Searchable Symmetric Encryption:
Improved Definitions and Efficient Constructions

REzA CURTMOLA* JUAN GARAY' SENY KAMARA? RAFAIL OSTROVSKY?

Abstract

Searchable symmetric encryption (SSE) allows a party to outsource the storage of his data to
another party in a private manner, while maintaining the ability to selectively search over it. This
problem has been the focus of active research and several security definitions and constructions
have been proposed. In this paper we review existing security definitions, pointing out their short-
comings, and propose two new stronger definitions which we prove equivalent. We then present two
constructions that we show secure under our new definitions. Interestingly, in addition to satisfying
stronger security guarantees, our constructions are more efficient than all previous constructions.

Further, prior work on SSE only considered the setting where only the owner of the data is
capable of submitting search queries. We consider the natural extension where an arbitrary group
of parties other than the owner can submit search queries. We formally define SSE in this multi-user
setting, and present an efficient construction.

1 Introduction

Private-key storage outsourcing [KBCT00, ABC*02, MMGCO02] allows clients with either limited
resources or limited expertise to store and distribute large amounts of symmetrically encrypted data at
low cost. Since regular private-key encryption prevents one from searching over encrypted data, clients
also lose the ability to selectively retrieve segments of their data. To address this, several techniques
have been proposed for provisioning symmetric encryption with search capabilities [SWP00, Goh03,
BC04, BACOP04, CMO05]; the resulting construct is typically called searchable encryption.

Searchable encryption can be achieved securely in its full generality using the work of Ostrovsky and
Goldreich on oblivious RAMs [Ost90, GO96]. While oblivious RAMs hide all information (including the
access pattern) from a remote and potentially malicious server, this comes at the cost of a logarithmic
number of rounds of interaction for each read and write. Therefore, the previously mentioned work
on searchable encryption tries to achieve more efficient solutions (typically in one or two rounds) by
weakening the privacy guarantees (e.g., completely revealing the access pattern).

We start by examining the definition of what it means to completely reveal the user’s access
and search patterns (precise definitions below) while “hiding everything else,” and show that the
existing security definitions have several important limitations. Additionally, we show that the current
definitions only achieve what we call non-adaptive SSE security, while the more natural usage of
searchable encryption calls for adaptive security (a notion that we make precise in Section 3). We
propose new security definitions for both the non-adaptive and adaptive cases, and present efficient
constructions for both based on any one-way function.

*Department of Computer Science, Johns Hopkins University. crix@cs.jhu.edu. This work was partly done while
the author was at Bell Labs.

"Bell Labs — Lucent Technologies. garay@research.bell-labs.com

#Department of Computer Science, Johns Hopkins University. seny@cs.jhu.edu. Supported by a Bell Labs Graduate
Research Fellowship.

$Department of Computer Science, UCLA. rafail@cs.ucla.edu.

Our first construction is the most efficient non-adaptive SSE scheme to date in terms of compu-
tation on the server, and incurs a minimal (i.e., constant) cost for the user. Our second construction
achieves adaptive security, which was not previously achieved by any constant-round solution. (Later
on we perform a detailed comparison between our constructions and previous work—see Table 1.)

We also extend the problem of SSE to the multi-user setting, where a client wishes to allow an
authorized group of users to search through its document collection.

Related work. We already mentioned the work on oblivious RAMs [GO96]. The work of Song et
al. [SWPO00] introduced the problem of searchable encryption and showed that a solution was possible.
The authors achieve searchable encryption by crafting, for each word, a special two-layered encryption
construct. Given a trapdoor, the server can strip the outer layer and assert whether the inner layer
is of the correct form. This construction has some limitations: while the construction is proven to
be a secure encryption scheme, it is not proven to be a secure searchable encryption scheme; the
distribution of the underlying plaintexts is vulnerable to statistical attacks; and searching is linear in
the length of the document collection.

The above limitations are addressed by the works of Goh [Goh03] and of Chang and Mitzen-
macher [CMO05], who propose constructions that associate an “index” to each document in a collection.
As a result, the server has to search each of these indexes, and the amount of work required for a query
is proportional to the number of documents in the collection. Goh introduces a notion of security for
indexes (IND-CKA and the slightly stronger IND2-CKA), and puts forth a construction based on
Bloom filters [Blo70] and pseudo-random functions. Chang and Mitzenmacher achieve a notion of
security similar to IND2-CKA, with the exception that it also tries to guarantee that the trapdoors
not leak any information about the words being queried. We discuss these security definitions and
their shortcomings in more detail in Section 3 and Appendix B

Encryption with keyword search has also been considered in the public-key setting [BACOP04,
ABCT05], where anyone with access to a user’s public-key can add words to an index, but only the
owner of the private key can generate trapdoors to test for the occurrence of a keyword. While related,
the public-key solutions are not as efficient as private-key solutions, which is the main subject of this
work.

Naturally, SSE can also be viewed as an instance of secure two-party/multi-party computa-
tion [Yao82, GMW87, BOGWS&8|. However, the weakening and refinement of the privacy require-
ment (more on this below) as well as efficiency considerations (e.g., [KO04]), mandate a specialized
treatment of the problem, both at the definitional and construction levels.!

Subtleties of SSE security definitions. So far, establishing correct security definitions for search-
able encryption has been elusive. Clearly, as we have discussed, one could use the general definitions
from oblivious RAMs , but subsequent work (including ours) examines if more efficient schemes can
be achieved by revealing some information. The first difficulty seems to be in correctly capturing
this intuition in a security definition. In the literature, this has typically been characterized as the
requirement that nothing be leaked beyond the outcome of a search (e.g., [SWP00, CMO05]); however, a
more accurate description of the security guarantees in previous work is that nothing is leaked beyond
the outcome and the pattern of a search, where the pattern of a search is any information that can be
derived from knowing whether two searches were performed for the same word or not.

The second issue seems to be in appropriately capturing the adversary’s power. In fact, while Song
et al. attempt to prove their construction secure, the definition implicitly used in their work is that
of a classical encryption scheme, where the adversary is not allowed to perform searches. This was
partly rectified by Goh [Goh03], whose definition of secure indexes (IND2-CKA) allows the adversary

'Tndeed, some of the results we show—equivalence of SSE security definitions (Section 3)—are known not to hold for
the general secure multi-party computation case.

to access the index and trapdoor oracles. While much work on searchable encryption uses IND2-CKA
as a security definition [GSW04, PKL04, BKMO05], we note that it was never intended as such. In fact,
Goh notes that IND2-CKA does not explicitly require trapdoors to be secure, which is an important
requirement for any searchable encryption scheme. To remedy this, one might be tempted to introduce
a second definition that exclusively guarantees the semantic security of trapdoors. One would then
prove a construction secure under both IND2-CKA, and the new definition. While this might seem
like a workable (though cumbersome) idea, the straightforward approach of requiring trapdoors to be
indistinguishable does not work. In fact, as we show in Appendix B, SSE schemes can be built with
trapdoors that, taken independently, leak no partial information about the word being queried, but
when combined with an index allow an adversary to recover the entire word. This illustrates that the
security of indexes and the security of trapdoors are intrinsically linked.

This is indeed the approach taken by Chang and Mitzenmacher [CMO05], who propose a simulation-
based definition that aims to guarantee privacy for indexes and trapdoors. Similarly to the classical
definition of semantic security for encryption [GM84], they require that anything that can be computed
from the index and the trapdoors for various queries, can be computed from the search outcome of
those queries. However, while the intuition seems correct, in the case of searchable encryption one
must also take care in describing how the search queries are generated. In particular, whether they
can be made adaptively (i.e., after seeing the outcome of previous queries) or non-adaptively (i.e.,
without seeing the outcome of any queries). This distinction is important because it leads to security
definitions that achieve drastically different privacy guarantees. Indeed, while non-adaptive definitions
only guarantee security to clients who generate all their queries at once, adaptive definitions guarantee
privacy even to clients who generate queries as a function of previous search outcomes. Unfortunately,
as we discuss in Section 3, the definition presented in [CMO5] is not only non-adaptive, but can be
trivially satisfied by any SSE scheme, even one that is insecure.

Our results. We now summarize the contributions of this work.

1. We review existing security definitions for searchable encryption, including IND2-CKA [Goh03] and
the simulation-based definition in [CMO05], and highlight their shortcomings. Specifically, we point out
that IND2-CKA is not an adequate notion of security for SSE and then highlight (and fix) technical
issues with Chang and Mitzenmacher’s simulation-based definition. We address both these issues
by proposing new indistinguishability and simulation-based definitions that provide security for both
indexes and trapdoors, and show their equivalence.

2. We introduce new adversarial models for SSE. The first, which we refer to as non-adaptive, only
considers adversaries that make their search queries without taking into account the trapdoors and
search outcomes of previous searches. The second—adaptive—considers adversaries that can choose
their queries as a function of previously obtained trapdoors and search outcomes. All previous work
on SSE (with the exception of oblivious RAMs) falls within the non-adaptive setting. The implication
is that, contrary to the natural use of searchable encryption described in [SWP00, Goh03, CMO05],
these definitions only guarantee security for users that perform all their searches at once. We address
this by introducing indistinguishability and simulation-based definitions in the adaptive setting and
show that they are equivalent.

3. We present two constructions which we prove secure under the new definitions. Our first scheme
is only secure in the non-adaptive setting, but is the most efficient SSE construction to date. In fact,
it achieves searches in one communication round, requires an amount of work on the server that is
proportional to the actual number of documents that contain the queried word, requires constant
storage on the client, and linear (in the size of the document collection) storage on the server. While
the construction in [Goh03] also performs searches in one round, it can induce false positives, which
is not the case for our construction. Additionally, all the constructions in [Goh03, CMO05] require the

Properties [0st90, GO96] | [SWPO00] | [Goh03] | [CMO05] | SSE-1 | SSE-2
hides access pattern yes no no no no no
server computation O(log® n) O(n) O(n) O(n) O(1) o(1)

server storage O(n - log® n) O(n) O(n) O(n) O(n) | O(n)
number of rounds logn 1 1 1 1 1

communication O(log® n) o(1) o(1) 0(1) o(1) o(1)

adaptive adversaries yes no no no no yes

Table 1: Properties and performance per query for a word w of various SSE schemes. n denotes the number of
documents in the document collection. For communication costs, we consider only the communication overhead
and omit the size of the documents that are retrieved, which is the same for all schemes. For simplicity, the
security parameter is not included as a factor for the relevant costs.

server to perform an amount of work proportional to the total number of documents in the collection.
Our second construction is secure against an adaptive adversary, but at the price of requiring a higher
communication overhead per query and more storage at the server (comparable with the storage
required by Goh’s construction). While our adaptive scheme is conceptually simple, we note that
constructing efficient and provably secure adaptive SSE schemes is a non-trivial task. The main
challenge lies in proving such constructions secure in the simulation paradigm, since the simulator
requires the ability to commit to a correct index before the adversary has even chosen its search
queries—in other words, the simulator needs to commit to an index and then be able to perform some
form of equivocation.

