
 1 

Reverse SSL: Improved Server  Performance and DoS Resistance for  SSL 
Handshakes 

 
Kemal BICAKCI 
bicakci@metu.edu.tr 

Informatics Institute, Middle East Technical University, Ankara, TURKEY 
 

Bruno Cr ispo 
Computer Science Department, Vrije Universiteit Amsterdam, The Netherlands 

 
Andrew S. Tanenbaum 

Computer Science Department, Vrije Universiteit Amsterdam, The Netherlands 
 

Abstract. Common occurrence of server overload and the threat of denial-of-service 
(DoS) attacks makes highly desirable to improve the performance and DoS 
resistance of SSL handshakes. In this paper, we tackle these two related problems by 
proposing reverse SSL, an extension in which the server is relieved from the heavy 
public key decryption operation and authenticated by means of a digital signature 
instead. On the server side, reverse SSL employs online/offline signatures to 
minimize the online computation required to generate the signature and on the client 
side, RSA key generation computation can be used as a client puzzle when clients do 
not have a public key certificate. The preliminary performance results show that 
reverse SSL is a promising technique for improving the performance and DoS 
resistance of SSL servers. 

 
1 Introduction 
 
Although CPU processing power is getting cheaper everyday, today the issue of 
computational efficiency is still problematic for server machines in contrast to standard 
personal computers. This is due to common occurrence of server overload in client-server 
applications.  
 
This performance problem becomes more severe in case when the server is under a denial of 
service (DoS) attack. Once the clients can request the server to perform computationally 
expensive operation without doing any work themselves, an adversary can arrange a DoS 
attack by generating too many requests and exhaust the computational resources of the server.  
 
In our research, we explore these two related problems by focusing on SSL protocol. SSL 
protocol starts with the SSL handshake which uses public key cryptography so that the server 
and the client agree on a secret key to be used for securing subsequent communication. SSL 
handshake protocol comes in two types. 
 
For the first type that supports client authentication, in this paper we propose an extension to 
SSL called reverse SSL so that the methods used to authenticate the client and the server is 
interchanged. In other words, the server is authenticated by means of generating a digital 
signature whereas the client is authenticated by public key encryption. This change allows us 
to utilize the online/offline signature primitive in a way that allows the server to perform 
most of the public key computation offline before the client request. We argue that since the 
server load is varying with respect to time1, the underutilized period of time can be used to do 

                                                 
1 Previous research shows that the workload of a large e-commerce site follows a typical time-of-day pattern. 
That is the site is busiest during the day and least busy during the early morning [9]. 



 2 

the pre-computation necessary. This leads to a significant improvement in the overall 
throughput of web servers due to lower online computation requirements of reverse SSL. 
 
The more widely used type of SSL handshake is the one which authenticates only the server 
hence the client does not need to hold a public key certificate. Reverse SSL is still applicable 
for this case by asking the client to generate a public key – private key pair on the fly instead 
of using a long-term certificate issued by a third party. Since the key generation for public key 
algorithms is expensive, in our protocol with a careful treatment this is used as a client 
puzzle, a countermeasure against DoS attacks. The idea behind client puzzles is simple: ask 
the client to solve a computational problem before providing resources to that client. By this 
way, an attacker is prevented to launch the attack without investing considerable resources 
himself. 
 
The rest of the paper is organized as follows. Section 2 gives an overview of original SSL 
protocol. Section 3 summarizes the earlier work on online/offline signatures. Section 4 
introduces reverse SSL with client authentication. Section 5 summarizes the earlier work on 
DoS protection and client puzzles. Section 6 introduces reverse SSL with client puzzles as a 
solution for settings which do not implement client authentication but have a serious concern 
on DoS attacks. Section 7 provides the results of our experiments conducted to compare the 
performance of original SSL and reverse SSL in different situations. Section 8 reviews the 
related work on performance improvement of SSL. Section 9 concludes with some directions 
for future work. 
 
2 SSL Protocol 
 
Today, maybe the most widely used security protocol is SSL that becomes the standard way 
of implementing security for web transactions. Although it was initially designed for web, any 
network application can use SSL to build an encrypted tunnel for confidential exchange of 
messages. For doing this, in the SSL handshake protocol, both parties agree on a secret key to 
be used for subsequent communication. Since the security provided by key exchange without 
authentication is limited, SSL handshake protocol supports both server and client 
authentication.  
 
