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Abstract

In this article, we provide an overview of cryptography and cryptographic key man-
agement as they are specified in [Psec, a popular suite of standards for providing commu-
nications security and network access control for Internet communications. We focus on
the latest generation of the IPsec standards, recently published as Request for Comments
4301-4309 by the Internet Engineering Task Force, and how they have evolved from earlier
versions of the standards.

Keywords: IP; IPsec; network security; cryptography; key management.

1 Introduction

IPsec provides security at the IP network layer of the TCP/IP protocol stack. This means
that all IP packets can be protected, irrespective of the upper layer protocol being carried in
the packet payloads, and that no re-engineering of applications is required in order to take
advantage of the security provided by IPsec. The security provided by IPsec can also be
made transparent to end users. For these reasons, IPsec forms the basis of many Virtual
Private Networking (VPN) solutions, where it is used to provide security for communications
over an untrusted network such as the Internet. IPsec has also been used by many vendors
to build Remote Access Solutions (RAS), allowing organizations to control the access of
roaming users to internal networks and hosts. IPsec has seen widespread deployment in
recent years. For example, implementations of IPsec exist in Microsoft Windows 2000 and
XP, HP’s proprietary operating system HPUX, IBM’s AIX operating system, and in the
Linux kernel. Several other open source projects are also developing [Psec implementations
and IPsec is now widely supported in commercial networking hardware. IPsec is mandatory
in IPv6 (though we will focus on IPsec in IPv4 in this article).

IPsec is formally specified in a number of “standards” each of which is known as a Request
For Comments (RFC) and is published by the Internet Engineering Task Force (IETF). They
are all freely available from the IETF website at wuw.ietf.org. The majority of these
IPsec documents are a result of a collaborative process coordinated by the IETF’s IPsec
working group. The first two generations of these documents (principally RFCs 1825-1829,
published in 1995, and 2401-2412, published in 1998) are really only intended to provide a
guide for implementors and are notoriously complex, difficult to interpret and lacking in overall
structure. Ferguson and Schneier [39] provide a detailed critique of these and other perceived
flaws in the IPsec standards. This lack of clarity has arguably hampered the adoption of



IPsec, in particular because of its impact on the interoperability of different vendors’ IPsec
implementations. The interested reader is invited to consult [38, 42] for introductions to
IPsec that are more accessible than the RFCs themselves. The third and latest incarnation
of the core IPsec standards were published as RFCs 4301-4309 in December 2005, and are
somewhat more accessible. RFC 4301 [21], the architectural document for IPsec, gives a good
overview of the design goals and the overall architecture of IPsec. However, the new RFCs
are still a long and complex set of documents, totalling over 300 pages.

The set of security services offered by IPsec includes access control, connectionless in-
tegrity, data origin authentication, detection and rejection of replays (a form of partial se-
quence integrity), confidentiality (via encryption), and limited traffic flow confidentiality.
These are all delivered using symmetric key techniques. The IPsec protocols also support au-
tomated key management, with key exchange protocols using both symmetric and asymmetric
cryptographic techniques. Whilst commonly viewed as providing integrity and confidentiality
services for data in transit, Section 3.1 of RFC 4301 makes it clear that the primary purpose
of IPsec is to provide a form of access control for network traffic, by defining a boundary
at which IP packets can be compared to IPsec policies, and either cross the boundary un-
changed, have IPsec security mechanisms applied, or be discarded altogether. The effect of
this IPsec processing, determined by policy, is to create a flexible method of implementing
traffic separation and allow a limited form of firewalling.

In this paper, we discuss cryptography and cryptographic key management in the latest
versions of the IPsec standards and attempt to explain the ways in which these aspects have
developed from the earlier generations of standards. In particular, we trace the evolution
of integrity protection and encryption mechanisms in IPsec, seeing how new algorithms have
been adopted and how authenticated encryption is now an integral part of [Psec. We examine
how IPsec handles key management via security policy, security associations and the IKE
(and now IKEv2) key exchange protocol. We also comment on some of the ways in which
cryptography in IPsec might develop in future.

Readers should bear in mind that the scope of this article is actually rather narrow:
cryptography is an important component of IPsec, but it is only one of many aspects of a
complex system of interacting components. Nor is our coverage of cryptography in IPsec
comprehensive: only the RFCs tell the whole story.

2 Basic IPsec Concepts and Terminology

The IPsec protocols can be deployed in two basic modes: tunnel and transport. In tunnel
mode cryptographic protection is provided for entire IP packets. In essence, a whole packet
plus security fields is treated as the new payload of an outer IP packet, with its own header,
called the outer header. The original, or inner, IP packet is said to be encapsulated within the
outer IP packet. In tunnel mode, IPsec processing is typically performed at security gateways
on behalf of endpoint hosts. The gateways could be perimeter firewalls or routers. The use
of gateways means that hosts need not be IPsec-aware, but that security is provided from
gateway-to-gateway rather than in an end-to-end fashion. By contrast, in transport mode,
the header of the original packet itself is preserved, some security fields are inserted, and
the payload together with some header fields undergo cryptographic processing. Transport
mode is typically used when end-to-end security services are needed, and provides protection
mostly for the packet payload. In either mode, one can think of the IPsec implementation as



intercepting normal IP packets and performing processing on them before passing them on
(to the network interface layer in the case of outbound processing, or to the upper layers in
the case of inbound processing).

