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Prostate Cancer
Prostate cancer is the most commonly diagnosed cancer
and the second leading cause of cancer deaths among
American men. It arises primarily from the epithelial se-
cretory cells of the peripheral prostate gland; generally
occurs as a multifocal disease within the prostate gland;
and then preferentially metastasizes to lymph nodes,
bone, lung, and brain. Localized disease can be treated
relatively successfully by radical prostatectomy (Catalona
and Smith, 1998). In contrast, treatments for metastatic
prostate cancer, including androgen ablation, are initially
effective, but the majority of patients relapse with andro-
gen independent prostate cancer (Denis, 1998; Leewan-
sangtong and Crawford, 1998). The incidence of prostate
cancer and the lack of good, long-term treatments for met-
astatic disease highlight the need for new chemopreven-
tive and chemotherapeutic treatments. As discussed be-
low, active vitamin D metabolites and analogs of the ac-
tive form of vitamin D, 1,25-dihydroxyvitamin D3

(1,25(OH)2D3), are candidates for these treatments.

Vitamin D
Vitamin D is best known for its actions in regulating cal-
cium levels and bone remodeling (reviewed in Brown et
al, 1999), but recent studies highlight a role for vitamin
D in the growth and differentiation of various cell types.
It is synthesized in the epidermis by the conversion of its
precursor, 7-dehydrocholesterol, into vitamin D3, a reac-
tion catalyzed by the ultraviolet rays of sunlight. Subse-
quent hydroxylation reactions in the liver and kidney pro-
duce 1,25(OH)2D3 (Holick, 1984). Levels of 1,25(OH)2D3

are tightly regulated as excess 1,25(OH)2D3 is inactivated
by the enzyme 24-hydroxylase (Horst and Reinhardt,
1997). Vitamin D can also be obtained from natural di-
etary sources such as fatty fish, fish liver oil, and eggs
(Chapuy and Meunier, 1997) or from fortified sources
such as milk, milk products, and butter (Halloran and Por-
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tale, 1997). However, for most people, dietary sources
contribute a negligible amount of required vitamin D3

compared to that derived from sunlight exposure (Holick,
1984).

Link Between Prostate Cancer Risk Factors and Sunlight
Three of the risk factors associated with the development
of prostate cancer are age, race, and residence in northern
latitudes. Prostate cancer incidence increases with in-
creasing age; interestingly, analyses of autopsy cases
show that a large proportion of men who die of other
causes also have clinically undiagnosed prostate cancer
(Holund, 1980). African American men have nearly twice
the risk of developing prostate cancer as Caucasian men
(Schwartz and Hulka, 1990). Moreover, African American
men generally present with prostate cancer at a younger
age and with more advanced disease than Caucasian men
(Brawn et al, 1993). Asian men have the lowest risk
among these three groups, although the risk for Asian
immigrants in the United States increases significantly,
suggesting an environmental component in prostate can-
cer risk (Cook et al, 1999). Finally, epidemiological stud-
ies have shown that residence in northern latitudes of the
United States increases the risk of developing prostate
cancer (Hanchette and Schwartz, 1992).

In 1990, Schwartz and Hulka proposed that these pros-
tate cancer risk factors could be linked to vitamin D de-
ficiency through either reduced sunlight exposure or im-
paired ability to convert 7-dehydrocholesterol into vita-
min D3. Older men are both less efficient in cutaneous
production of vitamin D3 and may not receive as much
sunlight exposure as younger men (MacLaughlin and
Holick, 1985). The increased melanin content of darker
skin absorbs the ultraviolet light necessary for vitamin D3