Table 1 compares our constructions (SSE-1 and SSE-2) with the previous SSE schemes. To make
the comparison easier, we assume that each document in the collection has the same (constant) size
(otherwise, some of the costs have to scaled by the document size). The computation on the server
shows the costs per document in the set of documents that match the query for a word w. Note that all
previous work requires an amount of server computation at least linear with the number of documents
in the collection, even if only one document matches a query. In contrast, in our constructions the
server computation is constant per each document that matches a query, and the overall computation
per query is proportional to the number of documents that match the query. In all the considered
schemes, the computation and storage at the user is O(1).

We remark that as an additional benefit, our constructions can also handle updates to the document
collection in the sense of [CM05]. We point out an optimization which lowers the communication size
per query from linear to logarithmic in the number of updates.

4. Previous work on searchable encryption only considered the single-user setting. We also consider a
natural extension of this setting, namely, the multi-user setting, where a user owns the data, but an ar-
bitrary group of users can submit queries to search his document collection. The owner can control the
search access by granting and revoking searching privileges to other users. We formally define search-
able encryption in the multi-user setting, and present an efficient construction that does not require
authentication, thus achieving better performance than simply using access control mechanisms.

Finally, we note that in most of the works mentioned above the server is assumed to be honest-but-
curious. However, using techniques for memory checking [BEG'91] and universal arguments [BG02]
one can make those solutions robust against malicious servers at the price of additional overhead. We
restrict our attention to honest-but-curious servers as well, and delay this extension to the full version
of the paper.

2 Preliminaries

Let A = {w1, ..., wq} be a dictionary of d words, and 22 be the set of all possible documents. Further,
let D C 22 be a collection of n documents D = (Dy, ..., D,) and 22% be the set of all possible document
collections. Let id(D) be the identifier of document D, where the identifier can be any string that
uniquely identifies a document, such as a memory location. We denote by D(w) the lexicographically
ordered list consisting of the identifiers of all documents in D that contain the word w. We sometimes
refer to D(w) as the outcome of a search for w and to the sequence (D(w1),...,D(wy,)) as the access
pattern of a client. We also define the search pattern of a client as any information that can be derived
from knowing whether two arbitrary searches were performed for the same word or not.

We write = & X to represent an element x being sampled from a distribution X and £ X to
represent an element r being sampled uniformly from a set X. The output z of an algorithm A is
denoted by = «+ A. We write || to mean string concatenation. We call a function v : N — N negligible
if for every polynomial p(-) and all sufficiently large k, v(k) < -

p(k)
Model. The participants in a single-user searchable encryption scheme include a user that wishes
to store an encrypted document collection D = (Dy, ..., D,) on an honest-but-curious server S, while

preserving the ability to search through them. We note that while we choose, for ease of exposition,
to limit searches to be over documents, any SSE scheme can be trivially extended to search over lists
of arbitrary keywords associated with the documents.

The participants in a multi-user searchable encryption scheme include a trusted owner O, an
honest-but-curious server S, and a set of users N. O owns D and wants to grant and revoke searching
privileges to a subset of users in N. We let G C N be the set of users allowed to search. We assume
that currently non-revoked users behave honestly.

More formally, throughout this paper, (authorized) users are modeled as probabilistic polynomial-
time Turing machines, while adversaries are modeled as non-uniform Turing machines. On the other
hand, simulators are uniform Turing machines, but they might become non-uniform by running a
non-uniform adversary as a subroutine.

Basic primitives. A symmetric encryption scheme is a set of three polynomial-time algorithms
(G,&,D) such that G takes a security parameter k in unary and returns a secret key K; & takes a
key K and an m-bit message m and returns a ciphertext c¢; D takes a key K and a ciphertext ¢ and
returns m if K was the key under which ¢ was produced. Informally, a symmetric encryption scheme is
considered secure if the ciphertexts it outputs do not leak any partial information about the plaintext
even to an adversary that can adaptively query an encryption and a decryption oracle. We recall the
formal definition of security for symmetric encryption schemes in Appendix A.

In addition to encryption schemes, we also make use of pseudo-random functions (PRF) and
permutations (PRP), which are polynomial-time computable functions that cannot be distinguished
from random functions by any probabilistic polynomial-time adversary. (Also in Appendix A.)

3 Revisiting Searchable Symmetric Encryption Definitions

We begin by reviewing the formal definition of a SSE scheme.

Definition 3.1 (Searchable Symmetric Encryption Scheme (SSE)). A SSE scheme is a collection of
four polynomial-time algorithms (Keygen, BuildIndex, Trapdoor, Search) such that:

Keygen(1¥) is a probabilistic key generation algorithm that is run by the user to setup the scheme. It
takes a security parameter k, and returns a secret key K such that the length of K is polynomially
bounded in k.

BuildIndex(K, D) is a (possibly probabilistic) algorithm run by the user to generate indexes. It takes
a secret key K and a polynomially bounded in k document collection D as inputs, and returns an
index T such that the length of T is polynomially bounded in k.

Trapdoor (K, w) is run by the user to generate a trapdoor for a given word. It takes a secret key K and
a word w as inputs, and returns a trapdoor T,.

Search(Z,T,) is run by the server S in order to search for the documents in D that contain word w.
It takes an index I for a collection D and a trapdoor T, for word w as inputs, and returns D(w),
the set of identifiers of documents containing w.

A correct intuition. While security for searchable encryption is typically characterized as the re-
quirement that nothing be leaked beyond the outcome of a search (i.e., the identifiers of the documents
returned from a search), we are not aware of any previous work on SSE that satisfies this intuition.
In fact, with the exception of oblivious RAMs, all the constructions in the literature leak, in addition
to the search outcomes, the user’s search pattern. This is clearly the case for the schemes presented
in [SWP00, Goh03, CMO05] since their trapdoors are deterministic. Therefore, a more accurate charac-
terization of the security notion achieved (or rather, sought) for SSE is that nothing should be leaked
beyond the outcome and the pattern of a sequence of searches.

Having clarified our intuition, it remains to precisely describe our adversarial model. SSE schemes
are typically used in the following manner: the client generates an index from its document collection,
stores the index and the encrypted documents on the server, and finally, performs various search
queries. Here, it is important to note that the user may or may not generate its word queries depending
on the outcome of previous searches. We call queries that do depend on previous search outcomes
adaptive, and queries that do not, non-adaptive. This distinction in query generation is important
because it gives rise to definitions that achieve different privacy guarantees: non-adaptive definitions
can only guarantee security to clients who generate their queries in one batch, while adaptive definitions
can guarantee privacy even to clients who generate queries as a function of previous search outcomes.
The most natural use of searchable encryption is for making adaptive queries.

Limitations of previous definitions. To date, two definitions of security have been used for
SSE schemes: indistinguishability against chosen-keyword attacks (IND2-CKA), introduced by Goh
[Goh03]?, and a simulation-based definition introduced by Chang and Mitzenmacher [CM05].3

Intuitively, the notion of security that IND2-CKA tries to achieve can be described as follows: given
access to a set of indexes, the adversary (i.e., the server) is not able to learn any partial information
about the underlying document that he cannot learn from using a trapdoor that was given to him
by the client, and this holds even against adversaries that can trick the client into generating indexes
and trapdoors for documents and keywords of its choice (i.e., chosen-keyword attacks). A formal
specification of IND2-CKA is presented in Appendix B.

We remark that Goh’s work addresses a larger problem than searchable encryption, namely that of
secure indexes, which are secure data structures that have many uses, only one of which is searchable
encryption. And as Goh remarks (c¢f. Note 1, p. 5 of [Goh03]), IND2-CKA does not explicitly require
that trapdoors be secure since this is not a requirement for all applications of secure indexes. Although
one might be tempted to remedy the situation by introducing a second definition to guarantee the
semantic security of trapdoors, this cannot be done in a straightforward manner. Indeed, first proving
that an SSE scheme is IND2-CKA and then proving that its trapdoors are semantically secure does
not imply that an adversary cannot recover the word being queried. As we show in Appendix B, SSE
schemes can be built with trapdoors that, taken independently, leak no partial information about the

2Goh also defines a weaker notion, IND-CKA, that allows an index to leak the number of words in the document.
3We note that, unlike the latter and our own definitions (see below), IND2-CKA applies to indexes that are built for
individual documents, as opposed to indexes built from entire document collections.

word being queried, but when combined with an index allow an adversary to recover the word. This
illustrates that the security of indexes and the security of trapdoors are inherently linked.

Regarding existing simulation-based definitions, in [CM05] Chang and Mitzenmacher provide a
definition of security for SSE that is intended to be stronger than IND2-CKA in the sense that it
requires a scheme to output secure trapdoors. Unfortunately, as we also show in Appendix B, this
definition can be trivially satisfied by any SSE scheme, even one that is insecure. Moreover, this
definition is inherently non-adaptive (see Appendix B).

Our security definitions. We now address the above issues. Before stating our definitions for SSE,
we introduce three auxiliary notions which we will make use of.

First, we note that an interaction between the client and the server will be determined by a
document collection and a set of words that the client wishes to search for (and that we wish to hide
from the adversary); we call an instantiation of such an interaction a history.

Definition 3.2 (History). Let A be a dictionary. A history Hy, H, € 22% x A9, is an interaction

between a client and a server over q queries. The partial history Hé € 22% x At of a given history
Hy = (D,wi,...,wy), is the sequence H: = (D,wx, ..., w;), where t < q.

Given a history, we refer to what the adversary actually gets to “see” during an interaction as
the history’s view. In particular, the view will consist of the index (of the document collection) and
the trapdoors (of the queried words). It will also contain some additional common information, such
as the number of documents in the collection and their ciphertexts). However (if done properly) the
view (i.e., the index and the trapdoors) should not reveal any information about the history (i.e.,
the documents and the queried words) besides the outcome and the pattern of the searches (i.e., the
information we are willing to leak). Let Zp be the index for D generated under secret key K, and T,
1 <1 < g, be the trapdoors for the words queried in H,,.

Definition 3.3 (View). Let D be a collection of n documents and Hy = (D,wn,...,wq) be a history
over q queries. An adversary’s view of H, under secret key K is defined as Vi (Hy) = (id(Dy),. ..,
id(Dy,),E(D1),...,E(Dy), Ip, Th,...,T,). The partial view VL (H,) of a history H, under secret key
K is the sequence V-(Hy) = (id(D1), ...,id(Dy,),E(D1), ..., E(Dy),Ip, 1, ..., T}), where t < q.