There are two main IPsec protocols which specify the actual cryptographic processing
applied to packets. These are called Authentication Header (AH) and Encapsulating Security
Payload (ESP). AH provides integrity protection, data origin authentication and anti-replay
services for packets through the application of MAC algorithms and the inclusion of sequence
numbers in packets. AH is discussed in more detail in Section 3. ESP provides similar services
to AH (though the coverage of integrity protection is more limited) and in addition provides
confidentiality and traffic flow confidentiality services through symmetric key encryption and
variable length padding of packets. ESP is discussed in more detail in Section 4.

IPsec policy acts in concert with these modes and protocols to determine the actual
protocols (ESP or AH), modes of processing (tunnel or transport), algorithms, keys, and other
cryptographic parameters which are used to cryptographically transform packets. Multiple
nested layers of [Psec processing are allowed, and through this, complex transform sets can
be built up. The topic of policy for IPsec is a large one and mostly beyond the scope of
this article. However, we will need some of the basic concepts later when discussing key
management aspects of IPsec. Essentially, each IPsec implementation contains a Security
Policy Database (SPD), each entry of which defines processing rules for certain types of
traffic. Each entry in the SPD points to one or more Security Associations (SAs) (or the need
to establish new SAs). In turn, each SA gives the detailed parameters needed to determine
the actual processing to be applied to an IP packet. Thus, IP packets are intercepted and
compared to the SPD, each match with an SPD entry identifies a policy and a collection of
SAs that implement the policy, and these SAs are “applied” to the packets. For more details
of this process, the reader should consult RFC 4301 [21].

Naturally, appropriate and consistent entries in SPDs need to be in place at communicating
endpoints before the security available in IPsec can be afforded to packets. The SAs that
determine actual processing also need to be put in place at the endpoints. The SAs contain
(amongst other information) cryptographic keys, intialization vectors and anti-replay counters
for AH and ESP, and so we have stumbled across the IPsec key management problem. This
problem can be solved manually, and this approach works well for small-scale deployments
or testing purposes. However, for larger scale and more robust use of IPsec, an automated
method is needed. The Internet Key Exchange (IKE) Protocol provides the preferred method
for SA negotiation and associated cryptographic parameter establishment. The latest version
of IKE, named IKEv2, provides a flexible set of methods for authentication and establishment
of keys and other parameters, supporting both asymmetric and symmetric cryptographic
methods. IKEv2 supersedes the original version of IKE specified in [9, 10, 11]. We examine
IKEv2 and its evolution from the original IKE in Section 5.

2.1 IPsec document roadmap

As we have noted above, the IPsec documents are many, long and complex. We provide here
a summary of the contents of RFCs 4301-4309 as a handy reference point. Our summary is
extended from the one given in [21].

e Security architecture — RFC 4301 [21], explaining the architecture and components of
IPsec and their interactions, as well as providing the overall philosophy of IPsec.



e Security protocols — RFCs 4302 [22] and 4303 [23], describing the AH and ESP protocols.
e Automated key management — RFC 4306 [26] defining IKEv2.

e Cryptographic algorithms for integrity and encryption — RFC 4305 [25], defining the
mandatory, default algorithms for use with AH and ESP, plus a separate RFC for each
cryptographic algorithm, e.g. RFC 4309 [29].

e Cryptographic algorithms and parameters for key exchange — RFC 4307 [27], defining
the mandatory algorithms for use with IKEv2, and RFC 4304 [24], describing how
extended sequence numbers can be negotiated in IKE.

e Cryptographic suites — RFC 4308 [28] providing recommendations for collections of
algorithms (or suites) that can be adopted by system administrators.

The above list illustrates an important cryptographic design principle in IPsec: the sepa-
ration of protocols (such as ESP, AH and IKEv2) from the algorithms used in those protocols.
The specification of mandatory algorithms is needed to ensure interoperability and ease de-
ployment, but the intention is that RFCs 4305 and 4307 will be updated from time-to-time
to reflect the state-of-the-art in cryptography. The separation means that any updating can
be done without necessitating any changes to the “core” IPsec protocols. The first genera-
tion of IPsec RFCs did not feature this separation: the process of separating protocols and
algorithms was begun in the second generation of IPsec RFCs and completed in the third.

3 Authentication Header

The new version of AH is specified in RFC 4302 [22] and is little changed from the previous
version in RFC 2402 [4]. Essentially, it provides integrity protection and data origin authen-
tication for as much of the IP packet as is possible using a MAC algorithm. It also provides
an optional anti-replay service. Certain fields of the IP packet header cannot be input to the
MAC calculation because they may change during the packet’s transit across a network and
so are unpredictable to the receiver. The AH protocol adds its cryptographic protection by
inserting a bit sequence called the Authentication Header into IP packets; this header has
the particular format shown in Figure 1. We discuss the most important of these fields in the
remainder of this section and give brief notes on the other fields. Detailed discussion of all
the fields can be found in [22, Section 2].

