 dw1); rather, that

d
2n (w 1 dw ) 5 O(d),0 1dt

in accordance with (45).
Equation (45) is equivalent to

d
2n (w 1 dw )0 1dt

2 25 2d ¹ w =w ·B dx dy 2 2d«n (w ), (47)E 0 0 0

D

where B 5 3 =(«2¹2c1 2 c1), that is to say, recalling
2

z
(37), B 5 (2x 2 1)i 1 (3 2 2y)j. In particular,

1/2max |B| 5 10 . (48)
D

To obtain a suitable differential inequality to prove that
n2(w0 1 dw1) remains bounded in time if it is initially
(say in t 5 0) bounded, we proceed as follows, with
reference to (47):

1) Assume for the time being that a positive constant
M exists such that

2 2¹ w =w ·B dx dy # Mn (w );E 0 0 0

D

2) Substitute (46) into the last term on the rhs of (47).

As a consequence of (i) and (ii), Eq. (47) yields, up to
first order in d,

d
2 2 2n (w 1 dw ) # 2dMn (w ) 2 2d«n (w 1 dw ).0 1 0 0 1dt

(49)

Time integration of (49) gives
2n (w 1 dw ; t)0 1

M
2# n (w )0«

M
2 21 exp(22d«t) n (w 1 dw ; 0) 2 n (w ) . (50)0 1 0[ ]«

Inequality (50) shows that the dissipation, whose
strength is d«, controls only at first the evolution of the
norm, while, asymptotically, this is bounded by the con-
stant quantity «21Mn2(w0).

Consider separately the two possibilities

M
2 2n (w 1 dw ; 0) , n (w ) (51)0 1 0«

and

M
2 2n (w 1 dw ; 0) $ n (w ). (52)0 1 0«

Case (51) implies, through (50),

M
2 2n (w 1 dw ; t) , n (w )0 1 0«

and hence, in particular
2 2n (w 1 dw ; t) 1 n (w )0 1 0

M
2 2, 1 1 [n (w 1 dw ; 0) 1 n (w )]. (53)0 1 01 2«

In terms of the norm

\w0 1 dw1\ 5 [n2(w0 1 dw1) 1 n2(w0)]1/2 (54)

operating on the space of the truncated perturbations w0

1 dw1 and recalling (41), inequality (53) is equivalent to

1/2M
\w 1 dw ; t\ , 1 1 \w 1 dw ; 0\, (55)0 1 0 11 2«

and thus the stability of c0 1 dc1 in the norm (54)
immediately follows.

On the other hand, case (52) corresponds to

n2(w0 1 dw1; t) # n2(w0 1 dw1; 0), (56)

so (56) itself ensures the stability of the basic state in
the norm n(w0 1 dw1). However, (56) also implies

n2(w0 1 dw1; t) 1 n2(w0)
# n2(w0 1 dw1; 0) 1 n2(w0);

that is, by resorting again to (54),

\w0 1 dw1; t\ # \w0 1 dw1; 0\. (57)

By means of (55) and (57) we have proven the uncon-
ditional stability of Niiler’s solution with respect to the
norm (54), in correspondence to both the possibilities
(51) and (52).

Finally, M has to be estimated. Note that if M # «,
then (47) would imply

d
n(w 1 dw ) # 0,0 1dt

and hence stability would immediately follow. However,
we are only able to evaluate an upper bound of M. To
this purpose, it is proven that the ratio

2¹ w =w ·B dx dyE 0 0

D
R [ (58)

2n (w )0

is bounded by a constant. It is useful to define, for
shortness, the following functionals:

2K 5 K(w ) [ |=w | dx dy, (59)0 E 0

D

and

2 2V 5 V(w ) [ (¹ w ) dx dy, (60)0 E 0

D
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which are proportional to the kinetic energy and the
potential enstrophy of the perturbation w0, respectively.
By using the inequality

2 2¹ w =w ·B # |¹ w | |=w | max |B|0 0 0 0
D

and then the Schwarz inequality in the numerator of
(58), one can write, recalling (48), (59), and (60),

1/2(KV)
1/2R # 10 . (61)

22V 1 « K

Putting a 5 a(w0) [ (K/V)1/2, the Wirtinger inequality
[see (A6) in the appendix] K/V # 1/p2 ensures that a(w0)
is never singular, being included into the interval 0 #
a # 1/p. In terms of a, (61) takes the form

a
1/2R # 10

22 21 1 « a

and hence
1/210

R # «
2

(a stronger upper bound would be obtained for « . 1/p
but this inequality is physically unexpected). Therefore,

1/210
2 2¹ w =w ·B dx dy # «n (w );E 0 0 02D

that is
1/210

M 5 «.
2

This completes our proof.