We note that K in Vi (H,) and V}(H,) only refers to the secret key for the SSE scheme and not to
the keys used to encrypt the documents.

This leads to the notion of the trace of an interaction/history, which consists of exactly the infor-
mation we are willing to leak about the history and nothing else. More precisely, this should include
the identifiers of the documents that contain each query word in the history (i.e., the outcome of each
search), and information that describes which trapdoors in the view correspond to the same underly-
ing words in the history (i.e., the pattern of the searches). According to our intuitive formulation of
security, this should be no more than the outcome of a search and the user’s search pattern. However,
since in practice the encrypted documents will also be stored on the server, we can assume that the
document sizes and identifiers will also be leaked. Therefore we choose to include these in the trace.*
The trace also includes the user’s search pattern. More formally, a user’s search pattern II, can be
thought of as a symmetric binary matrix where II,[i, j] = 1 if w; = wj, and I1,[7, j] = 0 otherwise, for
1<i,j5<q

Definition 3.4 (Trace). Let D be a collection of n documents and Hy, = (D,wr,...,w,) be a
history over q queries. The trace of H, is the sequence Tr(H,) = (id(D1),...,id(Dy),|D1l,...,
| Dy, D(w1), ..., D(wy),).

4On the other hand, if we wish not to disclose the size of the documents, this can be trivially achieved by “padding”
each plaintext document such that all documents have a fixed size and omitting the document sizes from the trace.

We are now ready to state our first security definition for SSE. First, we assume that the adversary
generates the histories in the definition at once. In other words, it is not allowed to see the index of the
document collection or the trapdoors of any query words it chooses before it has finished generating
the history. We call such an adversary non-adaptive.

Definition 3.5 (Non-Adaptive Indistinguishability Security for SSE). A SSE scheme is secure in
the sense of non-adaptive indistinguishability if for all ¢ € N, for all (non-uniform) probabilistic
polynomial-time adversaries A = (A1, Az2), for all polynomials p and all sufficiently large k:

V¥ =b: K « Keygen(1¥); (Hy, Hy,state) « Aj; 1 1
<

Pr
b & {0,118 — As(Vic (Hy), state) R0

where (Hy, Hy) are histories over q queries such that Tr(Hy) = Tr(H;), where state is a polynomially
bounded string that captures Ay ’s state, and the probability is taken over the internal coins of Keygen,
A, and the underlying BuildIndex algorithm.

Definition 3.6 (Non-Adaptive Semantic Security for SSE). A SSE scheme is non-adaptively seman-
tically secure if for all ¢ € N and for all (non-uniform) probabilistic polynomial-time adversaries A,
there exists a (non-uniform) probabilistic polynomial-time algorithm (the simulator) S such that for all
traces Try of length q, all polynomially samplable distributions Hy over {Hy € 22% 5 A4 ; Tr(Hy) = Trq}
(i.e., the set of histories with trace Tr,), all functions f : {0,1}™ — {0,1}*™) (where m = |H,| and
£(m) = poly(m)), all polynomials p and sufficiently large k:

[PrlA(Vi(Hy)) = f(Hy)| = Pr[S(Tr(H,)) = f(Hy)]| < —=

where H, & Hy K — Keygen(1¥), and the probabilities are taken over H, and the internal coins of
Keygen, A, S and the underlying BuildIndex algorithm.

We now prove that our two definitions of security for non-adaptive adversaries are equivalent. For
this, we follow the approach of Goldwasser and Micali [GM84] and Goldreich [Gol93].

Theorem 3.7. Non-adaptive indistinguishability security of SSE is equivalent to non-adaptive seman-
tic security of SSE.

Proof. (Non-adaptive semantic security = non-adaptive indistinguishability security.) We show that
given a non-uniform adversary A that breaks the security of a SSE scheme in the sense of non-adaptive
indistinguishability, we can construct a non-uniform adversary B that breaks the security of the scheme
in the sense of non-adaptive semantic security.

If a SSE scheme (Keygen, BuildIndex, Trapdoor, Search) is non-adaptively distinguishable, then there
exists a value ¢ € N, a non-uniform probabilistic polynomial-time adversary A = (A;,.42) and two
histories over ¢ queries (Hp, H1) where Tr(Hy) = Tr(H;), such that A can distinguish with non-

negligible probability over % any view that results from a history Hp kil {Hp,H1} and a key K «—
Keygen(1%).

Therefore, given a view Vi (Hp) such that H, & {Hy, H,} and that K < Keygen(1¥), B can use
A to compute f, where f is the identity function, on H, as follows. It begins by running Ay, which
outputs (Ho, Hy,state). B then runs As (Vi (Hp), state) and outputs Hp if b = 0 and H; if b = 1. From
B’s description, it follows that B will output f(H) = Hj, with probability equal to A’s distinguishing

probability which, by assumption, is non-negligibly greater than % On the other hand, no algorithm

can guess f(H;) with probability larger than % when only given Tr(Hy), since Tr(Hy) = Tr(H;).

(Non-adaptive indistinguishability security = non-adaptive semantic security.) We show that given
a non-uniform adversary A that breaks the security of a SSE scheme in the sense of non-adaptive
semantic security, we can construct a non-uniform adversary B that breaks the security of the scheme
in the sense of non-adaptive indistinguishability.

If a SSE scheme is not non-adaptively semantically secure, then there exists a value ¢ € N and a
non-uniform probabilistic polynomial-time adversary A such that for all simulators S there exists a
trace Try of length ¢, a distribution H, over {H € 22% % AT Tr(H) = Try}, a function f : {0,1}"™ —
{0,1}40™) (where £(m) = poly(m)), and a polynomial p such that for infinitely many &’s

1

[Pr[A(Vk(H)) = f(H)] = Pr[S(Tr(H)) = f(H)]| = o)

(1)

where H & Hy and K Keygen(1¥). From this, it follows that there exists at least two histories
(Ho, H1) in H,’s support such that f(Hy) # f(H;)—otherwise the simulator that always outputs the
value v = f(H), outputs f(H) with probability equal to A’s. The indistinguishability adversary B
runs in two stages B = (B, B2), where B; finds a triple (Hy, H1,v), and By attempts to recover the
challenge bit b with probability non-negligibly greater than %

B1 begins by sampling two histories (Hy, H1) from H,. We claim that with non-negligible proba-
bility there exists a value v in f’s range such that

[Pr[A(Vk (Ho)) = v] = PrA(Vk(H1)) = v]| > (2)

2-p(k)’

where K « Keygen(1¥). To see why, consider the simulator S* that on input Tr(Hy) generates a key

K « Keygen(1%), samples a history H; & H, and runs A on Vi (Hp). Since our initial assumption
about A states that Equation (1) must hold against all simulators, it must hold against S*. And
according to 8*’s definition, this means that

[Pr[A(Vk (Ho)) = f(Ho)] = Pr[A(Vi(H1)) = f(Ho)]| =

where Hy & Hq, Hq £ H,, K — Keygen(1¥). If we define the set B, as

B, = {H € sup(H,) : Pr[A(Vic(Ho)) = F(Ho)] — Pr [A(Vic(H) = f(Ho)]| > ~— }

\]
S
—~

5
~

then by an averaging argument, Pryecy, [H € By| > 2.p1(k). Defining C, to be

Cy= {H e sup(H,) : Fv € {0,1}*™ st. |Pr[A(Vi(Hp)) = v] — Pr[A(Vk(H) = v]| > : ! },

it follows that Pryep, [H € Cy] > 2-p1(k) since B, C C,. This proves our claim.

Having found a pair (Hg, H;) such that there exists a value v satisfying Equation (2) with non-
negligible probability, it remains for B; to find v. To this end, for each value v in f’s range, B
will estimate Pr[A(Vk(Hp)) = v] and Pr[A(Vk(Hy)) = v]. It will then choose the v for which the
absolute value of the difference of the estimates is non-negligible.

More precisely, By begins by constructing ¢t = poly(k) views from each history. This results in two
sequences of t views:

Up = (VK1 (H0)7 R VKt(HU)))

generated from Hy, where K; < Keygen(1%) for 1 <i < t; and

Ul = (VKt+1(H1)7) VKQt(H1>))

generated from Hy, where K; «+ Keygen(1¥) for ¢ + 1 <4 < 2t. It then runs A on each element of Uy
and Uy, resulting in two sequences of ¢ values in f’s range

Wo = (A(VKl (HO))7) A(VKt (HO))))

and
W = (A(VKt+1(H1))7 s A(Vth (Hl))) .
For each unique value v in Wy and W7, B; computes

H{w e Wy : w = v}
t

71’0(’1)) =

and

weWtw=uv
() = LW =)
Notice that for a fixed v, mo(v) and 7 (v) are estimates of Pr [A(Vk (Hp)) = v] and Pr [A(Vk (H1)) = v],
respectively, taken over ¢t = poly(k) samples. And if ¢ is a large enough polynomial in %k they will ap-
proximate Pr[A(Vk(Hp) =wv]| and Pr[A(Vk(H;) = v] with high probability. After estimating the
probabilities, By searches Wy and Wi for an element v such that

1
[mo(v) = m(v)| = 7R

Since the 7’s are good estimators, and since we know from our claim that with non-negligible probabil-
ity there exists a v € {0, 1} such that |Pr[A(Vx(Hp)) =v] — Pr[A(Vkx(Hy)) =v]| > Q.pl(k), such
a v will be found with high probability. B; then outputs the triplet (Hop, Hi, state), where state = v.

Finally, when given challenge Vi (H;), Bs runs A(Vi(Hp)) and outputs 0 if A returns v and 1 other-
wise. From B = (By, B2)’s description, it follows that:

Prt/=b] = Pr[t/=b|b=0]-Pr[b=0]+Pr[t/=b|b=1] Pr[b=1]
_ % - (Pr[A(Vik (Hp)) = v] + Pr [A(Vk (Hy)) # v])
_ % - (Pr[A(Vi(Hy)) = v] + 1 — Pr[A(Vg(Hy)) = v])
1 1
= §+4-p(k)

from which the theorem follows.

We now turn to adaptive security definitions. Our indistinguishability-based definition is similar
to the non-adaptive counterpart, with the exception that we allow the adversary to choose its history
adaptively. More precisely, the challenger begins by flipping a coin b; then the adversary first submits
two document collections (Dy, D1) (subject to some constraints which we describe below), and receives
the index of one of the collections Dy; it then submits two words (wg,w;) and receives the trapdoor
of one of the words wy,. This process goes on until the adversary has submitted g queries and is then
challenged to output the value of b.