3.1 AH Integrity Check Value Field and MAC algorithms

The Authentication Header contains an Integrity Check Value (ICV) or MAC value. Since
the scope of the MAC calculation includes both the IP packet header and the Authentication
Header containing the MAC value, the mutable fields and the MAC value are both set to zero
for the purposes of MAC calculation and confirmation.

The length of the MAC depends on the particular MAC algorithm in use. Restrictions
are that the MAC value must be an integral number of 32 bits in length and that the overall
authentication header must be a multiple of 32 bits in length for IPv4, or a multiple of 64 bits
in length for IPv6. A MAC value of 96 bits ensures that these criteria are all satisfied; oth-
erwise some form of additional padding may be needed, which would potentially be wasteful
of precious non-payload bytes.
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Figure 1: AH format according to RFC 4302 [22].

RFC 4302 does not specify any MAC algorithms itself. As with RFC 2402, this task is
deferred to subsequent RFCs. RFC 4305 [25] specifies a number of MAC algorithms which
are mandatory to implement for AH, or which may become mandatory in future. These are
listed in Table 1. Notice that all three entries in this table refer to MAC algorithms with 96
bit outputs. Two of the MAC algorithms rely on the HMAC construction of RFC 2104 [2]
(see also [32]), while the third uses a mode of operation of AES [48].

The second column of this table refers to the extent to which AH implementations are
required to implement the various algorithms. The exact meanings of these entries are defined
n [25]; the modifier “+” on “SHOULD” means that the requirement is likely to become a
“MUST” at some future point. One change to note from RFC 2402 is that HMAC-MD5-96
has moved from a “MUST” implement to a “MAY” implement, reflecting weaknesses that
have recently become apparent in the MD5 hash algorithm [53], even though these attacks do
not currently appear to weaken the security of HMAC based on MD5. It is notable though
that support for HMAC-SHA1-96 is still a “MUST”, even after recent cryptanalytic results
concerning SHA-1 [54] and when NIST has indicated that SHA-1 be gradually phased out of
use in US Federal applications [47]. We expect to see the newer generation of SHA algorithms
(SHA-256, SHA-384, and SHA-512) appearing in IPsec-related RFCs in future. Additional
algorithms are certainly allowed. For example, a fourth MAC algorithm HMAC-RIPEMD-
160-96 is specified for use with AH in RFC 2857 [14] but not mandated for support in [25].

All of the above mandated algorithms have a 96 bit MAC value, which may seem a little
short given the expected lifetime of the IPsec standards. However, as have noted above, the
choice of MAC output lengths is constrained in various ways, and a 96 bit output probably
represents a reasonable compromise between competing demands of security and minimization
of packet overheads.

3.2 AH Sequence Number Field

The Sequence Number Field is used to provide an optional anti-replay service. The service
operates roughly as follows (both for AH and for ESP when an integrity service is offered by
ESP). When an AH SA is first established and the anti-replay service is selected, a counter



Algorithm Requirement | Key size (bits) | Output size (bits) Reference
HMAC-SHA1-96 MUST 160 96 RFC 2404 [6]
AES-XCBC-MAC-96 | SHOULD+ 128 96 RFC 3566 [16]
HMAC-MD5-96 MAY 128 96 RFC 2403 [5]

Table 1: Mandatory MAC algorithms for AH specified in RFC 4305

stored in the SA is set to zero. It is then incremented for each packet that is processed by
that SA, and the least significant 32 bits are inserted in the Sequence Number Field. The
recipient maintains a sliding window of recently received sequence number values, and accepts
only those packets whose sequence number lies within the window and which are not marked
as having already been received. Only if the sequence number test passes does the MAC
verification take place. The reason to use a sliding window instead of just a single counter at
the recipient is that packets frequently arrive out of order in IP networks, and so rejecting all
“old” packets would have a severe performance impact, with many packets being dropped.
The fact that the Sequence Number Field is protected by a MAC means that it is infeasible
for an attacker to construct a packet that will be accepted as both recent (within the window)
and valid (having a correct MAC). Note that even though anti-replay is an optional service,
the Sequence Number Field must be included in AH. The receiver may simply choose to
ignore it.

There are significant differences in the handling of sequence numbers in RFC 2402 and
RFC 4302. The counters used in RFC 2402 are only 32 bits long, so the entire counter is
transmitted in the Authentication Header. An overflow of the counter is not allowed, and
an attempt to transmit a packet that would result in an overflow is an auditable event if
anti-replay has been selected. Instead, typical behaviour is for the sender to anticipate the
overflow and attempt to establish a new SA ahead of this event. RFC 4302 allows an optional
Extended Sequence Number (ESN) to be used. This is helpful in high-speed networks, where
a 32-bit counter could easily overflow during normal operations. ESNs are 64 bits long, and
the entire 64 bits is used in the MAC calculation by AH even though only the least significant
32 bits of the ESN are carried in the Sequence Number Field. For the purposes of MAC
calculation, the most significant 32 bits are placed after the payload, meaning that the ESN
is actually split into two parts rather than appearing as a sequence of 64 consecutive bits in
the input to the MAC. This is somewhat unusual, but does allow the AH format to remain the
same as that specified in RFC 2402 when 32 bit sequence numbers are used. The transmission
of only half the ESN in AH leads to the need for a synchronization mechanism in the event
that more than 232 consecutive packets are lost. This is addressed in [22, Appendix B3]. RFC
4302 indicates that the default setting is to use ESNs rather than 32 bit sequence numbers;
RFC 4304 [24] explains how IKE can be modified to allow negotation of ESNs.