The way SSL implements authentication is by using public-key cryptography which was cited 
as the most serious performance bottleneck in the SSL operation [1]. Thanks to Moore’s law, 
most client machines today can implement public key cryptography with a reasonable 
performance (if we exclude very low end devices such as RFIDs, low cost sensors). 
Contrarily, in spite of doubling CPU speeds for every 18 months, SSL performance of server 
machines remains an important issue. This is due to the requirement of serving increasingly 
high number of clients at the same time. An evidence of this problem is the growing demand 
to specialized hardware devices to accelerate the performance of SSL servers. It was 
estimated that the revenue for dedicated SSL acceleration hardware and SSL VPN gateways 
would surpass $1 billion in 2005, a huge jump from 2002 revenue of just $98 million. [2]. 
 
Figure 1.a shows the operation of SSL handshake when client authentication is implemented. 
Note that today in most SSL servers, only server authentication is implemented. We will 
return to this issue later. 
 
The basic operation of SSL handshake with client authentication is as follows:  
 



 3 

After negotiation of some protocol parameters (supported SSL version, encryption algorithms 
etc.) in the hello messages, the server sends to the client its certificate. Before the server’s 
hello is done, the server also asks to the client his certificate. Now the client finishes the 
handshake protocol on his side by sending three messages to the server: (1) his certificate (2) 
a master key encrypted with the server’s public key obtained from the server’s certificate. (3) 
all prior communication signed by the client’s private key which can be verified using the 
public key obtained from the client certificate (messages 1 and 3 are empty when there is no  
 

 
 
 
 
Figure 1. The handshake in or iginal SSL and reverse SSL with client authentication 
 
client authentication). Upon receipt of these messages, the server decrypts the master key with 
its private key and verifies the certificate and signature to authenticate the identity of the 
client. In other words, the server does one public-key decryption operation and two or more 
signature verification operations (one to verify the signature and at least one to verify the 
certificate).  
 
SSL handshake is completed when the client and server exchange “Finished” messages to 
verify that the key exchange and authentication processes were successful. Now, both client 
and server can use the master key to generate the session keys, which are symmetric keys 
used to encrypt and decrypt information exchanged during the SSL session and to verify its 
integrity. 

Hello 

Hello 

Certificate 

Server-hello-done 

Certificate-Req 

Certificate 

Client-Key-Exchange 

Certificate-Verify 

Client 

Hello 

Hello 

Certificate 

Client-hello-done 

Certificate-Req 

Certificate 

Server-Key-Exchange 

Certificate-Verify 

Client Server Server 

(a) Or iginal SSL 
Handshake 

w/ client 
authentication 

(b) Reverse SSL 
Handshake 

w/ client 
authentication 



 4 

 
3. Online/offline Signatures 
 
In 1990, Even et al. introduced the concept of online/offline signatures as a way to get around 
the fact that most digital signature schemes have high computational requirements [3]. Their 
online/offline scheme was constructed by joining the general purpose digital signature 
schemes with the idea of one-time signatures.  
 
Unlike most other signature schemes, one-time signatures can be implemented using only 
one-way functions therefore they have the advantage of being very fast. On the other hand, 
these simple schemes have the inherent drawback of signing legitimately only a single 
message per a given public key (one-time public key). In online/offline signatures, this one-
time property does not pose any problem because each one-time public key is signed with the 
traditional public key signature and this signing can be repeated infinitely. The key point here 
is that since the one-time public key is independent from the message, it can be signed 
beforehand. Once the message is ready, the only thing necessary is to sign the message with 
the ultra-fast one-time signature. 
 
More formally, an online/offline signature scheme consists of the following three algorithms: 
 

1. The Key Generation Algor ithm (G): It is as same as the traditional signature 
scheme. The signer runs the algorithm G to the input 1k for a security parameter k and 
generates signing key SK which is kept secret and public key PK which should be 
securely transmitted to the receivers.  

 
2. The Signing Algor ithm (S’ ): It consists of two phases. 

 
a. Offline Phase: The signer runs an algorithm g on input 1k to randomly 
generate a one-time signing key sk and the corresponding one-time public key 
pk. He then signs pk with SK using the traditional signing algorithm S to 
generate the signature W. The signer stores the triple (sk,pk,W). 

 
b. Online Phase: The signer retrieves sk and runs an algorithm s to sign the 
message M and generate the one-time signature w. The triple (w,pk,W) 
constitutes the signature of M. 

 
3. The Ver ification Algor ithm (V’ ): To verify the triple (w,pk,W), two verifications 
are performed. First, the verifier uses the traditional verification algorithm V to check 
W is indeed a signature of pk. Then, he runs the algorithm v to check w is indeed a 
one-time signature of M. 