10

Definition 3.8 (Adaptive Indistinguishability Security for SSE). A SSE scheme is secure in the sense

of adaptive indistinguishability if for all ¢ € N, for all (non-uniform) probabilistic polynomial-time

adversaries A = (A, ..., Aqy2), for all polynomials p and sufficiently large k:

V =b:K « Keygen(1¥);b & {0,1};
(Do, D1, statey) «— Ajy;

Pr (wl,o, w11, statez) — Ay (Ib, statel); 1 1
. 2 p(k)

(wg,0,wq,1,stategr1) «— Agr1(Zo, T s - - - Tw,_ 1, Statey);

b — Aq+2(VK(Hb), stateqH)

where Hy = (Do, w1y, ..,Wq), Hi = (D1,wi1,...,wq1), and Tr(Hy) = Tr(Hy). Also, state; (1 <
i < q+1) is a polynomially bounded string that captures A;’s state, and the probability is taken over
the internal coins of Keygen, A, and the underlying Buildlndex algorithm.

We now present our simulation-based definition, which is similar to the non-adaptive definition,
except that for all queries 0 < t < ¢, we require the simulator, given only a partial trace of the history,
to simulate the adversary on a partial view of the same history. More precisely, the challenger picks a
key K and a history H, over ¢ queries, and for each query ¢ between 0 and ¢, requires the simulator to
simulate, given only a partial trace of H,, an adversary A that is given a partial view of H, under key
K. If the adversary can be simulated for each query under the same key K, then it follows that during
each query of an interaction between a user and a server, the SSE scheme leaks no partial information
about the elements of the history beyond the outcome of the searches and the user’s search pattern.

Definition 3.9 (Adaptive Semantic Security for SSE). A SSE scheme is adaptively semantically
secure if for all ¢ € N and for all (non-uniform) probabilistic polynomial-time adversaries A, there
exists a (non-uniform) probabilistic polynomial-time algorithm (the simulator) S such that for all traces
Trq of length q, all polynomially samplable distributions Hy over {H, € 22 % A9 Tr(Hy) = Try}
(i.e., the set of histories with trace Try), all functions f : {0,1}™ — {0,1}*(™) (where m = |H,| and
£(m) = poly(m)), all 0 <t < q and all polynomials p and sufficiently large k:

Pr [AV (H,) = f(HL)] — Pr [S(Tr(HY) = f(HL)]| < p(lk)

where H, & Hy K — Keygen(1¥), and the probabilities are taken over Hy and the internal coins of
Keygen, A, S and the underlying BuildIndex algorithm.

Theorem 3.10. Adaptive indistinguishability security of SSE is equivalent to adaptive semantic se-
curity of SSE.

The proof of this theorem is similar to (albeit more tedious than) that of Theorem 3.7; it will appear
in the full version of this paper.

4 Efficient and Secure Searchable Symmetric Encryption

In this section we present our efficient SSE constructions, and state their security in terms of the
definitions presented in Section 3. We start by introducing some additional notation and the data
structures used by the constructions. Let A’, A’ C A, be the set of distinct words that exist in the
document collection D. We assume that words in A can be represented using at most p bits. Also,
recall that D(w) is the set of identifiers of documents in D that contain word w ordered in lexicographic
order.

11

We use several data structures, including arrays, linked lists and look-up tables. Given an array
A, we refer to the element at address ¢ in A as A[i], and to the address of element x relative to A as
addr(A(z)). So if Afi] = z, then addr(A(x)) = 4. In addition, a linked list L, stored in an array A, is a
set of nodes N; = (v;;addr(A(N;41))), where 1 < i < |L|, v; is an arbitrary string and addr(A(N;4+1)) is
the memory address of the next node in the list.

4.1 An efficient SSE construction

We first give an overview of our one-round non-adaptive SSE construction. We associate a single index
7 with a document collection D. The index 7 consists of two data structures:

— an array A, in which we store in encrypted form the set D(w), for each word w € A’; and
— a look-up table T, which contains information that enables one to locate and decrypt the appro-
priate elements from A, for each word w € A’.

We start with a collection of linked lists L;, w; € A/, where the nodes of each L; are the identifiers
of documents in D(w;). We then write in the array A the nodes of all lists L;, “scrambled” in a
random order and encrypted with randomly generated keys. Before encryption, the j-th node of L; is
augmented with information about the index in A of the (j + 1)-th node of L;, together with the key
used to encrypt it. In this way, given the position (index) in A and the decryption key for the first
node of a list L;, the server will be able to locate and decrypt all the nodes in L;. Note that by storing
in A the nodes of all lists L; in a random order, the size of each L; is hidden.

We now build a look-up table T that allows one to locate and decrypt the first element of each
list L;. Each entry in T corresponds to a word w; € A and consists of a pair <address,value>. The
field value contains the index in A and the decryption key for the first element of L;. value is itself
encrypted using the output of a pseudo-random function. The other field, address, is simply used to
locate an entry in T. The look-up table T is managed using indirect addressing (described below).

The user computes both A and T based on the un-encrypted D, and stores them on the server
together with the encrypted D. When the user wants to retrieve the documents that contain word
w;, it computes the decryption key and the address for the corresponding entry in T and sends them
to the server. The server locates and decrypts the given entry of T, and gets the index in A and the
decryption key for the first node of L;. Since each element of L; contains information about the next
element of L;, the server can locate and decrypt all the nodes of L;, which gives the identifiers in D(w;).

Efficient storage and access of sparse tables. We describe the indirect addressing method that
we use to efficiently manage look-up tables. The entries of a look-up table T are tuples <address,value>,
in which the address field is used is used as a virtual address to locate the entry in T that contains
some value field. Given a parameter p, a virtual address is from a domain of exponential size (i.e.,
from {0,1}?). However, the maximum number of entries in a look-up table will be polynomial in p,
so the number of virtual addresses that are used can be approximated as poly(p). If, for a lookup-up
table T, the address field is from {0,1}?, the value field is from {0,1}" and there are at most m
entries in T, then we say T is a ({0,1}? x {0,1}" x m) look-up table.

Let Addr be the set of virtual addresses that are used for entries in a look-up table T. We can
efficiently store T such that, when given a virtual address, it returns the associated value field.
We achieve this by organizing the Addr set in a so-called FKS dictionary [FKS84], an efficient data
structure for storage of sparse tables that requires O(|Addr|) (4+o(]Addr|)) storage and O(1) look-up
time. In other words, given some virtual address A, we are able to tell if A € Addr and if so, return the
associated value in constant look-up time. Addresses that are not in Addr are considered undefined.

SSE-1 in detail. We are now ready to proceed to the details of the construction. Let k,¢ be
security parameters and let (G,&,D) be a semantically secure symmetric encryption scheme with

12

Keygen(1*,1¢): Generate random keys s, v, 2 & {0,1}* and output K = (s,y, z, 19).
BuildIndex (K, D):
1. Initialization:
a) scan D and build A’; the set of distinct words in D. For each word w € A’; build D(w);
b) initialize a global counter ctr = 1.
2. Build array A:
a) for each w; € A’: // (build a linked list L, with nodes N; ; and store it in array A)
e generate K, £ {0,1}*
o for 1 <j < |D(wy)l:
— generate K; & {0,1}¢ and set node N;; = (id(D; ;)| ki lws(ctr + 1)), where
id(D; ;) is the j'" identifier in D(w;);
— compute &, ,_, (N;), and store it in A[¢)(ctr)];
— ctr=ctr+1

e for the last node of L; (i.e., N; |p(w,)|), before encryption, set the address of the next
node to NULL;

b) let m’ =3 [D(wi)|. If m" < m, then set remaining (m —m’) entries of A to random
values of the same size as the existing m’ entries of A.

3. Build look-up table T:
a) for each w; € A”:
o value = (addr(A(N;1))||Ks0) @ fy(w;);
e set T[m,(w;)] = value.
b) if |A’| < |Al, then set the remaining (|A| — |A’|) entries of T to random values.

4. Output 7T = (A, T).

Trapdoor(w): Output T, = (7, (w), fy(w)).

Search(Z,T,):

1. Let (v,n) = Ty. Retrieve § = T[y]. Let (o||x) =0 @ n.

2. Decrypt the list L starting with the node at address a encrypted under key x.

3. Output the list of document identifiers contained in L.

Figure 1: Efficient SSE construction (SSE-1)

£ :{0,1}* x {0,1}" — {0,1}". In addition, we make use of one pseudo-random function f and two
pseudo-random permutations 7 and with the following parameters:

- f:{0,1}F x {0,1}? — {0, 1}¢Floe2(m);
- T {O, l}k X {O, l}p — {0’ 1}p’ and
— ¥ :{0,1}F x {0, 1}l82(m) — {0, 1}log2(m),

Let m be the total size of the plaintext document collection, expressed in units. A unit is the smallest
possible size for a word (e.g. one byte).” Let A be an array of size m. Let T be a ({0,1}? x
{0, 1}f+10g2(m) x |Al]) look-up table, managed using indirect addressing as described previously. Our
construction SSE-1 = (Keygen, BuildIndex, Trapdoor, Search) is described in Fig. 1.

Consistent with our security definitions, SSE-1 reveals only the outcome and the pattern of a
search, the total size of the encrypted document collection and the number of documents in D. Recall

5If the documents are not encrypted with a length preserving encryption scheme or if they are compressed before
encryption, then m is the maximum between the total size of the plaintext D and the total size of the encrypted D.

13

that the array A can be seen as a collection of linked lists L;, where each L; contains the identifiers of
documents containing word w;. Let m' = Zwi e |Li|. If, for all D; € D, a word does not appear more
than once in document Dj, it is clear that m = m/. If the size of A is smaller than m, then the array
A reveals that at least one document in D contains a word more than once. To avoid such leakage, we
set the size of A equal to m and fill the (m —m’) remaining entries with random values. We follow the
same line of reasoning for the look-up table T, which has at least one entry for each distinct word in
D. To avoid revealing the number of distinct words in D, we add additional (|A| — |A’|) entries in T,
filled with random values, such that the number of entries in T is always equal to |A|.

Theorem 4.1. SSE-1 is a non-adaptively secure SSE scheme.

Proof. For the proof, we follow the simulation-based approach of Definition 3.6. We describe a prob-
abilistic polynomial-time simulator S such that for all ¢ € N, all probabilistic polynomial-time ad-
versaries A, all polynomially-bounded functions f, all distributions H,, given Tr(H,), S can sim-

ulate A(Vk(H,)) with probability negligibly close to 1, where H, hid H, and K « Keygen(1%).
More precisely, we show that S(7r(H,)) can generate a view V,* such that V* is indistinguishable
from Vi (Hy). Recall that Tr(Hy) = {1,...,n,|D1|,...,|Dy|,D(w1),...,D(wgy), Iy} and Vi (H,) =
{1,...,n,&(D1),...,E(Dn), Ip, Ty, ., Tw,}. Further, recall that the parameters of the pseudo-
random function f and of the two pseudo-random permutations 7,1 used to instantiate the scheme
are known to S.