3.3 Other fields in AH

The Next Header field in AH is a one byte (8-bit) field indicating the type of the payload
following the Authentication Header. For example, a value of 4 indicates that what follows
is an IPv4 packet, while a value of 6 indicates TCP.

The Payload Length field indicates the length of the Authentication Header in 32-bit
words, minus 2. It is needed because the header can contain a MAC value of variable length.



The Security Parameters Index (SPI) field is a 32 bit value identifying the SA that was
used during outbound AH processing. The SPI is shared between sender and recipient at
the time of SA establishment and allows the recipient to quickly obtain the cryptographic
parameters necessary to perform inbound processing.

3.4 The future of AH

As we shall see below, the cryptographic services provided by AH can also largely be provided
by ESP (with one notable difference being the reduced coverage of integrity protection in
ESP). Since ESP can also provide confidentiality services that AH cannot, one might expect
to see AH playing a diminishing role in IPsec in future. Indeed this duplication led Ferguson
and Schneier to suggest that AH be eliminated altogether as early as 1999 [39]. The NIST
guide to IPsec VPNs [42] notes that some IPsec implementations no longer support AH, and
according to RFC 4301 [21], “Support for AH has been downgraded to MAY because experience
has shown that there are very few contexts in which ESP cannot provide the requisite security
services.” Thus support for AH is no longer a required part of IPsec implementations.

4 Encapsulating Security Payload

The new version of ESP is specified in RFC 4303 [23]. There have been some quite significant
changes to the cryptographic elements of ESP since the previous version in RFC 2406 [8]
and the first version in RFC 1827 [1]. The major innovation in RFC 4303 is the inclusion of
support for what are called combined mode algorithms. These are cryptographic transforms
that offer both confidentiality and integrity services in one package, more commonly called
authenticated encryption algorithms in the cryptographic literature. As with RFC 2406,
RFC 4303 also allows the use of one or both (but not neither) of an encryption algorithm
and a MAC algorithm. By contrast, RFC 1827 only included support for encryption in ESP,
with integrity protection coming from AH. We will discuss integrity protection in ESP in
more detail in Section 4.4, and combined mode algorithm support in Section 4.5. Another
difference from earlier versions of ESP is that RFC 4303 includes mechanisms for arbitrary
length traffic padding as well as generation and processing of dummy packets. These features
allow for limited traffic flow confidentiality, and we discuss them in Section 4.3. Before all
that, however, we begin with discussion of encryption in ESP (Section 4.1) and of how ESP
handles sequence numbers (Section 4.2).

4.1 ESP encryption

It is clear from the evolution of ESP that its primary purpose is to provide a confidentiality
service. In transport mode, ESP encryption transforms an IP packet by encrypting specified
parts of the packet and then inserting an ESP header and an ESP trailer into the packet.
In tunnel mode, the operation is similar, except that the encrypted portion includes the
entire inner packet and a new outer header is created. The resulting output (excluding the
packet header) is illustrated in Figure 2. Note, however, that this diagram does not apply for
combined mode algorithms, which may not have explicit IV or ICV fields, for example.

The ESP header consists of the SPI and Sequence Number Fields. This is followed by
the IV (if any) and the encrypted data. The scope of encryption includes any padding, the
Pad Length field and the Next Header field. The ICV (MAC value), if present, comes last.
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Figure 2: ESP format according to RFC 4303 [23], modified to show scope of encryption.



Algorithm Requirement | Key size (bits) | Block size (bits) Reference
NULL MUST 0 N/A RFC 2410 [12]
TripleDES-CBC MUST - 192 64 RFC 2451 [13]
AES-CBC SHOULD+ 128 128 RFC 3602 [17]
AES-CTR SHOULD 128 N/A RFC 3686 [19]
DES-CBC SHOULD NOT 56 64 RFC 2405 [7]

Table 2: Mandatory encryption algorithms for ESP specified in RFC 4305

The Security Parameters Index (SPI) field in the ESP header is used in the same way as the
SPI field in AH. The same is true of the Next Header field. We will discuss ESP sequence
numbers in Section 4.2 and the ICV field in Section 4.4.

As with RFC 4302, RFC 4303 does not discuss any specific encryption algorithms. How-
ever, RFC 4305 [25] specifies a number of encryption algorithms which are now mandatory
to implement for ESP and these are listed in Table 2. Other algorithms are allowed. For
example, RFC 2451 [13] specifies a number of other algorithms that could be used with ESP,
while [30] is an RFC describing how the block cipher Camellia can be used with ESP.