synthesis (Clemens et al, 1982), suggesting a correlation
with race. Finally, residence in northern latitudes is linked
to decreased exposure to sunlight and, consequently, to a
reduction in vitamin D3 production. In support of the vi-
tamin D deficiency hypothesis, in the United States the
rates of prostate cancer mortality vary inversely with ex-
posure to ultraviolet light (Hanchette and Schwartz,
1992). In addition, Corder et al (1993) reported that risk
for developing palpable prostate tumors of higher Gleason
score decreased in patients with higher serum levels of
1,25(OH)2D3, especially in those men with low serum lev-
els of 25-hydroxyvitiamin D3 (25[OH]D3), although other
studies have not found a correlation (Braun et al, 1995;
Gann et al, 1996). One recent study, in which 19 000 ini-
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tially disease-free men were followed over a period of 13
years, revealed that men with low initial serum levels of
25(OH)D3 were at greater risk for earlier onset of prostate
cancer; their tumors also tended to be more aggressive
(Ahonen et al, 2000). Serum levels of 25(OH)D3 are more
stable than 1,25(OH)2D3 levels (Lissner et al, 1981) and
may be more reflective of overall vitamin D status. In
conclusion, several risk factors for prostate cancer are as-
sociated with a reduction in vitamin D3 synthesis, which
would in turn result in lower levels of the active metab-
olite, 1,25(OH)2D3. Thus, 1,25(OH)2D3 supplementation
may be useful in the prevention of prostate cancer, its
treatment, or both.

A Role for Vitamin D Receptor Polymorphisms in
Prostate Cancer?
The link between prostate cancer and 1,25(OH)2D3 sug-
gests that there may be a connection between naturally
occurring polymorphisms in the protein that mediates
1,25(OH)2D3 action, the vitamin D receptor (VDR), and
prostate cancer risk. Polymorphisms in the VDR gene
have been linked to the development of osteoporosis (re-
viewed in Eisman, 1999). Several polymorphisms in the
VDR gene have been identified, including a BsmI restric-
tion length polymorphism (RFLP) in intron 8 (Ingles et
al, 1998), a TaqI RFLP in exon 9 (Taylor et al, 1996), a
microsatellite polymorphism in the 3� untranslated region
(Ingles et al, 1997), and a FokI RFLP located in exon 2
(Gross et al, 1996a). The BsmI RFLP, the TaqI RFLP, and
the microsatellite polymorphism do not alter the coding
sequence of the VDR. However, the FokI RFLP generates
a protein with 3 additional amino acids at the N terminus.
Reports on whether these VDR polymorphisms play a
role in prostate cancer are inconclusive. One study sug-
gested that men homozygous for the tt TaqI RFLP, which
correlates with higher circulating levels of 1,25(OH)2D3

than either the Tt or TT alleles, had a lower risk of de-
veloping prostate cancer that would require radical pros-
tatectomy (Taylor et al, 1996). Additional studies have
suggested a link between certain polymorphisms and
prostate cancer risk (Ingles et al, 1997, 1998; Ma et al,
1998; Correa-Cerro et al, 1999; Habuchi et al, 2000).
However, others find no link between polymorphisms in
VDR and prostate cancer (Kibel et al, 1998; Watanabe et
al, 1999; Blazer et al, 2000). Whether there is truly a link
between these different VDR polymorphisms and risk of
prostate cancer or whether the link is with a nearby gene
warrants further investigation.

Vitamin D Action
Effects of 1,25(OH)2D3 are mediated through the VDR, a
member of the nuclear receptor superfamily that includes
receptors for steroids (androgen, progesterone, glucocor-
ticoid, and estrogen) as well as for thyroid hormone and

retinoids (Mangelsdorf et al, 1995). VDR and other fam-
ily members are ligand activated transcription factors.
1,25(OH)2D3 passively diffuses into target cells, binds to
VDR, and activates target genes containing one or more
vitamin D response elements (VDREs) within their pro-
moters. Among the known target genes are osteocalcin,
osteopontin, calbindin, 24-hydroxylase, and p21 (re-
viewed in Jones et al, 1998). VDR functions as a hetero-
dimer with the receptor for 9-cis retinoic acid, retinoid X
receptor (RXR; MacDonald et al, 1993). Thus, target
genes of 1,25(OH)2D3 are transcriptionally activated by
heterodimers of VDR and RXR and the transcriptional
activities of this complex may in some cases be influ-
enced by 9-cis retinoic acid (MacDonald et al, 1993). In
addition to its ability to transactivate target genes via the
VDR, 1,25(OH)2D3 also has rapid effects in certain cell
types that are not caused by changes in gene expression.
These include changes in levels of phosphoinositides, in-
creases in intracellular calcium, stimulation of protein ki-
nase C activity, and elevation of cyclic guanosine mono-
phosphate levels; these responses may be mediated by a
membrane receptor for 1,25(OH)2D3 that is structurally
unrelated to VDR (Nemere et al, 1994; Brown et al,
1999).

