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ABSTRACT

A new statistical distribution for the surface elevation of weakly nonlinear water waves is derived using the
Pearson System of distributions. The new distribution avoids some problems associated with previously proposed
distributions. Namely, its probability density function is positive everywhere, unlike prior results obtained with
Gram–Charlier series. Furthermore, it is derived without requiring the assumptions that the wavefield is uni-
directional and narrow band, as made in some earlier studies. The distribution obtained is a form of the beta
distribution and depends only on two parameters, the variance and the skewness of the sea surface elevation.
The new distribution is compared to wave data, measured on a reservoir, and found to give a reasonable fit.

1. Introduction

For many years Gaussian theory has been used suc-
cessfully to describe the statistics of waves on the ocean
surface. However, being based on the assumption that
water waves are a linear phenomenon, it fails to account
adequately for nonlinear wave effects such as the skew-
ness of the sea surface elevation distribution (which is
a consequence of the peakier crests and flatter troughs
of nonlinear waves—Srokosz 1990). To date, two dif-
ferent approaches have been tried to describe these non-
linear effects, and both assume that the effects of non-
linearity are weak.

The first approach is that of Longuet-Higgins (1963),
who used a Gram–Charlier series—essentially a mod-
ification of the Gaussian theory—to describe the effects
of nonlinearity. He determined the moments and cu-
mulants of the distribution by using a weakly nonlinear
dynamical theory for the waves. The drawback of this
approach is that the resulting probability density func-
tion (pdf ) for the surface elevation is negative over part
of its range (strictly it should be positive everywhere).
The bulk of the pdf is positive and therefore this does
provide a model for statistics of nonlinear waves.

To overcome the problem of negative values for the
pdf Huang et al. (1983) specialized the Longuet-Higgins
(1963) approach to the case of a narrowband unidirec-
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tional sea. By using an expansion in powers of the sig-
nificant slope (assumed small) they were able to derive
a pdf for the surface elevation that is positive every-
where. Unfortunately, their results are only applicable
to the narrowband unidirectional case and cannot be
generalized to the broadband multidirectional wave field
case, which is more commonly found in nature. Tayfun
(1986) noted some difficulties with Huang et al.’s (1983)
approach and questioned the validity of their results.
Tayfun also derived some results for the narrowband
unidirectional case but did not give an explicit expres-
sion for the pdf of the surface elevation.

Here a third approach to the derivation of the statis-
tical distribution of the surface elevation for nonlinear
water waves will be presented. In common with the
previous approaches, the basis of this approach is the
assumption of weak nonlinearity, but it is aimed at
avoiding their limitations. From Longuet-Higgins’
(1963) weakly nonlinear dynamical theory it is known
that, to leading order in wave steepness (a measure of
nonlinearity), the distribution of surface elevation has
nonzero skewness and zero kurtosis. The questions this
paper addresses are: which, if any, statistical distribu-
tions have these properties? If a distribution with these
properties exists, does it provide a possible model for
the statistics of the surface elevation of nonlinear water
waves?

2. The Pearson System

To answer the first question stated above, the Pearson
System of distributions will be used. Originally due to
Pearson (1895), it is fully described by Johnson and
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Kotz (1970a, chapter 12). For every member of the
system the pdf, p(x), of the distribution satisfies a dif-
ferential equation of the form

1 dp 2(a 1 x)
5 , (1)

2p dx (c 1 c x 1 c x )0 1 2

where
`

p(x)dx 5 1 (2)E
2`

and

p(x) $ 0. (3)

We will attempt to find a distribution belonging to this
system that has nonzero skewness and zero kurtosis.
Subsequently we will test the distribution to see if it
provides a reasonable fit to wave data. From Eq. (1) we
obtain, for r 5 1, 2, . . . ,

dp
r 2 rx (c 1 c x 1 c x ) 5 2(a 1 x)x p. (4)0 1 2 dx

On integrating Eq. (4) from 2` to ` and assuming that
xrp(x) → 0 as x → 6`, which is a reasonable assumption
for the behavior of a pdf, we obtain

2rc m9 1 [a 2 (r 1 1)c ]m90 r21 1 r

1 [1 2 (r 1 2)c ]m9 5 0, (5)2 r11

where
`

rm9 5 x p(x) dx (6)r E
2`

are the moments of the distribution about the origin.
From Eqs. (2) and (6) 5 1.m90