Some comments on Table 2 are in order. Since ESP encryption is optional, support for
the “NULL” algorithm is required. This algorithm is specified in its own RFC, RFC 2410, a
document which has some amusement value. Concerning DES-CBC, RFC 4305 states: “DES,
with its small key size and publicly demonstrated and open-design special-purpose cracking
hardware, is of questionable security for general use.” Our view is that this statement itself
is questionable: 56 bits of security is adequate for many everyday applications, DES is still
a broadly trusted algorithm, and inclusion of only algorithms with longer key lengths could
potentially raise export control issues. Support for TripleDES-CBC is rated “MUST—",
meaning that it is likely to be down-graded in future. This is the only algorithm in the list
for which the RFCs state that a key larger than 128 bits must be supported, but the use of
TripleDES with 48 rounds of encryption usually imposes a performance penalty. Therefore
it would seem prudent to promote another high-strength algorithm (say AES-CBC with 256
bit keys) to “MUST”, whether or not the down-grading of TripleDES-CBC takes place. RFC
3686 states that if AES-CTR is used in ESP, then it must be accompanied by a non-NULL
integrity protection algorithm. This is because AES-CTR uses a mode of operation of AES
to create a stream cipher, and so is consequently vulnerable to simple plaintext manipulation
without some additional integrity protection.

As is apparent from Figure 2, two types of padding may be present in an ESP-protected
packet. We will discuss TFC padding in Section 4.3. The remaining padding is included
so that the total number of bytes in the processed sequence is a multiple of the number of
bytes in a block of the encryption algorithm (for example, 8 for DES and 16 for AES). It is
permissable for the padding to be of variable length and to extend over multiple blocks. This
might aid in preventing traffic analysis. The Pad Length field must be included and indicates
the total number of padding bytes (excluding the Pad Length byte itself). An ESP encryption
algorithm may specify its own padding rule; otherwise a default rule is specified in [23, Section
2.4]. According to RFC 4303, when this rule is used, the receiver should inspect the padding
fields, but the RFC does not specify what should happen in the event of an error. Possible
actions involve dropping the packet silently, logging an error, or even reporting an error to
the sender. However, it can be inferred from the text of [23, Section 2.4] that the offending



packet should at least be dropped. We know of one IPsec implementation (the Linux kernel
implementation) where the padding is inspected but no action taken in the event of an error.
Work of Vaudenay [52] and Canvel et al. [37] shows that improper handling of padding errors
can undermine security.

4.2 ESP Sequence Number Field

Sequence numbers, including Extended Sequence Numbers (ESNs), are treated in largely the
same way in RFC 4303 as they are in the AH RFC, RFC 4302. In particular, their use by the
receiver is optional, but their inclusion in ESP headers is mandatory. The only real difference
is that sequence numbers must be ignored by the recipient if the relevant ESP SA specifies
the NULL integrity protection algorithm (in other words, if the SA only offers encryption).
In this situation, ESP cannot offer an anti-replay service. If a combined mode algorithm is
in use, the most significant bits of an ESN may actually be transmitted; if separate integrity
and encryption algorithms are used, these bits are not transmitted, but are included in the
MAC calculation by placing them in the ESP trailer, so they are split into two parts (as in
AH).

4.3 Traffic flow confidentiality

ESP in RFC 4303 now has two mechanisms for providing traffic flow confidentiality, that is,
the provision of spurious traffic to frustrate an attacker’s attempts to gather information from
the mere existence of IPsec protected traffic, or from statistics concerning that traffic. These
mechanisms are variable length padding and dummy packets.

As we've seen above, the ESP padding is limited to 255 bytes, and this may not be
sufficient to meet traffic flow confidentiality requirements. Section 2.7 of RFC 4303 outlines
how special padding, called TFC padding, can be inserted after the payload data. This is in
addition to the normal ESP padding. However, TFC padding can only be used if the receiver
is able to unambiguously remove it using information about the proper payload length that
is embedded in the payload itself. This will be possible, for example, in tunnel mode, where
the Total Length field in the inner packet header gives the needed information.

Dummy packets can be indicated simply by using 59 for the protocol value in the Next
Header field and otherwise creating a normal ESP header and trailer. (Recall that the Next
Header field will be encrypted if encryption is selected, and so is hidden from the attacker.)
Traditionally, this field indicated “No next header”. According to RFC 4303, a receiver must
discard any such packet without generating an error message.

The earlier version of ESP in RFC 2406 supported neither of these mechanisms, but did
allow variable length padding up to a maximum of 255 bytes as part of the ESP encryption
process.

4.4 Integrity protection in ESP

As we have noted above, the original version of ESP in RFC 1827 included only support for
encryption and not integrity protection. Work of Bellovin [35] was influential in persuading
the IPsec standards community of the need for strong integrity protection as an adjunct
to encryption, in order to prevent active attacks from defeating the confidentiality services
offered by ESP. For efficiency reasons, it was decided to include support for an optional
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Algorithm Requirement | Key size (bits) | Output size (bits) Reference
HMAC-SHA1-96 MUST 160 96 RFC 2404 [6]
NULL MUST N/A 0
AES-XCBC-MAC-96 | SHOULD+ 128 96 RFC 3566 [16]
HMAC-MD5-96 MAY 128 96 RFC 2403 [5]

Table 3: Mandatory MAC Algorithms for ESP specified in RFC 4305

integrity service along with confidentiality services in the second version of ESP, RFC 2406.
This support has been preserved in RFC 4303.