Vitamin D and Other Cancers
1,25(OH)2D3 inhibits the growth and induces cellular dif-
ferentiation of diverse cell types. For example,
1,25(OH)2D3 induces differentiation of leukemia cells into
macrophages (Abe et al, 1981; Bar-Shavit et al, 1983).
Further studies in vitro showed that 1,25(OH)2D3 exhibits
antiproliferative effects in diverse types of cancer cells
including breast (Colston et al, 1989), bladder (Konety et
al, 2001), and colon (Thomas et al, 1992). More impor-
tantly, 1,25(OH)2D3 and its analogs inhibit the growth of
tumors in various cancer models (Eisman et al, 1987; Col-
ston et al, 1992; VanWeelden et al, 1998; Konety et al,
2001). Clearly, 1,25(OH)2D3 has widespread growth in-
hibitory effects and potential as a therapeutic agent for
many different types of cancer.

Vitamin D and Prostate Cancer
Most studies of 1,25(OH)2D3 action in prostate cancer
have utilized human prostate cancer cell lines. The most
widely studied cell lines are the LNCaP, PC-3, and
DU145 cells. Of these, only the LNCaP cells express an-
drogen receptor (AR) and are androgen dependent (ie,
they do not grow in castrated hosts) in vivo (reviewed in
Blutt and Weigel, 1999). Two new AR expressing lines,
MDA PCA 2a and 2b, which are androgen independent
in vivo while retaining AR expression, have been estab-
lished recently from a bone metastasis (Navone et al,
1997). All of these cell lines express VDR (Skowronski
et al, 1993; Zhao et al, 2000) as do primary cultures of
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prostate cancer cells (Peehl et al, 1994). With the excep-
tion of the DU145 cells, treatment of each of these pros-
tate cancer cell lines with 1,25(OH)2D3 is growth inhibi-
tory (Skowronski et al, 1993; Zhao et al, 2000). The ex-
tent of this growth inhibition differs; after 6 days of treat-
ment, the LNCaP and MDA PCA 2b cells are extensively
inhibited by 10 nM 1,25(OH)2D3 (approximately 40% and
25% of control, respectively [Zhao et al, 2000]), whereas
the MDA PCA 2a and PC-3 cells are somewhat less
growth inhibited (70% and 60% of control, respectively
[Skowronski et al, 1993; Zhao et al, 2000]). 1,25(OH)2D3

also increases expression of prostate specific antigen
(PSA), a marker of prostate epithelial cell differentiation,
in both the LNCaP and MDA PCA cell lines (Hsieh et
al, 1996; Zhao et al, 1997, 2000).

Others have examined the response of prostate cancer
cells to 1,25(OH)2D3 using a clonal expansion or an in-
vasion assay. 1,25(OH)2D3 irreversibly inhibits the clonal
expansion of primary prostate cancer cells after as little
as 2 hours of treatment (Peehl et al, 1994). 1,25(OH)2D3

also inhibits the clonal expansion of LNCaP and PC-3
cells, but, similar to findings in growth assays, DU145
cells were resistant to the effects of 1,25(OH)2D3 (de Vos
et al, 1997). Although DU145 cells are not inhibited in
growth and clonal expansion assays, their ability to in-
vade Amgel was significantly hindered by a 72-hour treat-
ment with 1,25(OH)2D3 (Schwartz et al, 1997), indicating
that 1,25(OH)2D3 may inhibit the ability of the DU145
cells to metastasize.