 
For the sake of brevity, we did not include the explanation of three algorithms g, s, and v in 
the description above. The description of these algorithms in the original one-time signature 
scheme proposed by Lamport [4] is as follows: 
 

1. The Key Generation Algor ithm (g):  
a. The one-time signing key sk consists of 2k elements xi,j generated randomly 

with 1 � i � k and j = 0,1. (k is the length of the message in base 2). 
b. The one-time public key pk is generated by computing yi,j= f(xi,j) for all i,j  

(f is a secure one-way function). 



 5 

 
2. The Signing Algor ithm (s): The signature w of a k-bit message m = m1 m2 m3… 

mk is  x1,m1 x2,m2 x3,m3,… xk,mk. 
 
3. The Ver ification Algor ithm (v): The signature is verified by checking if f(xi,mi) = 

yi,mi holds for all 1 � i � k. 
 
The Lamport’s scheme is not optimized in terms of signature and public key sizes therefore 
there are a lot of previous works trying to improve it in various ways. Nevertheless, 
Lamport’s simple scheme remains the most efficient one with respect to signing computation 
required. The pseudo-code for signing is only four lines of code: 
 
 for  i = 1 to k do begin 
  if mi= 0 then release xi,0 
  else release xi,1 
 end /*  for * / 
 
This means, signing algorithm requires only k binary comparisons for a message of length k. 
For messages longer than k-bits, just like traditional signatures, a hash function is applied to 
the message to generate the fingerprint of the message of length k. Thus, for any message 
length one-time signature generation costs one hash plus k binary comparisons in total. 
 
Other one-time signature schemes succeeded in decreasing the length of signature and/or 
public key with only a minor increase in the signing computation. For instance in [5], the 
authors proposed a technique which decreases the signature and public key sizes around their 
half sizes while keeping the signing computation (excluding hashing the message) less than 
one hash computation. 
 
Another online/offline signature scheme was proposed by Shamir and Tauman in 2001 [6]. 
By using a special type of hash function called trapdoor hash function, their scheme reduces 
the length of the signature in great extent but with an increased online computation 
requirement (online complexity is equal to 0.1 modular multiplication). 
 
A final note in this section is that some signatures schemes such as DSS and Elgamal can be 
naturally partitioned into online and offline phases. However the online computation 
requirement in these signatures is much higher than the online/offline signature scheme that 
uses one-time signatures. 
 
4. Our Proposal: Reverse SSL 
 
In this section, we introduce our extension to SSL which supports client authentication. 
Section 6 will show a modification of this extension for the case when client authentication is 
not required but the server should be protected against DoS attacks. 
 
Today most SSL implementations use RSA algorithm [7] both for encryption and signing 
tasks. We agree with [8] in believing that this situation will continue in the future because 
RSA is better understood, explored and documented. The RSA problem is certainly one of the 
best studied problems in cryptography. Our proposal Reverse SSL  is built on top of RSA 
cryptosystem together with a standard hash function which is also in general use in the SSL 
protocol.  



 6 

 
Table 1. A simple per formance compar ison of different RSA operations 

 
RSA Decryption Slow 
RSA Encryption Fast 

RSA Signature Generation Slow 
RSA Signature Verification Fast 

 
We will discuss the performance issues in detail later. But for the moment the simple 
comparison given in table 1 is sufficiently useful and important.  For RSA, since public 
exponent is smaller than the private one, encryption and signature verification can be 
performed at least an order of magnitude more efficient than decryption and signature 
generation. Hence in the original SSL protocol given in Figure 1.a, the natural target is to 
improve the performance of RSA decryption operation. Consequently, a considerable portion 
of previous work on SSL, summarized in section 8, is on this issue.  For instance a recent 
work [8] claims an RSA decryption speedup by a factor of between 11 and 19. This was 
shown to be possible by offloading most of server’s decryption computation to the client side.  
 
One of our goals in designing reverse SSL is to achieve better than this. Below we briefly 
explain how this is possible. 
 
First a question: in the table above, RSA decryption and RSA signature verification are cheap. 
For performance reasons, can we modify SSL so that on the server side only these cheap 
operations are used?  
 
The answer is unfortunately “no”  because if the roles of the client and server are switched and 
the task of master key decryption is performed by the client not the server, the server is left 
unauthenticated. If we rely on digital signatures for server authentication, now the server 
needs to generate a signature which is an expensive operation. So it looks like we do not gain 
much with this trick. 
 
Fortunately, we have the second trick of online/offline idea that saves our effort. By utilizing 
online/offline signatures explained in the previous section, most of the computation required 
for signature generation can be performed offline before the message to be signed is available. 
Once the message is available, the online computation required for completion of signature is 
very small (a few microseconds). 
 