As with AH, the integrity service in ESP is provided by a MAC algorithm. The inputs
to the MAC calculation are the fields in the ESP header, payload and trailer, with the ICV
bytes being set to zero for the purposes of MAC calculation. The calculation will include all
ESN bits as noted above, allowing an anti-replay service to be offered if integrity protection is
present. Details of how this service is implemented are largely as for AH, with the calculated
MAC being placed in the ICV field. However, notice that no fields of the IP packet header are
protected by the MAC in ESP, in contrast to AH. Thus the protection offered by the MAC
algorithm is somewhat less than in AH. However, a roughly equivalent level of protection
can be arranged for an IP header by using ESP in tunnel mode, in which case the integrity
protection will cover the entire inner packet, including all the header fields.

When ESP provides both encryption and integrity protection, the encryption is performed
first and then the MAC algorithm is applied. This allows rapid rejection of corrupted packets
by the recipient, as the MAC will be checked before decryption needs to be performed. If the
MAC fails, the receiver must reject the packet. Moreover, this is an auditable event [23].

In keeping with the separation principle, RFC 4305 [25] (rather than RFC 4303) specifies
which MAC algorithms must be supported by IPsec implementations. The list of algorithms
is replicated in Table 3. Notice that the algorithms are identical to those mandated for AH
except for the inclusion of the NULL algorithm here. The NULL algorithm is needed to allow
“encryption-only” operation of ESP. Note that while authentication and encryption can each
be NULL in ESP, they must not both be NULL: ESP can offer one or both of encryption and
integrity protection, but not neither. There is no RFC specifying the NULL MAC algorithm.

It might appear surprising that RFC 4303 still allows encryption-only operation of ESP,
especially after Bellovin’s work [35] demonstrating its security flaws. There is also significant
theoretical work supporting the general adoption of integrity protection along with encryption
[33, 34, 43, 44]. It appears that the need for backward compatibility with RFC 1827 meant
that support for encryption-only configurations of ESP was mandated in RFC 2406. As com-
pensation, the second generation of RFCs are explicit in spelling out the dangers of using
encryption-only configurations. RFC 4303 removes the mandatory aspect, stating that im-
plementations may support encryption-only, and repeats the warnings of RFC 2406. However,
RFC 4303 indicates that ESP allows encryption-only because it “may provide better perfor-
mance and still provide adequate security, e.g., when a higher-layer authentication/integrity
protection is offered independently.” In fact, in recent work [49], it has been shown that at
least one implementation of IPsec is fatally weak in tunnel mode, encryption-only configu-
rations: active attacks that are ciphertext-only and that can operate in essentially real-time
have been demonstrated in the laboratory under realistic networking conditions against the
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Linux kernel implementation of IPsec. It is argued in [49] that placing warnings of the dan-
gers of encryption-only ESP in RFCs is probably insufficient to prevent inexpert end-users
from selecting such configurations; indeed there exist many on-line configuration guides which
either do not warn of the dangers or which actively encourage users to select encryption-only.
It is also shown in [49] that provision of higher-layer integrity protection can not prevent the
attacks. Thus the advice concerning such provision in RFC 4303 may be misleading. It should
be noted, however, that the attacks in [49] are not attacks against the RFCs themselves. This
is because they rely for their success on the failure of the Linux implementation to properly
implement post-cryptographic processing checks specified in the architectural RFCs 2401 [3]
and 4301 [21]. See also [46] for unimplemented sketches of similar kinds of attacks against
transport mode ESP.

4.5 Combined mode algorithms

Combined mode algorithms offering both confidentiality and integrity services are new to
ESP in RFC 4303. Under many circumstances, combined mode algorithms should provide
significant efficiency gains compared to sequential execution of encryption and MACing. But
their inclusion in ESP is not completely straightforward, because it is desirable to integrity
protect more fields than need to be encrypted, and not all combined mode algorithms will
support this requirement. In current cryptographic terminology, algorithms that do are said
to solve the “authenticated encryption with associated-data” (AEAD) problem. Reference
[51] provides a pragmatic overview of recent work in this area.

In order to accommodate the range of possible combined mode algorithms (those solving
the AEAD problem and those not), no detailed ESP format is specified for combined mode.
Instead, issues such as details of IVs, padding requirements, possible replication of SPI and
Sequence Number fields in the processed payload, and whether or not an ICV field is needed,
are deferred to RFCs for individual combined mode algorithms. Patents are an important
aspect here, with many of the “popular” designs for combined mode algorithms being en-
cumbered. Perhaps this explains in part why RFC 4305 neither mandates nor suggests any
specific combined mode algorithms for use in ESP. However, one suitable algorithm that ap-
pear to be free of patents already exists as an RFC: AES CCM mode, as specified in RFC
4309 [29]. There is no version number in ESP, and no mechanism for a peer to discover which
version of ESP another peer is using. Thus another reason for not mandating support for
combined mode algorithms is that it assists in making ESP as specified in RFC 4303 backward
compatible with earlier versions of ESP.

5 Cryptographic Key Management in IPsec

So far in our discussion of [Psec, we have assumed that all necessary cryptographic parameters,
including keys and algorithms, are already in place before AH or ESP processing begins. In
this section, we give a brief overview of how IPsec handles management of cryptographic keys
and other parameters.