Vitamin D and Normal Prostate
The effects of 1,25(OH)2D3 on the normal prostate have
not been fully determined. However, Peehl et al (1994)
showed that primary cultures of epithelial cells and pros-
tatic fibroblasts (stroma) were growth inhibited by
1,25(OH)2D3. Other studies suggest that although normal
prostate epithelial cells are growth inhibited, the prostatic
stromal cells proliferate in response to 1,25(OH)2D3 in the
absence of serum (Krill et al, 1999). There have been few
in vivo studies examining the effect of 1,25(OH)2D3 on
the normal prostate. In castrated rats supplemented with
testosterone, there was no effect of 1,25(OH)2D3 treatment
on prostate weight (Krill et al, 1999). However, in the
absence of testosterone, treatment of castrated rats with
1,25(OH)2D3 caused an increase in prostate weight due to
growth stimulation of the prostatic stromal cells, although
the epithelial cells are growth inhibited under these con-
ditions (Konety et al, 1996; Krill et al, 1999).

Requirement for VDR
That the growth inhibitory effects of 1,25(OH)2D3 require
the nuclear VDR has been demonstrated in two ways.
First, the VDR negative JCA-1 human prostate cancer cell
line, whose growth is not inhibited by 1,25(OH)2D3, be-

came responsive upon stable transfection with a plasmid
expressing VDR (Hedlund et al, 1996a). Second, reduc-
tion of VDR expression levels using an antisense strategy
disrupts the growth inhibitory effects of 1,25(OH)2D3 in
ALVA-31 cells (Hedlund et al, 1996b). Whereas the
growth inhibitory effects of 1,25(OH)2D3 are mediated by
the VDR, expression of VDR is not sufficient because
both DU145 and TSU-Pr1 cell lines express functional
VDR, yet neither is growth inhibited by 1,25(OH)2D3

(Skowronski et al, 1993; Miller et al, 1995).

Vitamin D Analogs
Despite the effectiveness of 1,25(OH)2D3 in inhibiting the
growth of prostate cancer cells, clinical use of high levels
of 1,25(OH)2D3 is precluded due to unacceptable eleva-
tion of serum calcium levels (Holick, 1984). Thus, much
effort has been expended designing analogs of
1,25(OH)2D3 that retain the antiproliferative effects of
1,25(OH)2D3, but are less calcemic when administered in
vivo. The properties of the analogs that make them less
calcemic are not fully understood. However, alterations in
binding to vitamin D binding protein, changes in extra-
cellular half-life, cellular uptake, metabolism, and chang-
es in the induced conformation of the VDR/RXR hetero-
dimer have been suggested (Bouillon et al, 1995; Jones
et al, 1998). One of the most widely studied 1,25(OH)2D3

analogs is 1(S),3(R)-dihydroxy-20(R)-(5�-ethyl-5�-hy-
droxy-hepta-1�(E),3�(E)-dien-1�-yl)-9,10-secopregna-
5(Z),7(E),10(19)-triene, or EB1089. EB1089 effectively
inhibits the growth of LNCaP cells, exhibits greater po-
tency than 1,25(OH)2D3 (Skowronski et al, 1995), and is
only 50% as calcemic in vivo (Hansen and Maenpaa,
1997; Kissmeyer et al, 1997). Other analogs, including
16-diene analogs (Schwartz et al, 1994; Hedlund et al,
1997), 1,25 dihydroxy-16-ene-23-yne-vitamin D3

(Schwartz et al, 1995), 19-nor-hexafluoride D3 analogs
(Campbell et al, 1997), 19-nor-26,27-bishomo-vitamin D3

analogs (Kubota et al, 1998), 20-cyclopropyl-cholecalcif-
erol vitamin D3 (Koike et al, 1999), 5,6-trans-16-ene-vi-
tamin D3 (Hisatake et al, 1999), and some nonsecostero-
idal analogs (Boehm et al, 1999) also inhibit the growth
of prostate cancer cells in vitro. Interestingly, some ana-
logs inhibit the growth of the 1,25(OH)2D3 resistant
DU145 cells (Schwartz et al, 1994; Campbell et al, 1997;
Kubota et al, 1998; Koike et al, 1999), and it has been
suggested that DU145 resistance to 1,25(OH)2D3 is due
to the rapid metabolism of 1,25(OH)2D3 by 24-hydroxy-
lase in these cells (Ly et al, 1999).