The description of reverse SSL illustrated in Figure 1.b is as follows: 
 
Offline Phase: The server executes the offline phase of the signing algorithm (S’ ) given in 
previous section.  
 
Online Phase: It is composed of following steps: 
 

• Usually in client-server computing the client is the one who instantiates the 
communication therefore the order of HELLO messages is as same as the original 
SSL. In these HELLO messages, client and server agrees on which version of SSL 
will be used. If any party does not support reverse SSL, one of earlier versions will be 
used instead. Backward compatibility is preserved by this way. 



 7 

• Now, the roles of client and server are changed. Instead of server, the client sends his 
certificate and requests the server’s certificate. The server verifies the client’s 
certificate and sends three things in return: (1) his certificate (2) a master key 
encrypted with the client’s public key obtained from the client’s certificate. (3) the 
signature of all prior communication. 

• For signing the prior communication, the server performs the following: 
o Calculates the hash of prior communication. Here the hash value computed is 

treated as the message M. 
o Executes the offline phase of the signing algorithm (S’ ) given in previous 

section.  
• The client decrypts the master key in standard way and verifies the server’s signature 

by executing the online/offline verification algorithm V’  given in previous section. 
• At the end, both parties generate the session key from the master key and the 

handshake completes. 
 
5. DoS Protection and Client Puzzles 
 
DoS attacks aim at exhausting the server resources by sending a flood of bogus requests so 
that the server cannot respond timely to the legitimate requests. DoS attacks are simple yet 
effective attacks against all servers and SSL servers are not an exception. One proposed 
solution against these attacks is client puzzles which require the client side to perform some 
computation before his request is satisfied by the server. By this way, the aim is to limit the 
number of requests that can originate from the attacker. Client puzzles have recently received 
much attention in the security world in spite of the question mark on how effective client 
puzzles can be against “distributed DoS attacks”  where the attacker breaks onto tens or even 
hundreds of machines and then uses these “zombie”  machines to launch the attack. This is 
maybe because we do not have a better solution yet to protect against this strong and well-
established threat. 
 
Client puzzles were first proposed as a countermeasure against DoS attacks by Juels and 
Brainard [10]. Then, Dean and Stubblefield used this idea specifically to protect SSL/TLS 
servers [11]. Broadly speaking, any client puzzle construction should hold at least two 
properties: 
 

1. The puzzle should be computationally intensive to solve (i.e. no shortcut solutions) so 
that the attacker must have access to a very large computing resource to respond with 
sufficient number of puzzle solutions for exhausting the server resources 2. 

2. The puzzle verification mechanism should be very lightweight. Otherwise, this 
mechanism itself will be the target of DoS attack in which the attacker sends to server 
excessive number of bogus puzzle solutions [12].  

 
6. Reverse SSL with Client Puzzles 
 
Although SSL protocol can authenticate clients with X.509 certificates, most web applications 
currently in use do not implement this option. This is why from practical point of view, an 
efficient extension to SSL which works in case when clients do not have certificates is also 

                                                 
2 Together with this requirement, the previous studies [11] also noted that the computation should be finished in 
a reasonable time in order not to harm legitimate clients with a slow machine. However it is left open how to 
determine the optimum point with respect to these two conflicting requirements. 



 8 

highly desirable. Reverse SSL however requires the clients to be able decrypt the master key 
encrypted by the server. When the clients do not have a long-term certificate, there are two 
options left: 
 

1. Before any SSL transaction occurs, the client generates a self-signed public key 
instead of a third party issued certificate. However we do not recommend using the 
same RSA key pair for multiple SSL sessions due to the interception risk of 
corresponding private key when stored on the client machine. Note that original SSL 
protocol without client authentication does not have this kind of a security problem.  

 
Figure 2. Reverse SSL Handshake with Client Puzzles 

 
2. Client can generate a public key on the fly for each SSL session. Before the SSL 

session is finished, the private key is destroyed. 
 
In the rest of this section, we will investigate the second option since it does not have a 
security risk like the first. More specifically, we will show that the computation required for 
key generation can be used as a client puzzle to safeguard the server against DoS attacks.  
 
Figure 2 demonstrates the operation of reverse SSL with client puzzles. The basic operation of 
SSL handshake with client puzzles is as follows: 
 
The client notifies the server that he supports reverse SSL with client puzzles in his HELLO 
message. After its HELLO message, the server sends the client a puzzle and requests a 
solution. The client’s reply to this puzzle has a dual purpose. First, it is a way to show that the 
client himself has performed a considerable amount of computation before the server 
responds to his request. Second, the reply includes the client’s public key that can be used by 

Hello 

Hello 

Client-hello-done 

Certificate-Req 

Certificate 

Server-Key-Exchange 

Certificate-Verify 

Client Server 

Puzzle-Req 

Puzzle Reply  
(Public Key + Signature) 



 9 

the server to encrypt the master key. The rest of the handshake in as same as the reverse SSL 
protocol already described. 
 