For ¢ = 0, S builds the set V' = {1,...,n,e},... e}, 7"} such that e} & {0, 1} for 1 < i < m;

and that 7* = (A*, T*), where A* and T* are generated as follows:

Generating A*: for 1 < i < m, S generates a random string 7; & {0, 1}1°g2(”)+”l°g2(m) and sets
A* [Z] =T;.
Generating T*: for 1 <i < |A|, S generates pairs (a}, ¢]) such that o} £ {0,1}?, where each a is

distinct, and ¢ £ {0, 1}¢+1982(m) Tt then sets T*[a}] = .

We claim that no probabilistic polynomial-time adversary A can distinguish between V" and Vi (Hp) =
{1,...,n,E(D1),...,E(Dy), Ip} for any Hy (sampled from any distribution Ho) and K « Keygen(1%),
otherwise, by a standard hybrid argument, A could distinguish between at least one of the elements of
Vy and its corresponding element in Vi (Hp). And we show that this is impossible since each element
of Vi is indistinguishable from its corresponding element in Vi (Hp). Since, clearly, the document
identifiers in V' and Vi (Hp) are indistinguishable, we consider only the other elements.

Encrypted documents: for 1 < i <n, £(D;) is indistinguishable from a random string e’ hid {0,1}"
since (G, £, D) is semantically secure.

Index: Recall that Zp = (A,T) and that Z* = (A*,T*). Since A consists of m' semantically secure
ciphertexts and m — m/ random strings of the same size, and A* consists of m random strings of
the same size, it follows that each element in A* will be indistinguishable from its counterpart
in A.

Now recall that T consists of |A’| ciphertexts, ¢;, generated by XOR-ing a message with the
output of f, and of |A — A’| random values of size ¢ + logy(m). T*, on the other hand, consists
of |A| random string of the same size. It follows then, that each element of T and T* are
indistinguishable, otherwise one could distinguish between the output of f and a random string
of size £ + logy(m).

For ¢ > 0, S constructs V" = {1,...,n,ej,..., e, Z% 17, ..., T}, such that (e],...,e;) are ran-

N n
dom values (as in the case of ¢ = 0) and that Z* = (A*, T*), where A* and T* are generated as follows:

14

Generating A*: To build A*, S runs step 2 of the BuildIndex algorithm of SSE-1 on the sets (D(w), .. .,
D(wq)) (which it knows from its trace) with |A’| = ¢ and using different random strings of size
logy(m) instead of v(ctr).

Generating T*: for 1 <i < ¢, S generates random values [3; kil {0, 1}¢+log2(m) and al hid {0,1}7, and
sets T*[af] = (addry=(N; 1)||ki0) @ 5. It then inserts dummy entries into the remaining entries
of T*. So in other words, S runs step 3 of the BuildIndex algorithm of SSE-1 with |A’| = ¢, using
A* instead of A, and using ;] and a instead of fy(w;) and 7, (w;), respectively.

Generating T7: S sets T = (a}, 57)

The correctness of searching on Z* using trapdoors T;" follows trivially. We again claim that no
probabilistic polynomial-time adversary A can distinguish between V* and V(H,) = {1,...,n,E(D1),
.,&(Dy),Ip,Th,..., Ty} for any Hy, otherwise, by a standard hybrid argument, A could distinguish
between at least one of the elements of V" and its corresponding element in V' (H,). We show that this
is impossible since each element of V" is indistinguishable from its corresponding element in V' (H,):

Encrypted documents: for 1 < i <n, £(D;) is indistinguishable from a random string e’ & {0,1}"
since (G, &, D) is semantically secure.

Index: Recall that Zp = (A, T) and that Z* = (A*,T*). Since A consists of m' semantically secure
ciphertexts and m —m’ random strings of the same size, while A* consists of ¢ semantically secure
ciphertexts and m — ¢ random strings of the same size, it follows that each element in A* will
be indistinguishable from its counterpart in A, otherwise one could either distinguish between
two semantically secure ciphertexts of the same size, or between a semantically secure ciphertext
and a random string of the same size.

Now recall that T consists of |A’| ciphertexts, ¢;, generated by XOR-ing a message with the
output of f, and of |A — A’| random values of size ¢ + logy(m). T*, on the other hand, consists
of ¢ ciphertexts generated by XOR-ing a message with a random string 37 of length £+ logy(m),
and |A] — ¢ random strings of the same length. It follows that each element of T and T* are
indistinguishable, otherwise one could distinguish between the output of f and a random string.

Trapdoors: for 1 < j < ¢, T} is indistinguishable from 777, otherwise one could distinguish between
the output of m and a random string of size p or between the output of f and a random string
of size £ + logy(m).

Regarding efficiency, we remark that each query takes only one round, and O(1) message size. In
terms of storage, the demands are O(1) on the user and O(m) on the server; more specifically, in
addition to the encrypted D, the server stores the index Z, which has size O(m), and the look-up
table T, which has size O(|A|). Since the size of encrypted D is O(m), accommodating the auxiliary
data structures used for searching does not change (asymptotically) the storage requirements for the
server. The user spends O(1) time to compute a trapdoor, while for a query for word w, the server
spends time proportional to |D(w)].

4.2 Adaptive SSE security

While our SSE-1 construction is efficient, it is only proven secure against non-adaptive adversaries.
We now show a second construction, SSE-2, which achieves semantic security against adaptive adver-
saries, at the price of requiring higher communication size per query and more storage on the server.
(Asymptotically, however, costs are the same—see Table 1.)

15

Keygen(1*): Generate random key s & {0,1}* and output K = s.
BuildIndex (K, D):

1. Initialization:
e scan D and build A’, the set of distinct words in D. For each word w € A’, build D(w).
2. Build look-up table T:
a) for each w; € A”:
o for 1 <j < |D(w;)l:
— value = id(D; ;), where id(D; ;) is the j*" identifier in D(w;);
— set T[ms(w;]|j)] = value.

b) let m’ =37 |D(w;)|. If m" < m, then set values for the remaining (m —m') entries
such that for all D € D, it holds that value = id(D) for exactly max entries. Also, set
the address field of these remaining entries to random values.

3. Output Z =T.
Trapdoor(w): Output Ty, = (T, s - - -, Ty,) = (ms(w]|1), ..., 7s(w||max)).

Search(Z,T,,): For 1 < i < max: retrieve id = T[T,,] and output id.

Figure 2: Adaptively secure SSE construction (SSE-2)

The difficulty of proving our SSE-1 construction secure against an adaptive adversary stems from
the difficulty of creating in advance a view for the adversary that would be consistent with future
(unknown) queries. Given the intricate structure of the SSE-1 construction, with each word having
a corresponding linked list whose nodes are stored encrypted and in a random order, building an
appropriate index is quite challenging. We circumvent this problem as follows.

For a given word w and a given integer j, we derive a label for w by concatenating w with j (j is
first converted to a string of characters). For example, if w is “coin” and j is 1, then w||j is “coinl”.
We define the family of a word w € A’ to be the set of labels F,, = {wl||j : 1 < j < |D(w)|}. For
example, if the word “coin” appears in three documents, then F,, = {“coinl”, “coin2”, “coin3” }. Now,
for each word w € A’, we choose not to keep a list of nodes with the identifiers in D(w), but instead
to simply derive the family F,, of w, and insert the elements of F,, into the index. Searching for w
becomes equivalent with searching for all the labels in w’s family. Since each label in w’s family will
appear in only one document, a search for it “reveals” only one entry in the index. Translated to the
proof, this will allow the simulator to easily construct a view for the adversary that is indistinguishable
from a real view.

We now give an overview of the SSE-2 construction. We associate with the document collection D
an index Z, that consists of a look-up table T. For each label in a word w’s family, we add an entry in
T, whose value field is the identifier of the document that contains an instance of w. In order to hide
the number of distinct words in each document, we have to “pad” the look-up table T such that the
identifier of each document appears in the same number of entries. The search for a word w is slightly
different than for the SSE-1 construction: a user needs to search for all the labels in w’s family.

Let k be a security parameter. We use a pseudo-random permutation 7 : {0, 1}¥x {0, 1}? — {0, 1}?.
Recall that a unit is the smallest possible size for a word (e.g. one byte). Also, recall that A’ is the set of
distinct words that exist in D. Let max be the size of the largest plaintext document in D, expressed in
units. Let m = max-n, where n is the number of documents in D. Let T be a ({0, 1}? x {0, 1}°22(") x p)
look-up table, managed using indirect addressing. The construction SSE-2 is described in Fig. 2.

Theorem 4.2. SSE-2 is an adaptively secure SSE scheme.

Proof. The idea behind the proof is to describe a simulator that can simulate the partial view of

16

an adversary given only the trace of a partial history. Following the simulation-based approach of
Definition 3.9, we describe a probabilistic polynomial-time simulator & such that for all ¢ € N, all
probabilistic polynomial-time adversaries A, all polynomially-bounded functions f, all distributions
Hy, given Tr(H, é), S can simulate A(VY(H,)) for all 0 < ¢ < g with probability negligibly close to 1,

where H, & H, and K «— Keygen(1*). More precisely, we show that, for all 0 < t < ¢, S(Tr(H})) can
generate a view (V)" such that (V)" is indistinguishable from V. (H,).

In the SSE-2 construction, for each word, the labels in the word’s family are inserted into the
index and each label appears in only one document. Searching for a word consists of searching for max
labels in its family. Before proceeding further, we recall that the parameters of the pseudo-random
permutation 7 used to instantiate the scheme are known to S. Also, recall the notions of a view and
of a trace in the context of the SSE-2 construction:

o VK(Hq) = (1,. . .,n,g(Dl),...,E(Dn),ID,Tl,... ,Tq)

VEH,) = (1,...,n,E(Dn),...,E(Dy),Ip,T1, ..., T}), where 0 <t < ¢

i TT(HC]) = (17 s Ny ’D1’7 s |Dn|’D(w1)7 s ,D(wq),H), where D(wl) = (D(w’LHl)’ s 7D(wi”max))7
for 0 <i<gq
* TT'(H;) = (17 EERL ’D1’7 SRR ‘Dn|7p(w1)7 s aD(wt)7H)7 where D(wl> = (D(lel)? T a,D(wiHmaX))7

for0<i<tand 0<t<gq

For a given ¢, the simulator must commit to an index before any queries are made, i.e. at time
t = 0 the simulator generates an index Z* that will be included in all partial views (V;]t)* used to
simulate A, for all 0 < ¢ < ¢g. Note that although at time t = 0 the simulator has no knowledge
about future queries, the index Z* must be indistinguishable from a real index Zp in V}(H,), for all
0 <t <q. Also, for all 0 < t < ¢, the simulator includes in the partial view (Vqtfk the document
identifiers (which it knows from the trace of the partial history Tr(H,)) and ciphertexts obtained by
generating random values (of size known from Tr(H()). It follows trivially that the identifiers and
ciphertexts in (V/)* are indistinguishable from those in Vi (H,), for all 0 < ¢ < ¢. It then remains to
show how S constructs the other elements in the view, namely the index and the trapdoors.