To simplify the problem further, and without loss of
generality, we can chose 5 0 so that the origin cor-m91
responds to the mean sea level and also scale the prob-
lem so that 5 1. Thus, x represents the sea surfacem92
elevation relative to the mean level, measured in units
of the standard deviation. Now as 5 0, the momentsm91
about the mean mr are equal to the moments about the
origin , so that Eq. (5) can be solved for a, c0, c1, c2m9r
by setting r 5 1, 2, 3, 4. Thus,

21c 5 (4b 2 3b )(10b 2 12b 2 18) (7a)0 2 1 2 1

21c 5 a 5 Ïb (b 1 3)(10b 2 12b 2 18) (7b)1 1 2 2 1

21c 5 (2b 2 3b 2 6)(10b 2 12b 2 18) , (7c)2 2 1 2 1

where
2 3 2b 5 m /m 5 l (8a)1 3 2 3

2b 5 m /m 5 l 1 3. (8b)2 4 2 4

Here l3 is the skewness and l4 is the kurtosis. Note
that for r $ 4 Eq. (5) allows the higher moments to be
expressed in terms of m0 to m4.

We will now consider two special cases from the
above system:

Case (a) l3 5 l4 5 0

This assumption implies that a 5 c1 5 c2 5 0 and
c0 5 1, so from Eq. (1)

d
(logp) 5 2x;

dx

hence
21/2 2p(x) 5 (2p) exp(2x /2)

on using Eq. (2). Thus, we recover the Gaussian dis-
tribution for the surface elevation when no nonlinear
effects are present (l3 5 l4 5 0).

Case (b) l3 ± 0, l4 5 0

This choice is made on the basis of Longuet-Higgins
(1963) weakly nonlinear dynamical theory and gives
the following results from Eq. (7):

1
2 2 21c 5 (4 2 l )(1 2 l ) (9a)0 3 34

1
2 21c 5 a 5 l (1 2 l ) (9b)1 3 32

1
2 2 21c 5 2 l (1 2 l ) . (9c)2 3 34

Note that these results are singular for l3 5 1, but the
data examined below have l3 in the range 0 to 0.504,
so this should cause no problems for the theory.

Johnson and Kotz (1970a) show that the form of the
distribution depends on the roots of the equation [see
Eq. (1) above]

c2x2 1 c1x 1 c0 5 0, (10)

which, on the use of Eq. (9), are
21 2a 5 l [1 2 Ï5 2 l ] (11a)1 3 3

21 2a 5 l [1 1 Ï5 2 l ]. (11b)2 3 3

For 0 , l3 , 1, both roots are real and satisfy

a1 , 21, a2 . 3; (12)

that is, there is one positive and one negative root, with
a2 . a1. Hence, from Johnson and Kotz (1970a, chapter
12) we obtain

m m1 2p(x) 5 K(x 2 a ) (a 2 x) , (13)1 2

where

(a 1 a )1m 5 (14a)1 c (a 2 a )2 2 1

2(a 1 a )2m 5 . (14b)2 c (a 2 a )2 2 1

Note that x is restricted so that
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TABLE 1. Parameters of the beta distribution [Eq. (15)] as a function of the skewness l3. Note that l3 5 0 is the special case of the
Gaussian distribution, lc 5 0.826490 is a critical value at which the distribution changes form (see text), and the values for l3 5 1 are
derived in the limit l3 → 1 as the form of the distribution becomes singular [Eq. (9)].

l3 a1 a2 p q

0.0
0.1
0.2
0.3

2`
212.34
26.14
24.05

`
32.34
16.14
10.72

—
109.92

27.00
11.64

—
288.09

71.00
30.80

0.4
0.5
0.6
0.7

23.00
22.36
21.92
21.61

8.00
6.36
5.26
4.46

6.27
3.79
2.44
1.63

16.73
10.21

6.67
4.53

0.8
lc 5 0.826490

0.9
1.0

21.36
21.30
21.16
21.00

3.86
3.72
3.39
3.00

1.11
1.00
0.75
0.50

3.14
2.86
2.19
1.50

a1 # x # a2 (15)

and that for x outside this range p(x) is identically zero.
In Eq. (13) K is a normalizing factor to be determined
using Eq. (2).

Having found a distribution that satisfies the require-
ment that l3 ± 0, l4 5 0, we will next investigate its
properties.