Next, we provide the description of two different puzzle constructions in reverse SSL. We 
start with the easier one. 
 
First Puzzle Construction: 
 

• The server generates a big random number (e.g. 1024 bits) m (m∈R{ 0,1} 1024). He 
sends m and another puzzle parameter K (e.g. K = 81) to the client. The tuple (m,K) 
constitutes the puzzle request. The meaning of this puzzle request is that the server 
wants the client to generate an RSA key pair having a modulus in the range m-2K and 
m+2K.  

• Upon receipt of puzzle request, the client generates two prime numbers p and q 
satisfying the following inequalities: 

 

2
2

2
2 KK m

p
m +<<−

 

p

m
q

p

m KK 22 +<<−
 

 
The RSA modulus n is calculated as n = p *  q. The inequalities above guarantee that n 
is between m-2K and m+2K. 

• The client determines the RSA public exponent e (or it can have a default value of e = 
3) and calculates the private key exponent d. 

• The client self-signs the public key he has generated and generates the signature s.  
• The client sends to the server the triple (n,e,s).  
 

The client needs to send also a signature otherwise an attacker can generate a fake public key 
with a modulus n in the range m-2K and m+2K without taking the trouble to generate the 
public key - private key pair. Avoiding such a shortcut is possible by asking the client to sign 
the public key because fake public keys cannot have a signature verifiable by the public key.  
 
However this does not mean that the server should always verify the signature. Later the 
server sends to the client an encrypted master key. The client’s ability to decrypt the master 
key encrypted by his public key also proves that the public key has been generated 
legitimately. Recall that in reverse SSL server generates a signature before the client decrypts 
the master key however this is a very fast operation thanks to online/offline idea. Only if there 
is not any signature ready for use on the server with a completed offline phase, signature 
generation computation can be a DoS target. Consequently, the server’s decision for verifying 
the client’s signature depends on the availability of online/offline signatures ready to use.  
 
The standard way of generating RSA keys involves two steps: (1) Generating two big prime 
numbers (2) Computing modulus and exponents. The first step uses a probabilistic primality 
test (such as Miller-Rabin test [13]) to see whether a candidate chosen odd number passes the 
test or not. If a number passes the test, we conclude that the number is “probable prime”, 
which is enough for our purposes. The only modification necessary to solve the client puzzle 
is to choose the candidate odd numbers in the specified range. The rest is exactly the same as 
the standard RSA key generation. 



 10 

 
The reason why the client is forced to generate the modulus in the specified range is to avoid 
a situation where an attacker uses the same RSA key for multiple SSL sessions. Keeping the 
information of RSA keys that have been used and refusing a request with an old key is 
another alternative for the server but has the burden of storing and comparing each RSA key 
used.  
 
The rationale of choosing the parameter K as 81 is as follows: Breaking a 1024-bit RSA 
modulus requires approximately 280

 operations [14]. The client puzzle we employ should not 
introduce an attack requiring less than 280

 operations. However, an alternative method to find 

p and therefore break the scheme is to search the space �
�

�+

�
�
�

� −
2
2

,
2
2 KK mm

for all odd 

numbers to see whether it is factor of modulus n or not. This requires on average 280
 

operations. 
 
Another security note about our first client puzzle is that the parameter K is chosen big 
enough to avoid the problem above but it is small enough not to let previous RSA keys to be 
valid and in the range specified. The probability of using an old RSA key as a valid solution 
to a new client puzzle is only 282/21024, a negligible quantity. 
 
Second Puzzle Construction: 
 
If we assess our first client puzzle using the criteria given in the previous section, we see that 
solving the puzzle requires RSA key generation and RSA signature generation computation 
whereas puzzle verification is just RSA signature verification. As discussed in section 7, for 
RSA cryptosystem key generation is much more expensive as compared to RSA signature 
verification (In the same machine for 1024 bit RSA, key generation plus signature generation 
takes 318.3 msecs on average whereas signature verification takes only 0.5 msecs).  
 
The second puzzle construction we will explain improves the first one in two aspects: 
 

• Adjustable Solving Time: Our first puzzle is not flexible in the sense that the time 
required to solve the puzzle cannot be fine-tuned. As we will show, by incorporating a 
hash-based puzzle into the first one, we can construct puzzles with adjustable solving 
times.   