For t = 0, the simulator’s trace on the partial history Tr(Hg) contains among other things, the
identifiers of each document in the collection. S constructs (and includes in (qu)*) the index Z* as a
({0,1}7 x {0, 1}1°82(") x 1) look-up table T*, where m = max - n and T* contains max copies of each
document’s identifier inserted at random locations. S keeps a copy of Z* in order to be able to simulate
future partial views for 1 < ¢ < ¢g. Given the algorithm used to construct a real index Z included in
the partial view V2 (H,), it is clear that Z* is indistinguishable from Z, otherwise one could distinguish
between the output of 7 and a random string of size p. Thus, (qu)* is indistinguishable from V2 (H,).

For 1 <t < ¢, the simulator includes in the partial view (Vqtfk the index Z* which was computed
for t = 0 and which was established above to be indistinguishable from a real index 7 in a partial view
Vi (Hy). Recall that 7* consists of a look-up table T* and that Tr(H,) contains the search pattern
matrix IT for the ¢ queries in Tr(H.). We describe how S constructs the trapdoors (T7,...,T})
included in (V{)*. S reuses the trapdoors (T}, ...,T; ;) that were included in (Vq"/*lfk (We assume
that S remembers (V;il)* and can reuse the trapdoors in it; alternatively, S can reconstruct these
trapdoors from TT’(HZ;_I), one by one in the same manner we will show how to construct T; from
D(wy) and II). To construct Ty, S first checks if H.™! contains w; (by checking if II;; = 1 for any
1 <j <t—1). If negative, then for each label wy||i, with 1 < < max, S randomly picks an address
addr; from T* such that T*[addr;] = D(wy||i), and constructs trapdoor T} = (addri,...,addrmay).
Also, § remembers the association between T} and wy. Otherwise, if Hé‘l contains wy, then &

17

retrieves the trapdoor associated with w; and assigns it to 7). This ensures that if Hé contains
repeated words, the corresponding trapdoors included in (Vqt)* are identical.

It’s easy to see that the trapdoors (T7,...,T}) in (V)" are indistinguishable from the trapdoors
(Th,...,T;) in VL (H,), otherwise one could distinguish between the output of 7 and a random string
of size p. Thus, (Vqt)* is indistinguishable from V}(Hy), for all 0 <t < gq.

Just like SSE-1, SSE-2 requires for each query one round of communication and an amount of
computation on the server proportional with the number of documents that match the query (i.e.,
O(|D(w)|). Similarly, the storage and computational demands on the user are O(1). The communi-
cation is equal to max and the storage on the server is increased by a factor of max when compared to
SSE-1. We note that the communication cost can be reduced if in each entry of T corresponding to an
element in some word w’s family, we also store |D(w)| in encrypted form. In this way, after searching
for a label in w’s family, the user will know |D(w)| and can derive F,,. The user can then send in a
single round all the trapdoors corresponding to the remaining labels in w’s family.

4.3 Secure updates

We allow for secure updates to the document collection in the sense defined by Chang and Mitzen-
macher [CMO5]: each time the user adds a new set ¢ of encrypted documents, ¢ is considered a separate
document collection. Old trapdoors cannot be used to search newly submitted documents, as the new
documents are part of a collection indexed using different secrets. If we consider the submission of
the original document collection an update, then after v updates, there will be u document collections
stored on the server. In the previously proposed solution [CMO05], the user sends a pseudo-random seed
for each document collection, which implies that queries have size O(u). We propose a solution that
achieves better bounds for the size of queries (namely queries have size O(logu)) and for the amount
of computation at the server. For applications where the number of queries dominates the number of
updates, our solution may significantly reduce the communication size and the server’s computation.

When the user performs an update, i.e. submits a set (* of new documents, the server checks it
there exists (from previous updates) a document collection ¢®, such that [¢®| < [¢?|. If so, then the
server sends (® back to the user, and the user combines ¢* and ¢® into a single collection ¢¢ with
|¢%] 4 |¢%| documents for which it re-computes the index. The server stores the combined document
collection ¢¢ and its index Z,, and deletes the composing document collections (%, ¢? and their indexes
Ta,Iy. Note that (¢ and its index Z, will not reveal anything more than what was already revealed by
the ¢%, ¢b and their indexes Z,, Zp, since one can trivially reduce the security of the combined collection
to the security of the composing collections.

Next, we analyze the number of document collections that results after u updates using the method
proposed above. Without loss of generality, we assume that each update consists of one new document.
Then, it can be shown that after u updates, the number of document collections is given by the the
Hamming weight of f(u). Note that f(u) € [1,[log(u + 1)]]. This means that after u updates, there
will be at most log(u) document collections, thus the queries sent by the user have size O(logu) and
the search can be done in O(logu) by the server (as opposed to O(u) in [CMO05]).

5 Multi-User Searchable Encryption

In this section we consider the natural extension to the SSE setting where a user owns a document
collection, but an arbitrary group of users can submit queries to search his collection. A familiar
question arises in this new setting, that of managing access privileges, but while preserving privacy
with respect to the server. We first present a definition of a multi-user searchable encryption scheme

18

(MSSE) and some of its desirable security properties, followed by an efficient construction which, in
essence, combines a single-user SSE scheme with a broadcast encryption [FN94] (BE) scheme. Let N
denote the set of all possible users, and G C N the set of users that are currently authorized to search.

Definition 5.1 (Multi-User Searchable Symmetric Encryption Scheme). A multi-user SSE scheme is
a collection of siz polynomial-time algorithms M-SSE = (MKeygen, MBuildIndex, AddUser, RevokeUser,
MTrapdoor, MSearch) such that:

MKeygen(1%) is a probabilistic key generation algorithm that is run by the owner O to setup the scheme.
It takes a security parameter k, and returns an owner secret key, Ko.

MBuildIndex(Ko, D) is run by O to construct indexes. It takes the owner’s secret key Ko and a
document collection D as inputs, and returns an index Z.

AddUser(Kp,U) is run by O whenever it wishes to add a user to the group G. It takes the owner’s
secret key Ko and a user U as inputs, and returns U’s secret key, Ky .

RevokeUser(Kop, U) is run by O whenever it wishes to revoke a user from G. It takes the owner’s secret
key Ko and a user U as inputs, and revokes the user’s searching privileges.

MTrapdoor(Kyr, w) is run by a user (including O) in order to generate a trapdoor for a given word. It
takes a user U’s secret key Ky and a word w as inputs, and returns a trapdoor Ty .

MSearch(Zp, Ty) is run by the server S in order to search for the documents in D that contain word
w. It takes the index Ip for collection D and the trapdoor Ty, for word w as inputs, and returns
D(w) if user U € G and L if user U ¢ G.

We briefly discuss here notions of security that a multi-user SSE scheme should achieve. It should
be clear that the (semantic) security of a multi-user scheme can be reduced to the semantic security of
the underlying single-user scheme. The reason is that in the multi-user case, just like in the single-user
case, we are only concerned with providing security against the server. One distinct property in this
new setting is that of revocation, which essentially states that a revoked user no longer be able to
perform searches on the owner’s documents.

Definition 5.2 (Revocation). A multi-user SSE scheme M-SSE = (MKeygen, MBuildIndex, AddUser,
RevokeUser, MTrapdoor, MSearch) achieves revocation if for all probabilistic polynomial-time adver-
saries A = (A1, Az), all polynomials p and sufficiently large k:

T’ = MTrapdoor(Ky7, w) : Ko < MKeygen(1¥); K 4 < AddUser(Kp, A);
Pr state « A'lle”"dlndex(KO")(KA); RevokeUser(Kp, A); < —
(w, T") « AgﬂTrapdoor(Ko")(state);

where the probability is taken over MKeygen, A and MBuildindex’ s internal coins.

In this definition, the adversary runs in two stages, A; and Ag, representing its status as an
authorized user and then as a revoked user. We use state to represent the knowledge gained by A1,
which is then being passed to As. The adversary A wins the game if it is able to generate a valid
trapdoor T4 ,, for some word w, after it has been revoked.

Remarks. We point out that users receive their long-lived secrets for the BE scheme only when
they are given search authorization. As such, a user U that has not joined the system yet can run
the MTrapdoor algorithm and retrieve SE\ER(T) from the server. However, since U does not know its

long-lived secrets, it will not be able to recover r. Similarly, when a revoked user U retrieves EE{ER(r)
from the server, it cannot recover r because U € R. Moreover, even though a revoked user which has
been re-authorized to search could recover (old) values of r used while being revoked, these values are
no longer of interest.

19

The fact that backward secrecy is not needed for the BE scheme makes the AddUser algorithm
more efficient, since it does not require the owner to send a message to the server.

Our construction makes use of a single-user SSE scheme and a broadcast encryption (BE) scheme.
Recall that in BE, a center encrypts a message m to a group G of privileged users who are allowed to
access the message. The group G can be dynamically changing, as users can be added to or removed
from G. Although the encrypted message can be received by a larger set N of receivers, only the users
in G can recover the message. When a user joins the system, it receives a set of secrets, referred to as
long-lived secrets. The long-lived secrets are distinct for each user. Given an encrypted message, the
long-lived secrets allow a user to decrypt it only if the user was non-revoked at the time the message
was encrypted. We use off-the-shelf BE as a building block in our multi-user secure index construction
in order to efficiently manage user revocation.

We now provide an overview of the construction. In order to retrieve the documents that contain
the word w, an authorized user u computes a regular single-user trapdoor 71, but applies on it a
pseudo-random permutation ¢ keyed with a secret key r before sending it to the server. The server,
upon receiving @, (Ty.), recovers the trapdoor by computing Ty, = ¢, (¢ (Tyw)). The key r
currently used for ¢ is only known by the owner, by the set of currently authorized users and by the
server. Each time a user is revoked, the owner picks a new r and stores it on the server encrypted
such that only non-revoked users can decrypt it. Broadcast encryption provides an efficient method
to distribute 7 to the set of non-revoked users. The server will use the new r to compute ¢, ! for
subsequent queries. Revoked users cannot recover the current r» and, with overwhelming probability,
their queries will not yield a valid trapdoor after the server applies ¢ .