3. The distribution of surface elevation

Equation (13) represents the pdf of a beta distribution
(Johnson and Kotz 1970b, chapter 24) and may be writ-
ten in normalized form as

p21 q21G(p 1 q) (x 2 a ) (a 2 x)1 2

p1q21G(p)G(q) (a 2 a )2 1
p(x) 5 for a # x , a (16)1 2
0 for x , a and x . a , 1 2

where

p 5 1 1 m , q 5 1 1 m ; (17)1 2

and m1, m2 are given by Eq. (14); a1, a2 are given by
Eq. (11); and G( · ) is the gamma function.

The primary point to note about the beta distribution
is that, unlike the Gaussian distribution, which sets no
limits on the values of surface elevation, here the surface
elevation is restricted to a range of values that depend
on the skewness l3 [see Eqs. (11) and (15)]. From John-
son and Kotz (1970b) the beta distribution exists for p
. 0, q . 0, but the form of the distribution changes if
p or q or both p and q # 1. For a ‘‘hump-shaped’’
distribution typical of the surface elevation of water
waves (see, e.g., Huang and Long 1980, or Srokosz
1990) we require p . 1 and q . 1, which implies, from
Eq. (17) that m1 . 0 and m2 . 0. It is easily shown,
from Eqs. (9), (11), and (14), that m2 . 0 for 0 , l3

, 1, so q . 1. However, m1 is not positive for the whole
range 0 , l3 , 1. Setting m1 5 0 in Eq. (14) and
solving for l3 gives a value l3 5 lc 5 0.826490 for

which p 5 1. Therefore, we might expect the beta dis-
tribution to provide a useful model for the distribution
of surface elevation for 0 , l3 , lc. The implications
of this are explored in Section 4.

Here we tabulate the values of the parameters of the
distribution to show their dependence on l3: l3 5 0
represents the results for the Gaussian distribution,
while those for l3 . 0 are the results for the beta dis-
tribution. As the skewness increases it can be seen that
the maximum and minimum possible values for the sur-
face elevation decrease in magnitude. Note that nonlin-
ear wave theory shows that there is a maximum steep-
ness for individual waves, beyond which they break,
whereas linear theory imposes no such limit (Lamb
1932; Srokosz 1990). The relationship between this de-
terministic result and the statistical limit on the surface
elevation found here is not clear. The statistical theory
sets no restriction on the wavelengths of the waves, and
therefore no restriction on their steepness, and neither
(formally) does the weakly nonlinear dynamical theory
of Longuet-Higgins (1963), from which the statistical
results have been developed.

In discussing the limitations on the values of surface
elevation set by the beta distribution it is important to
remember that the results for a1 and a2 given in Table
1 are normalized in terms of the standard deviation

m2 of the elevation. Therefore, they do not representÏ
absolute limits on the surface elevation, as larger values
of m2 will lead to larger values of the elevation. Thus,Ï
the distribution of surface elevation is determined by
the two parameters m2 and l3, where in Eq. (16)

x 5 z/ m2,Ï (18)

and z is the dimensional value of the surface elevation
(in appropriate units).

Having derived this new distribution for the surface
elevation of water waves, which by construction is pos-
itive everywhere and is not restricted to narrowband
unidirectional waves, we proceed to test its validity
against wave data.
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TABLE 2. Results from the analysis of the five reservoir datasets. The wind speed on each occasion is given in brackets below the dataset
number, in meters per second. Gauge refers to different gauges in the capacitance wire array. N is the number of degrees of freedom for
the X2 test applied to the beta distribution; G–C is an abbreviation for Gram–Charlier.

Dataset
(U m s21) Gauge l3 l4

zmax

Ïm2

zmin

Ïm2

x2
N

(beta) N
x2

32

(G–C)
Ïm2

(cm)

20
(12.4 )

1
3
6

0.433
0.453
0.504

0.179
0.013
0.306

4.20
3.54
4.05

22.90
22.45
22.51

9.13
9.15
9.18

27
27
25

9.06
9.25
9.19

7.09
7.19
6.94

23
(10.8 )

1
3
6

0.286
0.272
0.325

0.057
20.153
20.059

4.70
3.59
4.64

22.69
22.95
22.76

8.99
9.09
9.06

32
32
31

9.12
9.21
9.09

5.05
5.36
5.18

45
(7.0)