We have already noted that SAs are used as a repository for cryptographic parameters
(including keys), and that SPIs provide a link between SAs and IPsec-protected packets
themselves. At a higher level, the SPD defines policies for applying IPsec and links to SAs
for implementing those policies. Typically, the SPD is populated by hand (usually via a
vendor-supplied GUI) at each IPsec aware host. This is a reasonable approach, though the
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likelihood of misconfiguration resulting in security failures or accidental denial of service is
quite high because of the number and complexity of options available. It is also possible, but
much less convenient, to set up the individual SAs manually, using static keys. This approach
is reasonable for testing purposes or small-scale deployment of IPsec, but does not scale at all
well. Moreover, it makes no provision for rekeying, the need for which can be triggered by a
number of events including sequence number overflow, or an SA exceeding its lifetime (which
can be determined, for example, by using a timer, or by IPsec reaching a pre-set limit on the
amount of data the SA is allowed to process). A better approach is to use IKE or IKEv2,
which provide automated mechanisms for setting up and managing SAs in accordance with
policies in the SPD. We discuss IKE and IKEv2 next.

5.1 Internet Key Exchange

The IKEv2 protocol as defined in RFC4306 [26] is a very complex and flexible specification
which had a long gestation period in the IPsec working group. We will only provide an
overview of its features and a brief comparison with IKEv1 here. Further discussion of the
IKEv2 design and features can be found in [40].

At a high level, IKEv2 is a cryptographic protocol involving the exchange of pairs of
messages between two peers. In the first exchange, called the IKE_SA_INIT exchange, the
two peers exchange information concerning cryptographic algorithms and other security pa-
rameters they are willing to use along with nonces and Diffie-Hellman (DH) values. The
DH values are used to create keying material SKEYSEED from which a variety of keys are
derived using a pseudo-random function (PRF). Included amongst these are keys for encryp-
tion and integrity protection algorithms for a special SA called the IKE SA. This SA defines
parameters for a secure channel between the peers over which subsequent message exchanges
take place. It provides ESP-like cryptographic processing of IKEv2 payloads (though without
any support for combined mode algorithms). In the second exchange, now protected by the
IKE SA and called the IKE_AUTH exchange, the two parties authenticate one another and
set up a first SA to be placed in the SADB and used for protecting ordinary (i.e. non-IKE)
communications between the peers. Thus four messages are needed to establish the first SA
for general use.

Subsequent exchanges are known as CREATE_CHILD_SA and INFORMATIONAL ex-
changes. The first of these can be used to establish further SAs for protecting traffic, and may
involve an exchange of new, ephemeral Diffie-Hellman values to provide perfect forward secu-
rity (PFS). The second is used to exchange management information, IKEv2 error messages
and so on.

The IKE_SA_INIT exchange allows two peers to negotiate many features of the ensuing
exchanges, including parameters for the Diffie-Hellman exchange, algorithms to be used in the
IKE SA, acceptable authentication methods, and so on. There are three main authentication
methods supported by IKEv2: signature-based, MAC-based, and EAP-based. The first of
these implies the use of public key cryptography and a PKI to support this; the second requires
a pre-established symmetric key to be in place between the two peers (but note that, because
of the structure of IKEv2, this key can be used to authenticate the negotiation of many SAs).
A good discussion of the pros and cons of these two competing approaches can be found in
[42, Section 4.2.2]. The third approach makes use of the Extensible Authentication Protocol
(EAP) as defined in [20]. This allows a wide range of legacy authentication methods to be
integrated with IKEv2.
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All of the IKEv2 payloads comprising the above exchanges are specified at a bit/byte
level in [26, Section 3|. Keeping in mind the degree of flexibility offered by IKEv2, it is then
perhaps not so surprising that the IKEv2 specification is as long as it is.

RFC 4307 [27] specifies algorithms and parameters for use in IKEv2 which are mandatory
to implement. Thus it is a counterpart to RFC 4305 which does the same job for AH and ESP.
RFC 4307 identifies two Diffie-Hellman groups, one with a 1024-bit modulus from [11] and
the other with a 2048-bit modulus from [15]. It also lists the same encryption and integrity
protection algorithms (with the same levels of support) as are recommended for use with
ESP in RFC 4305, see Tables 2 and 3. Finally, it lists three PRFs, PRF_HMAC_MD5 and
PRF_HMAC_SHAL1 from [2], and PRF_AES128_CBC from [18, 31]. This last PRF is identical
to the function AES-XCBC-MAC-96 from [16] except that it does not truncate the output to
96 bits. PRFs are used for various purposes in IKEv2, including key derivation. RFC 4308
[28] defines two suites of cryptographic algorithms that are optional to implement. Each suite
defines a full set of algorithms (including DH groups) needed for ESP encryption/integrity
protection and for IKEv1l/IKEv2.