• Two-Level Verifiability: In the first puzzle construction, although the time required 
for verifying the puzzle is very small as compared to puzzle generation (as well as 
compared to the public key computation done by the server in the original SSL 
protocol), this might still be a target for a DoS attack. Note that the puzzle solving 
time is not an issue for the attacker sending bogus puzzle replies because he does not 
spend his time for solving the puzzles. Employing a hash-based puzzle also helps to 
solve this problem because it enables the server to verify the hash-based puzzle in a 
much shorter time. Now, the puzzle verification works in two steps. First, hash-based 
puzzle solution is verified. Only if this puzzle has been verified correctly, the server 
attempts to verify the RSA signature.  

 
The operation of our second puzzle construction is described as follows: 
 



 11 

• The server generates a big random number (e.g. 1024 bits) m (m∈R{ 0,1} 1024) and 
determines the puzzle parameter p. Let H() is a pre-agreed pre-image resistant hash 
function, highest p-bits of m is called as x and the rest of m is called as y (i.e. m = 
x||y). The server computes H(m). The triple (H(m),y,K) constitutes the puzzle request. 
K is a puzzle parameter with the same purpose as the first puzzle. 

• Upon receipt of the puzzle, the client tries all possible values of x until he finds a 
match H(x||y) = H(m).  

• After finding out what the m is, the client goes through the same procedure for RSA 
key generation given earlier to generate key parameters (p,q,n,e,d). 

• The client self-signs the public key he has generated and generates a signature s and 
sends to the server the triple (n,e,s). 

• The server attempts to verify the signature s only after verifying that the first p-bits of 
n is equal to x.  

 
In this new puzzle, the server’s computation is only increased by one hash computation. On 
the other hand the puzzle solution requires on the average 2p-1 hash computations in addition 
to the computation for RSA key generation. 
 
There is one smart thing an attacker can do about this two-level puzzle. After correctly 
solving the hash-based puzzle, he can generate a bogus public key. We argue that by adjusting 
p, the difficulty of the hash-based puzzle, it is possible to stop attackers to launch this kind of 
attack, too.  
 
Figure 3 shows a simple flowchart describing the order of operations the server performs after 
obtaining the client’s puzzle reply. 
 

 
 

Figure 3. Puzzle Ver ification Flowchart 
 
 
 
 

YES 

YES NO 
YES 

NO 

YES 

NO 
Hash-based puzzle is verified? QUIT 

Any Online/offline signature is available? 

QUIT 
Client signature 

is verified? 

Continue 
Reverse 

SSL 



 12 

7. Exper iments and Performance Evaluation 
 
To evaluate the performance of reverse SSL, we did some preliminary experiments by 
running openssl speed command [15] in a server machine (A system with four 1 GHz Sun 
UltraSPARC CPUs and 8 GB main memory). Computing the hash function took less than 5 
microseconds. Since the online requirements for signature generation is less than one hash, we 
ignore it together with hash computation as they are not significant compared to public key 
operations. 
 
Next, we measure the performance of public key and private key operations in RSA with 
various key lengths (e is chosen as 65537). Table 2 shows the results of this experiment. If we 
exclude the computation to verify the client certificate, in the original SSL the server needs to 
perform one public key and one private key operation. In reverse SSL both with client 
authentication and client puzzle (by assuming that the server chooses not to verify the 
signature), the online requirement for the server is just doing one public key operation. Table 
3 shows the comparison of computation requirements in these two protocols and the speedup 
possible using reverse SSL. 
 

Table 2. Per formance of RSA public and pr ivate key operations 
 

 Pr ivate key operation Public key operation Ratio 
RSA 512-bits 1.7 ms 0.2 ms 8.5 
RSA 1024-bits 8.1 ms 0.5 ms 16.2 
RSA 2048-bits 50.0 ms 1.5 ms 33.3 
RSA 4096-bits 339.7 ms 5.3 ms 64.1 

 
Table 3. Compar ison of Or iginal and Reverse SSL with respect to online computational 

requirements 
 

 Or iginal SSL Reverse SSL Speedup 
RSA 512-bits 1.9 ms 0.2 ms 9.5 
RSA 1024-bits 8.6 ms 0.5 ms 17.2 
RSA 2048-bits 51.5 ms 1.5 ms 34.3 
RSA 4096-bits 345.0 ms 5.3 ms 65.1 

 
The work by Castelluccia et al. [8] has claimed a speedup of 11 for 1024-bit key and 19 for 
2048-bit key. For these key lengths, the speedups reverse SSL provides are 17.2 and 34.3 
which means at least 50% more improvement 3. However note that the comparison we 
provide here is just to give you a basic idea because these two protocols do not have the same 
functionality i.e. reverse SSL is either for mutual authentication or server authentication with 
client puzzles whereas early work concentrated on SSL with only server authentication. 
 