3
5
7

0.244
0.290
0.286

0.040
20.111
20.092

4.36
3.88
4.80

23.26
23.40
23.06

8.98
9.04
8.97

32
32
32

9.05
9.15
9.12

3.14
3.19
3.38

08
(7.1)

1
3
8

0.149
0.169
0.209

20.136
20.196
20.273

3.99
3.99
3.57

24.84
23.13
23.21

9.22
9.12
9.09

32
32
32

9.26
9.16
9.18

4.00
3.27
3.70

05
(3.7)

1
3
8

0.081
0.056
0.190

20.239
0.015

20.504

3.35
4.82
3.15

23.89
24.25
22.83

9.33
9.36
9.32

32
32
32

9.35
9.37
9.40

1.94
2.06
2.21

FIG. 1. Plot of the absolute limits (solid) on the beta distribution
as a function of the skewness l3. Also shown are the 0.1 percentile
(short dash) and the 0.0125 percentile (long dash), together with the
maximum and minimum surface elevations (3) obtained from the
data (see Table 2). The units on the vertical axis are in terms of the
standard deviation m2.Ï

4. Comparison with data
As there is some question as to whether surface fol-

lowing wave measuring buoys correctly measure non-
linear wave effects (see, e.g., James 1986) we shall not
use such data in this comparison. Instead data recorded
on a local reservoir, with an array of capacitance wire
wave gauges, will be used. These data were analyzed
for other purposes in an earlier paper (Ewing et al. 1987)
and are fully described there, so that description will
not be repeated here. It is sufficient to note that there
are five datasets (numbered as in Ewing et al. 1987),
and for each one data from three of the capacitance wires
in the array are analyzed to check the results for con-
sistency. The degree of nonlinearity, as measured by the
value of skewness l3, varies with wind speed (see Table
2 and Ewing et al. 1987). For these datasets the max-
imum value of the skewness l3 is less than the critical
value lc, for which the form of the distribution changes
(see previous section), so this will cause no problems
here.

Table 2 gives the results obtained from the analysis
of the 15 records, which are also plotted in Fig. 1. Each
record consists of approximately 8000 values of surface
elevation, recorded at a digitization rate of 8 Hz. His-
tograms of the surface elevation were obtained from the
data, and the beta distribution for each case was obtained
using the measured value of the skewness l3. Figures
2 and 3 give example plots of the results. The chi-
squared test was applied to each set of data and no
significant difference was found between the data and
the beta distribution. The results of this test are also
given in Table 2, together with those obtained by ap-
plying the chi-squared test to Longuet-Higgins (1963)
Gram–Charlier series results for the elevation

1 l32 3p(x) 5 exp{2x /2} 1 1 (x 2 3x) , (19)[ ]6Ï2p
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FIG. 2. Histogram of surface elevations (in standard deviation units m2), together with the theoreticalÏ
pdfs, beta: solid, Gram–Charlier: long dash, Gaussian: short dash, for record 20, gauge 3, with l3 5 0.453
(see Table 1).

FIG. 3. Histogram of surface elevations (in standard deviation units m2), together with the theoreticalÏ
pdfs, beta: solid, Gram–Charlier: long dash, Gaussian: short dash, for record 08, gauge 3, with l3 5 0.169
(see Table 1). Note that in this case the beta and Gram–Charlier results are indistinguishable.
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where x is given by Eq. (18). In this case too, no sig-
nificant difference was found. For both cases the test
was set up to use 32 degrees of freedom, the number
of histogram bins, except when the finite limits of the
beta distribution required the reduction of that number
for computational purposes. For those tests with 32 de-
grees of freedom (11 out of the 15 cases) the chi-squared
values are consistently lower for the beta distribution,
as compared to those for the Gram–Charlier series. This
suggests that the beta distribution is possibly a better
fit to the data.