When the owner O of a document collection D gives a user U permission to search through D,
it sends to U all the secret information needed to perform searches in a single-user context 5. The
extra layer given by the pseudo-random permutation ¢, together with the guarantees offered by the
BE scheme and the assumption that the server is honest-but-curious, is what prevents users from
performing successful searches once they are revoked.

Next we describe the multi-user SSE construction in detail. Let SSE = (Keygen, BuildIndex, Trapdoor,
Search) be a single-user SSE scheme and BE = (GBE, £EE, DEF) be a broadcast encryption scheme.
We require a standard security notion for the BE scheme, namely that it provide revocation-scheme
security against a coalition of all revoked users and that its key assignment algorithm satisfies key
indistinguishability. Recall that we let N denote the set of all users, and G C N the set of users
(currently) authorized to search; let R denote the set of revoked users. Let ¢ be a pseudo-random
permutation such that ¢ : {0, 1}* x {0, 1}P+loez (m)+£ _, £ 1}p+log2 (M)+ - Our multi-user construction
M-SSE = (MKeygen, MBuildIndex, AddUser, RevokeUser, MTrapdoor, MSearch) is described in Fig. 3.

Our multi-user construction is very efficient on the server side: when given a trapdoor, the server
only needs to evaluate a pseudo-random permutation in order to determine if the user is revoked. If
access control mechanisms were used instead for this step, a “heavier” authentication protocol would
be required.

Acknowledgements

The authors thank Fabian Monrose for helpful discussions at early stages of this work.

5Note that O should possess an additional secret that will not be shared with u and that allows him to perform
authentication with the server when he wants to update D. This guarantees that only O can perform updates to D.

20

MKeygen (1%, 1¢): let K* « Keygen(1*,1) and r & {0,1}*. Output Ko = (K*,7).

MBuildIndex(K o, D): run Z° « BuildIndex(K*®, D). Initialize the BE scheme. Set R = {@}. Send r
and EBE(r) to the server. Output Z™ = T°.

AddUser(Kp,U): send Ky = (K?®,7) to user U, where r is the current key used for ¢. Also send to
U the long-lived secrets needed for the BE scheme.

RevokeUser(Kp,U): R =RU{U}. Pick a new key r/ il {0,1}* and send r’ and SNB\ER(T’) toS. S
overwrites the old values of r and EE\ERU (3 (r) with 7" and SNB\ER(T’), respectively.

MTrapdoor(Ky, w): let T} « Trapdoor(K*®, w). Retrieve Eglg(r) from S and use the long-lived BE
secrets to recover 7. Output 777, = ¢, (7).

MSearch(Z™,T¢7,,): recover Ty = o7 (T{7,); let T = (v,m). If v is a valid virtual address
(according to the initialization step of BuildIndex, called by MBuildIndex), then run Search(Z™,T?)
and return its output. Otherwise, return L.

Refe

Figure 3: Multi-user SSE construction (M-SSE)

rences

[ABCT02] A. Adya, W. Bolosky, M. Castro, R. Chaiken, G. Cermak, J. Douceur, J. Howell, J. Lorch,
M. Theimer, and R. Wattenhofer. Farsite: Federated, available, and reliable storage for an in-
completely trusted environment. In Proceedings of the 5th SOSDI, December 2002.

[ABCT05] M. Abdalla, M. Bellare, D. Catalano, E. Kiltz, T. Kohno, T. Lange, J. M. Lee, G. Neven, P. Paillier,
and H. Shi. Searchable encryption revisited: Consistency properties, relation to anonymous IBE,
and extensions. In CRYPTO 2005, volume 3621 of LNCS, pages 205-222. Springer, 2005.

[BC04] S.M. Bellovin and W.R. Cheswick. Privacy-enhanced searches using encrypted Bloom filters. Tech-
nical Report 2004/022, TACR ePrint Cryptography Archive, 2004.

[BACOPO04] D. Boneh, G. di Crescenzo, R. Ostrovsky, and G. Persiano. Public key encryption with keyword
search. In Proc. EUROCRYPT 0/, pages 506-522, 2004.

[BEG*91] M. Blum, W. S. Evans, P. Gemmell, S. Kannan, and M. Naor. Checking the correctness of memories.
In IEEE Symposium on Foundations of Computer Science, pages 90-99, 1991.

[BG02] B. Barak and O. Goldreich. Universal arguments and their applications. In ITEEE Conference on
Computational Complexity, pages 194-203, 2002.

[BKMO5] L. Ballard, S. Kamara, and F. Monrose. Achieving efficient conjunctive keyword searches over
encrypted data. In Proceedings of the Seventh International Conference on Information and Com-
munication Security (ICICS 2005), pages 414-426, 2005.

[Blo70] B. Bloom. Space/time trade-offs in hash coding with allowable errors. Communications of the
ACM, 13(7):422-426, 1970.

[BOGWS88] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for fault-tolerant distributed
computing. In Proc. 20th ACM Symp. on Theory of Computing, pages 1-10, Chicago, 1988. ACM.

[CMO5] Y. C. Chang and M. Mitzenmacher. Privacy preserving keyword searches on remote encrypted
data. In Applied Cryptography and Network Security Conference (ACNS), 2005.

[FKS84] M.L. Fredman, J. Komlés, and E. Szemerédi. Storing a sparse table with 0(1) worst case access
time. J. ACM, 31(3):53875447 1984.

[FN94] A. Fiat and M. Naor. Broadcast encryption. In Douglas R. Stinson, editor, Proc. CRYPTO 93,
volume 773 of Lecture Notes in Computer Science, pages 480—-491. Springer-Verlag, 1994.

[GM8&4] S. Goldwasser and S. Micali. Probabilistic encryption. JCSS, 28(2):270-299, April 1984.

21

[GMWS87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to prove all NP statements in Zero-
Knowledge and a methodology of cryptographic protocol design. In A. M. Odlyzko, editor, Proc.
CRYPTO 86, volume 263 of LNCS, pages 171-185. Springer-Verlag, 1987.

[GO96] O. Goldreich and R. Ostrovsky. Software protection and simulation on oblivious RAMs. Journal
of the ACM, 43(3):431-473, 1996.

[Goh03] E-J. Goh. Secure indexes. Technical Report 2003/216, TACR ePrint Cryptography Archive, 2003.
See http://eprint.iacr.org/2003/216.

[Gol93] Oded Goldreich. A uniform complexity treatment of encryption and zero-knowledge. Journal of
Cryptology, 6(1):21-53, 1993.

[GSW04] P. Golle, J. Staddon, and B. Waters. Secure conjunctive keyword search over encrypted data.
In M. Jakobsson, M. Yung, and J. Zhou, editors, Applied Cryptography and Network Security
Conference (ACNS), volume 3089 of LNCS, pages 31-45. Springer-Verlag, 2004.

[KBC*00] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon,
W. Weimer, C. Wells, and B. Zhao. Oceanstore: An architecture for global-scale persistent storage.
In Proceedings of ACM ASPLOS ’00. ACM, November 2000.

[KO04] J. Katz and R. Ostrovsky. Round-optimal secure two-party computation. In Advances in Cryptology
- CRYPTO 2004, volume 3152 of LNCS, pages 335-354. Springer, 2004.

[MMGCO02] A. Muthitacharoen, R. Morris, T.M. Gil, and B. Chen. Ivy: A read/write peer-to-peer file system.
In Proceedings of the 5th SOSDI, December 2002.

[Ost90] R. Ostrovsky. Software protection and simulations on oblivious RAMs. In Proceedings of 22nd
Annual ACM Symposium on Theory of Computing, 1990. MIT Ph.D. Thesis, 1992.

[PKLO04] D.J. Park, K. Kim, and P.J. Lee. Public key encryption with conjunctive field keyword search. In
5th International Workshop WISA 2004, volume 3325 of LNCS, pages 73-86. Springer, 2004.

[SWPO00] D. Song, D. Wagner, and A. Perrig. Practical techniques for searching on encrypted data. In
Proceedings of 2000 IEEE Symposium on Security and Privacy, pages 44-55, May 2000.

[Yao82] A. C. Yao. Protocols for secure computations. In Proc. 23rd IEEE Symp. on Foundations of Comp.
Science, pages 160-164, Chicago, 1982. IEEE.

A Basic Primitives

Definition A.1 (Semantic Security against Adaptive Chosen-Ciphertext Attacks). We say that a
symmetric encryption scheme is semantically secure against adaptive chosen-ciphertext attacks (IND-
CCA2) if for all probabilistic polynomial-time adversaries A, all polynomials p and sufficiently large
k:

V=0b: K «— g(lk); (mg, my) < ASK(‘)DK(‘); - 1
b & {0,1};¢ — Ex(my); b — APl (¢) p(k)
with the restriction that |mo| = |mi|, that A cannot query its decryption oracle with ¢, and where the

probability is taken over G, £ and A’s internal coins.

Definition A.2 (Pseudo-random Functions and Permutations). Let F be the set of all functions from
{0,1}" to {0,1}™. A function f : {0,1}* x {0,1}* — {0,1}™ is pseudo-random if it is computable
in polynomial time and if for all probabilistic polynomial-time adversaries A, all polynomials p and
sufficiently large k:
1
‘Pr{AfK(') :1:K£{O,1}k} —Pr [.Ag(') :lzgﬁf]‘ < —
p(k)

where the probabilities are taken over the internal coins of A and the choice of K and g. If f is
bijective then it is a pseudo-random permutation.

22

B Limitations of Previous SSE Definitions

To date, two definitions of security have been used for SSE schemes: indistinguishability against
chosen-keyword attacks (IND2-CKA), introduced by Goh [Goh03] , and a simulation-based definition
introduced by Chang and Mitzenmacher [CM05]. We point out their shortcomings in turn.

Indistinguishability-based SSE definitions. Intuitively, the notion of security that IND2-CKA
tries to achieve can be described as follows: given access to a set of indexes, the adversary (i.e., the
server) is not able to learn any partial information about the underlying document that he cannot learn
from using a trapdoor that was given to him by the client, and this holds even against adversaries that
can trick the client into generating indexes and trapdoors for documents and keywords of its choice
(i.e., chosen-keyword attacks).