Finally, Table 4 provides the results of our experiments regarding RSA key generation. Note 
that for a client machine with a slower CPU, these numbers are even higher. An interesting 
note is that unlike other performance values, the results we obtained for key generation has a 

                                                 
3 openssl speed command supports only tests with e = 65537. Choosing e as 3 can provide more performance 
improvement. It was cited in [18] that 1024-bit RSA public key operation with e=3 is 7.36 times faster than the 
one with e=65537. 



 13 

large variance (Table 4 gives the average value computed over 10 different tests). This is due 
to probabilistic nature of primality test openssl library uses. 
 

Table 4. Per formance of RSA key generation 
 

 RSA Key Generation 
RSA 512-bits 91 ms 
RSA 1024-bits 310 ms 
RSA 2048-bits 2924 ms 
RSA 4096-bits 24332 ms 

 
8. Related Work 
 
In section 5, we have already summarized the previous work on using client puzzles to protect 
SSL. The second issue, performance improvement of SSL, has been investigated extensively 
by security researchers whose main target is the public key decryption operation since SSL is 
purely CPU bounded [1]. It would be easier to review this previous work by categorizing it 
into four groups: 
 

1. Using specialized hardware: Offloading RSA computation of SSL to faster dedicated 
accelerators is a popular but an expensive solution for enhancing SSL performance.  

2. Batching: The idea is to perform multiple RSA exponentiations simultaneously. The 
completion time is up to 2.5 times faster than doing each handshake separately [16]. 

 
Unlike the others, the great advantage of these two solutions is the ability to use them without 
any change on the client side. In other words, they are fully transparent to the client machine.  
   

3. Using different crypto primitives: Instead of RSA cryptosystem, the authors in [16] 
used ECC (Elliptic Curve Cryptography) and achieve a speedup factor of 2.4. The 
downside of ECC is that the optimizations that give ECC its performance advantage 
have patent-related uncertainities 4 [20].  

4. Shifting the workload to the client: Although, speeding up SSL handshakes 2.4 or 2.5 
times is a notable contribution, one might need even more improvement for heavily 
loaded web servers. One way for achieving even a better speedup has recently been 
shown in [8]. The method they use is to ask the clients to do more work that allows the 
server to do less work. With this so called “client aided RSA” approach, a speedup of 
11 for 1024-bit key and 19 for 2048-bit key is possible. 

 
Using the results of our performance evaluation work given in previous section, we can say 
that our proposal reverse SSL performs considerably better than the previous work (at least 
50% more improvement than client-aided RSA). 

 
Online/offline signature idea reverse SSL uses is similar to the recently proposed client puzzle 
technique in [12]. In this puzzle that uses public key cryptography, the server pre-computes 
the modular exponentiation in order to reduce the online verification computation only to a 
table lookup operation. 
 
 

                                                 
4 On the other hand, the patent on online/offline signatures will expire on May 14, 2008 J  [19]. 



 14 

9. Conclusion and Future Work 
 
Built op top of online/offline signature idea, reverse SSL is a novel design for improving the 
performance of heavily loaded SSL servers. By using the asymmetry property of RSA (i.e. 
small public exponent and big private exponent) and switching the public key operation done 
by the client and the server, reverse SSL shows how it becomes possible to perform the 
slower RSA operation totally offline.   
 
Reverse SSL comes in two flavors:  
 

1. Reverse SSL with client authentication: Today, the use of SSL has evolved from 
simple browser based web transactions to the de-facto transport security, securing 
corporate communications in the form of SSL VPNs and connections between front-
office and back-office applications [17]. Client authentication is required in these new 
applications and upgrading to a new SSL version is relatively easy for them, therefore 
reverse SSL is a viable approach to provide the efficiency required by the servers. 

 
2. Reverse SSL with client puzzles: Client puzzle techniques were recently proposed as a 

countermeasure against denial-of-service attacks. In previous constructions, the puzzle 
solution has only one purpose and it is dropped after verified. Our new protocol is 
novel in the sense that the puzzle solution has a second goal and is used additionally as 
the client’s public key required for subsequent encryption. As a result, DoS resistance 
and performance improvement can be achieved together by using reverse SSL. 