Returning to Fig. 1 we note that these results suggest
that the beta distribution may represent the distribution
of surface elevation reasonably well. The maximum and
minimum values of surface elevation obtained from the
data generally lie close to the 0.1 (1/1000) percentile
and the 0.0125 (1/8000) percentile, which might have
been expected on the basis of analyzing ;8000 values
of surface elevation and assuming that they are not nec-
essarily independent. Two of the (minimum) values lie
just outside the bounds of the beta distribution, but this
might be explained on the basis of measurement errors.
Alternatively, because for these points the value of the
skewness is large, the weakly nonlinear assumption l3

± 0, l4 5 0 used to derive the beta distribution may
not be valid. Values of the kurtosis were calculated from
the data (see Table 2), but the estimates are unreliable
as the lengths of the data records are relatively short,
so it is difficult to assess the validity of assuming l4 5
0. The difficulty of obtaining accurate estimates of high-
er-order moments from data can be seen from the work
of Huang and Long (1980). They used considerably
longer records (;1.3 million surface elevation values),
obtained in laboratory conditions, to estimate higher-
order moments. However, despite these reservations,
this initial comparison of the new distribution with data
gives reasonable agreement.

Given the reservations expressed by Tayfun (1986)
about Huang et al.’s (1983) results for the narrowband
unidirectional case, no attempt has been made to fit their
distribution to the data.

5. Discussion and conclusions

In this paper it has been shown how it is possible to
derive a new statistical distribution for the surface el-
evation of water waves when nonlinear effects are im-
portant. The fundamental assumption underlying the re-
sults derived is that the distribution has nonzero skew-
ness (l3 ± 0) and zero kurtosis (l4 5 0). The distri-
bution obtained, the beta distribution, has a pdf that is
everywhere positive, unlike the Gram–Charlier series
obtained by Longuet-Higgins (1963). In addition, unlike
the results of Huang et al. (1983) and Tayfun (1986),
the one given here is not restricted to the case of nar-
rowband unidirectional waves. Tests against wave data
show that the new distribution provides a reasonable
representation of the data.

Theoretically we have shown that the beta distribution
is only useful for the range of skewness values 0 , l3

, lc. The data that have been examined in this paper
lie well below the upper bound lc. However, some of
the data of Huang and Long (1980), measured in the
laboratory, have values of skewness that exceed lc.
Does this invalidate the use of this new distribution?
Since the assumption on which the distribution is de-
rived is that of weak nonlinearity (following Longuet-
Higgins 1963) it would be surprising if it could represent
distributions with extreme values of the skewness l3.
Furthermore, it is well known that laboratory results are
not necessarily representative of those found in the open
ocean. Therefore, a qualified ‘‘no’’ may be given in
answer to the question. The qualification being that the
limitation of the distribution to the range 0 , l3 , lc

must be borne in mind when it is used in practice.
The interesting difference between the new distribution

and previously proposed ones, including the Gaussian one
for the linear case, is that for nonzero skewness (l3 ± 0)
there are bounds on the maximum and minimum possible
values of the normalized surface elevation. This result
might best be regarded as a curiosity that remains to be
explained, as its interpretation in terms of the underlying
physics of the waves is problematical. The implications
of this result for applications, such as the prediction of
extreme wave heights, also remains to be explored (but
that is left for another paper).

As pointed out by Johnson and Kotz (1970a), it is
possible to derive systems of distributions that depend
on more than four parameters [the Pearson System has
four, see Eq. (1)]. However, their complexity increases
with increasing numbers of parameters, as does the dif-
ficulty of estimating the values of the parameters by
fitting to data (essentially it is necessary to estimate the
values of higher-order moments of the distribution from
data, which can be problematical—see the previous sec-
tion). This means that the result obtained here from the
Pearson System can be regarded as only a partial ‘‘an-
swer’’ to the problem of obtaining a statistical distri-
bution that describes the surface elevation of nonlinear
water waves. Furthermore, the generalization of the ap-
proach to obtain, for example, the joint distribution of
surface elevation and slopes is not obvious. [Longuet-
Higgins (1963) and Srokosz (1986a) carry out this gen-
eralization using the Gram–Charlier approach for one-
and two-dimensional elevation and slope distributions,
respectively.]

The final point to note in discussing the result obtained
here is that it does not account for strongly nonlinear
effects, such as wave breaking. Alternative theoretical
models have been proposed to describe the statistics of
breaking waves (see, e.g., Srokosz 1986b), but these have
been developed in an ad hoc heuristic manner (see the
discussion in Srokosz 1990). In this paper an attempt has
been made to carry out a systematic derivation of the
statistical distribution of the surface elevation in the weak-
ly nonlinear case (l3 ± 0, l4 5 0). It remains a challenging
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problem to try to develop an appropriate statistical model
that will be applicable more broadly.
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