Some of the major similarities and differences between the IKEv1 and IKEv2 protocols
are as follows:

e Both protocols operate in two phases: Phase 1 (in main mode or aggressive mode)
and Phase 2 (quick mode) in IKEvl are comparable to IKEv2’s IKE_.SA_INIT and
IKE_AUTH exchanges, respectively.

e Both protocols have options for identity-protection (via encryption of identity-related
data), anti-denial-of-service (via cookies), and perfect forward security.

e Phase 1 of IKEv1 allows four different authentication methods in its two different modes,
with a quite different message syntaxes being possible in the various cases. It is claimed
that the equivalent function in IKEv2 is much simpler, with a single four-message pro-
tocol made up of two exchanges. However, the EAP authentication method does involve
modifying the message structure of IKEv2 to some extent.

e IKEv1’s quick mode is roughly equivalent to IKEv2’s CREATE_CHILD_SA, though
IKEv2 uses one message less than IKEv1.

o IKEv2 is more efficient in setting up the first non-IKE SA: this SA can be established
as part of the IKE_AUTH exchange after four messages, while IKEv1 requires at least
six messages (using aggressive mode’s three messages followed by three more for quick
mode).

e [KEv1 and IKEv2 both run over the unreliable UDP protocol, but IKEv2 adds retrans-
mission and acknowledgement functions, so it is more reliable than IKEv1.

o [KEv2 uses an ESP-like transform to protect IKE payloads after the IKE_SA_INIT ex-
change, whereas IKEv1 uses somewhat different methods defined for the general purpose
protocol ISAKMP in [10].

A more detailed list of differences between IKEv1 and IKEv2 can be found in [26, Appendix
Al.

It was intended at the outset of the IKEv2 design process that it should produce a leaner,
cleaner, more complete and more easily understood design. By these measures, IKEv2 has
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been only partially successful: it is still a fairly complex protocol, and bringing in support for
EAP along with signature-based and MAC-based methods has led to some loss of clarity in
the protocol description. Efforts are already underway to address certain deficiencies of the
IKEv2 specification in IKEv2.1 [41].

6 Concluding Remarks

It seems fair to say that the different generations of IPsec RFCs represent a cryptographic
evolution rather than a revolution. Some new features have been added (notably combined
mode algorithms in ESP), and new algorithms and key lengths have been brought into play.
The overall clarity and quality of the standards has definitely improved, perhaps as a con-
sequence of having a better-informed pool of experts in the working group coupled with a
greater understanding of the need to address interoperability through clearer specification.

The development of the RFCs does seem to have been constrained by the need to main-
tain backward compatibility. This is evident, for example, in the way that ESP still allows
encryption-only configurations but does not mandate support for combined mode algorithms.
This seems like a missed opportunity. The attempt to improve IKE has succeeded in many
respects: IKEv2 is simpler and more self-contained, and the specification is more explicit. But
including support for EAP has also introduced complexity, an almost inevitable consequence
of the desire for flexibility.

IPsec has been analyzed from a cryptographic perspective over the years — see for example
[50, 39]. There is also some evidence that the provable security philosophy has now had an
influence on the IPsec RFCs. As examples, HMAC, defined and proven secure in [32] is heavily
used in IPsec algorithms, while RFC 4303 cites [44] for evidence of the security issues of
applying a MAC to data before encryption, and SIGMA, as defined in [36, 45] forms the basis
for the design of IKEv2’s signature-based authentication mode. Yet few of the cryptographic
design features in the IPsec RFCs appear to have been chosen because they have a firm
theoretical basis. Thus IPsec presents many interesting challenges for theoreticians seeking
motivation from real-world security problems. The complexity of IKEv2 means that only
simplified versions have been amenable to analysis to date [36, 45]. The full IKEv2 protocol
surely deserves a formal analysis. (Protocols studied in theory tend to be describable in six
lines or less — compare this to the nearly 100 pages needed to fully specify IKEv2 in RFC
4306!) The development of further, preferably patent-free, AEAD algorithms suitable for use
in ESP would be useful. Studying the impact of recent cryptanalysis of hash functions on the
security of HMAC could also be an interesting exercise: how severe can the attacks on the
underlying hash function be while still maintaining a reasonable level of security for HMAC?

The IPsec working group has now been wound up after completing its efforts on the new
generation of IPsec standards. But IETF standardization activity is likely to continue for
sometime in three related areas concerned with deployment and flexibility of IPsec. The
PKI4IPsec working group is developing PKI and certificate standards for IPsec, with the aim
of eventually increasing the use of public key authentication methods in IPsec deployments.
The IKE Mobility working group is working on extensions to IKEv2 protocol to enable its
use in multihoming, mobile and roaming contexts. The Better-Than-Nothing Security (btns)
working group is tasked with specifying extensions to the IPsec architecture to allow IPsec
to support the use of unauthenticated SAs, with the goal of enabling simpler and more rapid
deployment of IPsec in contexts where use of such unauthenticated SAs is appropriate.
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In closing, we reiterate that cryptography is only one part of the [Psec puzzle. However,
getting the cryptography right is vital in ensuring that IPsec delivers the security expected
of it. We hope that this article will open up the new family of IPsec RFCs to a wider range
of cryptographic researchers, encouraging them to work in a fascinating area located at the
boundary between theory and practice. We also hope that this article has provided a useful
and accessible summary of recent developments in IPsec for non-cryptographers.
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