Although our initial experiments show that our proposal is attractive, there are a couple of 
issues that makes essential to support our claim with a full implementation and performance 
evaluation work that involves the following steps: 

1. Implementation of reverse SSL with client authentication using the openssl library 
[15]. Alternatively, the implementation might be based not on online/offline signature 
idea but on DSA which is currently available in the openssl library. Recall that 
generation of DSA signatures can be naturally partitioned into online and offline 
phases. 

2. Implementation of online/offline signatures and incorporating this into the operation 
of reverse SSL. There are at least two alternatives here but the one based on one-time 
signatures is straightforward to implement using openssl library.  

3. Extending the reverse SSL so that it supports clients without a certificate. To achieve 
this, client puzzle constructions should be implemented and incorporated into the 
operation of reverse SSL. 

4. Performance comparison of original SSL and reverse SSL both with client 
authentication and client puzzle and comparison of these results with theoretical 
expectations. Here, for more realistic results choosing an appropriate statistical model 
to characterize the client request is needed. 

References 

[1] Cristian Coarfa, Peter Druschel, Dan S. Wallach, Performance Analysis of TLS Web Servers. Proceedings of 
the Network and Distributed System Security Symposium, NDSS 2002, San Diego, California, USA. The Internet 
Society 2002. 

 



 15 

[2] Neil Osipuk, Secure Socket Layer In an Insecure World. Available at 
http://www.varbusiness.com/sections/strategy/strategy.jhtml?articleId=18822452, Last access December 7th 
2005. 

[3] Shimon Even, Oded Goldreich, Silvio Micali, On-Line/Off-Line Digital Signature Schemes. Advances in 
Cryptology - CRYPTO '89 Proceedings. Lecture Notes in Computer Science 435 Springer 1990. 

[4] Leslie Lamport, Constructing Digital Signatures from a One Way Function. 
SRI International Technical Report CSL-98, (October 1979). 

[5] Kemal Bicakci, Gene Tsudik, Brian Tung, How to construct optimal one-time signatures, Computer 
Networks (Elsevier), Vol43(3), pp. 339-349, October 2003 

[6] Adi Shamir, Yael Tauman, Improved Online/Offline Signature Schemes. Advances in Cryptology - CRYPTO 
2001 Proceedings. Lecture Notes in Computer Science 2139 Springer 2001. 

[7] Ron L. Rivest, Adi Shamir, and Leonard M. Adleman, A Method for Obtaining Digital Signatures and 
Public-Key Cryptosystems," Communications of the ACM, vol. 21, 1978. 

[8] Claude Castelluccia and Einar Mykletun and Gene Tsudik, Improving Secure Server Performance by Re-
balancing SSL/TLS Handshakes, Accepted to AsiaCCS 2006. Also Available in Cryptology ePrint Archive: 
Report 2005/037, http://eprint.iacr.org/2005/037 

[9] Martin F. Arlitt, Diwakar Krishnamurthy, Jerry Rolia, Characterizing the scalability of a large web-based 
shopping system. ACM Transactions on Internet Technology (TOIT), Volume 1, Number 1, August 2001. 
 
[10] Ari Juels and John Brainard, Client Puzzles: A Cryptographic Defense Against Connection Depletion. 
Proceedings of 5th Network and Distributed Systems Security Symposium, 1999. 
 
[11] Drew Dean and Adam Stubblefield, Using Client Puzzles to Protect TLS. In proceedings of 10th USENIX 
Security Symposium, 2001. 
 
[12] Brent Waters, Ari Juels, J. Alex Halderman, Edward W. Felten, New client puzzle outsourcing techniques 
for DoS resistance. In Proceedings of  ACM Conference on Computer and Communications Security, 2004. 
 
[13] Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone, Handbook of Applied Cryptography, CRC 
Press, Fifth Printing (August 2001). 
 
[14] Recommendation for Key Management, NIST Special Publication 800-57 Draft, 08/2005. 
 
[15] OpenSSL Library, Available at http://www.openssl.org.  
 
[16] Vipul Gupta, Douglas Stebila, Stephen Fung, Sheueling Chang Shantz, Nils Gura, Hans Eberle, Speeding 
up Secure Web Transactions Using Elliptic Curve Cryptography. In proceedings of Network and Distributed 
System Security Symposium NDSS 2004, Internet Society 2004. 

[17] Ncipher’s SSL Accelerators, http://www.ncipher.com/ssl/, Last access January 18th 2006. 

[18] MIRACL Library, Available at http://indigo.ie/~mscott/.   

[19] Micali et al., U.S Patent No. 5,016,274, May 14, 1991. 

[20] ECC Patents, http://en.wikipedia.org/wiki/ECC_patents  

 
 
 
 