5. Remarks

From (50) with
1/2M 10

5 ,
« 2

one obtains n2(w0 1 dw1; 1`) , 1.58n2(w0), while
condition n2(w0 1 dw1; 1`) ø n2(w0) should be more
close to intuition since one can imagine that bottom
dissipation is able to erode wholly, in the course of an
infinite time interval, the difference n2(w0 1 dw1) 2
n2(w0). This last concept is probably correct. However,
we recall that the evaluation of M is based on the ap-
plication of inequalities that overestimate the numerator
of (51) and thus M itself.

One could wonder why (46) is not used also in the
first term of the rhs of (49). The reason is that the sign
of the difference n2(w0 1 dw1) 2 n2(w0) is not known,
so inequality

2 2d ¹ w =w ·B dx dy # dMn (w 1 dw )E 0 0 0 1

D

could be false, even if the inequality

2 2d ¹ w =w ·B dx dy # dMn (w )E 0 0 0

D

is correct. On the other hand, it is just the time inde-
pendence of the first term in the rhs of (49) that makes
the integration of (49) very simple.

If one accounts for, in a formal way, the O(d2) con-
tribution to (50), an additional term at the rhs of (50)
is obtained, of the kind

t

2d exp(22d«t) exp(2d«q)F(q) dq,E
0

but F(t) is an O(1) function that cannot be explicitly
determined in the framework of Niiler’s model.
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APPENDIX

The Wirtinger Inequality

Lemma: Let u 5 (u, y) be a two-dimensional current
field in the domain D 5 {(x, y) : 0 # x # 1, 0 # y #
1} with no-mass flux boundary conditions:

u(0, y) 5 u(1, y) 5 0 ∀y: 0 # y # 1 (A1)

y(x, 0) 5 y(x, 1) 5 0 ∀x: 0 # x # 1. (A2)

It is proven that

N [ J(y , u) dx dy 5 0, (A3)E
D

where J(y , u) is the Jacobian determinant with respect
to x and y.

By using the identity

J(y , u) 5 = · (y=u 3 k)

(k is the unit ‘‘upward’’ vector) and the divergence the-
orem, the integral N takes the form

y=u 3 k ·n dsN 5 R
]D

(n is the unit normal to ]D in the x–y plane and ds is
the differential arclength along ]D); that is

y=u ·dr,N 5 (A4)R
]D

(dr 5 t ds where t 5 k 3 n and, with reference to the
Cartesian x–y plane, dr 5 i dx 1 j dy). Because of the
boundary conditions (A2), the integral (A4) is simply



226 VOLUME 28J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

1 1]u ]u
N 5 y(1, y) dy 2 y(0, y) dy;E E) )]y ]y0 x51 0 x50

that is

1 ] ]y
N 5 [y(1, y)u(1, y)] 2 u(1, y) dyE 5 ) 6]y ]y0 x51

1 ] ]y
2 [y(0, y)u(0, y)] 2 u(0, y) dy.E 5 ) 6]y ]y0 x50

Recalling boundary condition (A1), the integral (A5)
reduces to a linear combination of products yu evaluated
in the stagnation points (r, s) with r 5 0, 1 and s 5 0,
1. Therefore, N 5 0.

The Wirtinger inequality (Straughan 1992)

Let V be the cell, in three dimensions, 0 # x # 1, 0
# y # 1, 0 # z 1. Suppose that the function s(x, y, z)
is such that

]s
5 0 on z 5 0, 11)

]z

s dx dy dz 5 0;2) E
V

then the Wirtinger inequality states that

2s dx dy dzE
V

2 2 21 ]s ]s ]s
# 1 1 dx dy dz.E2 1 2 1 2 1 2 2[p ]x ]y ]zV

Let s [ ]w0/]x. Since w0 does not depend on z, con-
dition (1) is verified. Moreover, condition (2) becomes

1

dy[w (1, y) 2 w (0, y)] 5 0E 0 0

0

and it is also verified. Therefore,

2 2 22 2]w 1 ] w ] w0 0 0dx dy # 1 dx dy.E E2 21 2 1 2 1 2[ ]]x p ]x ]x]yD D

In the same way, for s [ ]w0/]y, one obtains

2 2 22 2]w 1 ] w ] w0 0 0dx dy # 1 dx dy.E E2 21 2 1 2 1 2[ ]]y p ]y ]x]yD D

Adding the last two inequalities, we have

2|=w | dx dyE 0

D

1
2 2# (¹ w ) dx dyE 02p D

22 2 22 ] w ] w ] w0 0 01 2 dx dy.E2 2 21 2[ ]p ]x]y ]x ]y
D

Setting u 5 2]w0/]y and y 5 ]w0/]x, the last integral
coincides with the integral N of the lemma. Thus, iden-
tity (A3) holds and we conclude that

1
2 2 2|=w | dx dy # (¹ w ) dx dy. (A6)E 0 E 02p

D D
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