Definition B.1 (IND2-CKA [Goh03]). A SSE scheme (Keygen, BuildIndex, Trapdoor, Search) is IND2-

CKA if for all probabilistic polynomial-time adversaries A = (A1, Az2), all polynomials p and suffi-
ciently large k:

V =b: K « Keygen(1%); (Dg, D1, state) «— AlBu“dIndeX(K")’Trapdoor(K’l); 1

Pr b & {0,1}; 7, — Buildindex(K, Dp); <5t

. AQBuildIndex(K,-),Trapdoor(K,~) (Ib,D(], Dl,state)

with the restriction that Ay must choose (Dgy, D1) such that Search(Zy,T) = Search(Z1,T) for all T
generated using its Trapdoor oracle and the restriction that Ay cannot query its Trapdoor oracle on
any word in (Do U Dy) \ (Do N D1). Also, state is a polynomially bounded string that captures Aj’s
state, and the probability is taken over Keygen, A and BuildIndex’s internal coins.

We remark that Goh’s work addresses a larger problem than searchable encryption, namely that of
secure indexes, which are secure data structures that have many uses, only one of which is searchable
encryption. And as Goh remarks (c¢f. Note 1, p. 5 of [Goh03]), IND2-CKA does not explicitly
require that trapdoors be secure since this is not a requirement for all applications of secure indexes.
Therefore, IND2-CKA is clearly not an appropriate security definition for searchable encryption.

In addition, we point out that although one might be tempted to remedy the situation by intro-
ducing a second definition to guarantee the semantic security of trapdoors, this cannot be done in a
straightforward manner. Indeed, first proving that an SSE scheme is IND2-CKA and then proving
that its trapdoors are semantically secure does not imply that an adversary cannot recover the word
being queried. In fact, as we now show, SSE schemes can be built with trapdoors that, taken indepen-
dently, leak no partial information about the word being queried, but when combined with an index
allow an adversary to recover the entire word. This illustrates that the security of indexes and the
security of trapdoors are inherently linked.

We now give an SSE construction, SSE-0, that generates indexes that can be proven IND2-CKA,
and trapdoors that can be proven semantically secure (in the sense that they leak no partial information
about the underlying word), but that when taken together enable an adversary to recover the entire
word. Before we describe the construction, we note that it is defined to operate on documents, as
opposed to document collections. We chose to define it this way, as opposed to defining it according
to Definition 3.1, so that we could use the original formulations of IND2-CKA (or IND-CKA). In
particular, this means that to both build and search indexes, one must run the BuildIndex and the
Search algorithms on each document in a collection D = (Dy, ..., D,).

Let A = (wy,...,wq) be a dictionary of d words; we assume, without loss of generality, that
each word is encoded as a bit string of length A\. The construction also uses two pseudo-random

23

permutations m and 1 with the following parameters: 7 : {0,1}* x {0, 1}M* — {0, 1} and ¢ :
{0,1}* x {0,1}* — {0,1}*. (For simplicity, we let m(s,x) def 7s(x); similarly for ¢.) Let SSE-0 =
(Keygen, BuildIndex, Trapdoor, Test) be a SSE scheme defined as follows:

Keygen(1*): Generate two random keys s, z & {0,1}* and set K = (s, 2).
BuildIndex(K, A, D;):

1. Instantiate an array A; of |A| elements;”

2. for each word w; € D;:
(a) run Trapdoor(K,w;) and keep (ms(w;l|i), ¥ (w;));
(b) store ms(w;l|7) @ (w;]|0°) in A;[¢: (wy)];

3. output Z; = A;.

Trapdoor(K,w): Output T, = (7ws(w|[1),,...,7s(w||n), Y. (w))

Search(Z;,T): Decrypt element by computing A;[¢),(w)] @ 7s(wl|i). If the last ¢ bits of the
result are equal to 0, then output true.

Theorem B.2. If 7, is a pseudo-random permutation, then SSE-0 is IND2-CKA.

Proof. We show that given an adversary A that breaks SSE-0 in the IND2-CKA sense, we can construct
an adversary B that can distinguish whether a permutation 7 is random or pseudo-random.
Let v : {0,1}* x {0,1}* — {0,1}* be a pseudo-random permutation. B is given oracle access to 7

and begins by generating a random value z £ {0,1}*. Tt then starts simulating A;, and answers its
oracle queries as follows: for each Trapdoor query w, B answers with T3, = (7(w||1), ..., 7(w||n), ¥, (w))
by querying its own oracle and by using the pseudo-random permutation ,; for each BuildIndex
query D, B runs the BuildIndex algorithm using its oracle and v, (as the two underlying random
permutations), and returns Zp. After polynomially many queries, .4; outputs two documents (Dy, D7)
such that Search(Dy,T) = Search(D;,T) for all T returned by its oracle queries. B then chooses a

bit b & {0,1} and constructs an index I, from document Dy, again by running Buildlndex and using
its oracle m and v, as the underlying random permutations. B then returns I to Ay and answers
As’s Trapdoor and BuildIndex queries as it did before and under the same restrictions. Finally, after
polynomially many queries, As outputs a bit ' which represents its guess as to which document
was used to generate I,. If ' = b, then B answers its own challenge with 0, indicating that 7 is a
pseudo-random permutation; otherwise it outputs 1, indicating that 7 is a random permutation.

It follows from B’s description that B runs in polynomial time, so it remains to show that its
advantage in distinguishing 7 is non-negligible. From Definition A.2 and the fact that B outputs 0 if
and only if A outputs ' = b, we know that:

Pr[B”(’):O] —Pr[zgfrs(-):o”:‘Pr[b’:by wﬁn} —Pr[b’:b\ s£{0,1}’f”

We claim that

;o R _}
Pr[b_b|7r<—H}_2 (4)
and that 1]
Prib=b|s&{0,1}F] >+ — 5
W =bls St 254 (5)

"We assume that 4; is “augmented” with an indirect addressing capability, namely, the ability to map |A| values from
an exponential-size domain into its entries. See the construction in Sect. 4.1 for an efficient way to achieve this.

24

where p is some arbitrary polynomial.

Since the indexes include the unique ID’s of the underlying document, if 7 is a pseudo-random
permutation, then two indexes will be independent of each other to any probabilistic polynomial-time
adversary, even if they are built from the same documents . This implies that A cannot learn anything
about its challenge index [, from its BuildIndex queries. We can therefore restrict our analysis to A’s
distinguishing probability when only given its challenge.

We begin by establishing Equation (4). Since 7 is a random permutation, A will output ¥ = b
with probability exactly 3. To see why, consider two documents Dy = (wg) and Dy = (w1) with one
word each and suppose, for contradiction, that A outputs & = b with probability larger than % This
means that when given I, = m(wp||b) @ (wp]|0°), A can determine whether wy, = wg or wy, = w; with
probability larger than % This is a contradiction, since it would imply that A can “break” a one-time
pad.

We now establish Equation (5). If 7 is instantiated with a pseudo-random permutation, then B
simulates the IND2-CKA game perfectly and, by assumption, A outputs ¥’ = b with non-negligible

probability over %

Notice that SSE-0’s trapdoors do not leak any partial information about the underlying word since
the trapdoors are generated using pseudo-random permutations. However, any adversary with access
to a trapdoor T, = (ms(w||1),...,ms(w||n), . (w)) and a set of indexes (A1, ...,A,) can recover w by
simply computing A;[1),(w)] @ 7s(w||i) for all 1 <i < n.

Simulation-based SSE definitions. In [CMO05], Chang and Mitzenmacher provide a definition of
security for SSE that is intended to be stronger than IND2-CKA in the sense that it requires a scheme
to output secure trapdoors. Unfortunately, it turns out that this definition can be trivially satisfied
by any SSE scheme, even one that is insecure.

Definition B.3 ([CMO05]). For all ¢ € N, for all probabilistic polynomial-time adversaries A, all sets
{D,w1,...,wg—1}, all functions f, there exists a probabilistic polynomial-time algorithm (simulator)
S such that for all polynomials p and sufficiently large k:

Pr[A(Cy) = f({D,w1,...,we})]— 1
Pr[SH{E(D),D(w1),...,D(wg)}) = f({D,wr,...,wg})] | ~ p(k)

where Cy is the entire communication the server receives up to the " query 8 to and k is the security
parameter used for the index and trapdoor generation.

Note that the order of the quantifiers in the definition imply that the algorithm S can depend on a set
{D,wn,...,wg—1}. This means that for any ¢ and any set {D, w1, ..., wg—1}, there will always exist
a simulator that can compute some function f of {D,wi,...,ws—1}, given only {£(D),D(w1), ...,
D(wg—1)}. This can be corrected in one of two ways: either by changing the order of the quantifiers
and requiring that for all ¢ € N, for all adversaries, for all functions, there exists a simulator such
that for all sets {D,wn,...,wg—1} the inequality in Definition B.3 holds; or, as we do in our own
definition (see Definition 3.6), by requiring that the inequality hold over all distributions over the set
of all possible sets of the form {D,w;,...,w,—1}.

As mentioned in Section 1, Definition B.3 is inherently non-adaptive. Again, consider the natural
way of using searchable encryption, where at time ¢ = 0 a user submits an index to the server, then

8While the original definition found in [CMO5] defines Cy to be the entire communication the server receives before
the ¢'* query, we define it differently in order to stay consistent with the rest of our paper. Note that this in no way
changes the meaning of the definition.

25

at time ¢t = 1 performs a search for word w; and receives the set of documents D(w;), at time ¢ = 2
performs a search for word wy and receives the set of documents D(ws), and so on until ¢ searches
are performed (i.e., until ¢ = ¢). Our intuition about secure searchable encryption clearly tells us that
at time ¢ = 0, the adversary (i.e., the server) should not be able to recover any partial information
about the documents from the index. Similarly, at time ¢ = 1, the adversary should not be able to
recover any partial information about the documents and w; from the index and the trapdoor for w;.
More generally, at time ¢ = 4, where 1 < ¢ < ¢, the adversary should not be able to recover any partial
information about the documents and words w; through w; from the index and the corresponding
trapdoors.

Returning to Definition B.3, notice that for a given ¢ € N, the simulator is required to simulate
A(Cy) (where Cy is the entire communication between the user and the server over ¢ queries) when
only given the encrypted documents and the search outcomes of the ¢ queries. But even if we are
able to describe such a simulator, the only conclusion we can draw is that the entire communication
Cy leaks nothing beyond the outcome of the ¢ queries. However, we cannot conclude that the index
can be simulated at time ¢ = 0 given only the encrypted documents; or whether the the index and
trapdoor for w; can be simulated at time ¢ = 1 given only the encrypted documents and D(w;). We
note that the fact that Definition B.3 holds for all ¢ € N, does not imply the previous statements since,
for each different ¢, the underlying algorithms used to generate the elements of Cy (i.e., the encryption
scheme and the SSE scheme) might be used under a different secret key. Indeed, this assumption is
implicit in the security proofs of the two constructions presented in [CMO05], where for each ¢ € N, the
simulator is allowed to generate a different index (when ¢ > 0) and different trapdoors (when g > 1).

26