Another approach to reducing hypercalcemic effects is
to use 25(OH)D3, the immediate precursor to
1,25(OH)2D3, which is also less calcemic in vivo than
1,25(OH)2D3. This approach relies on findings demon-
strating that PC-3, DU145, and primary cultures of nor-
mal prostate cells possess 1� hydroxylase activity, allow-
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ing conversion of 25(OH)D3 into 1,25(OH)2D3 intracel-
lularly (Schwartz et al, 1998). Use of 25(OH)D3 in vitro
inhibits the growth of primary prostatic epithelial cells
with similar potency to 1,25(OH)2D3 (Barreto et al, 2000).
In summary, less calcemic analogs of 1,25(OH)2D3 and
25(OH)D3 inhibit the growth of prostate cancer cells,
making them attractive therapeutic agents for prostate
cancer.

Vitamin D and In Vivo Studies
Several in vivo studies have been conducted to test a va-
riety of analogs in rodent prostate cancer models with
mixed success. The differences between the models pre-
cludes identification of optimal analogs at this time. The
efficacy of 1,25(OH)2D3 or two of its analogs has been
tested in the Dunning rat prostate adenocarcinoma model
(Getzenberg et al, 1997; Lokeshwar et al, 1999). In the
first study, 1,25(OH)2D3 and an analog, Ro25-6760, de-
creased tumor volume and reduced the incidence of lung
metastases (Getzenberg et al, 1997). In a second study,
1,25(OH)2D3 and EB1089 treatment resulted in smaller
tumors compared with control animals and also reduced
lung metastases (Lokeshwar et al, 1999). However, the
animals in both of these studies developed hypercalcemia
and suffered significant body weight loss. Schwartz et al
(1995) used a xenograft model of human PC-3 cells in
nude mice and showed that a 1,25(OH)2D3 analog (1,25-
dihydroxy-16-ene-23-yne-cholecalciferol) slows tumor
growth compared with control animals without increasing
serum calcium. Finally, EB1089 was shown to inhibit tu-
mor growth without induction of hypercalcemia or caus-
ing weight loss in an LNCaP xenograft model for prostate
cancer (Blutt et al, 2000b), demonstrating that growth in-
hibitory effects can occur in the absence of hypercalce-
mia. The results of these studies suggest that 1,25(OH)2D3

analogs have the potential to inhibit tumor growth in vivo.

Mechanism of Growth Inhibition by 1,25(OH)2D3 in
Prostate Cancer Cells
Studies to date suggest that 1,25(OH)2D3 inhibits growth
of prostate cancer cells through a number of mechanisms,
including changes in cell cycle progression, increases in
apoptosis, and alterations in the IGF growth factor axis.

Cell Cycle—In agreement with findings in leukemic
and breast cancer cells (Studzinski et al, 1985; Djulbe-
govic et al, 1986; Eisman et al, 1989), treatment of
LNCaP cells with 1,25(OH)2D3 causes the cells to accu-
mulate in the G0/G1 phase of the cell cycle (Blutt et al,
1997). To distinguish between cells in G0 and G1, Blutt
et al measured Ki67 expression, a nuclear antigen ex-
pressed only in cycling cells (Gerdes et al, 1983), and
found that very few treated LNCaP cells express Ki67,
consistent with cells exiting the cell cycle (Blutt et al,
2000a). This ability of 1,25(OH)2D3 to induce quiescence

may be responsible for the long-lasting effects of
1,25(OH)2D3 in these cells.

The immediate targets of 1,25(OH)2D3 action in the cell
cycle are unknown. During the G1 phase, the decision
whether or not to progress through the cell cycle is made,
a decision controlled by the retinoblastoma (Rb) gene
product. When active, Rb binds and inactivates E2F, a
transcription factor critical for progression to the S phase.
Cyclin/cyclin-dependent kinase complexes (cyclin/cdk)
inactivate Rb by phosphorylation and the cyclin/cdk com-
plex is negatively regulated by cdk inhibitor proteins such
as p21 (Lundberg and Weinberg, 1999). Zhuang and
Burnstein (1998) demonstrated that the cell cycle accu-
mulation induced in LNCaP cells by 1,25(OH)2D3 in-
volved up-regulation of the p21 cdk inhibitor and a re-
duction in cdk2 activity; moreover, Rb is hypophosphor-
ylated (active) and E2F has reduced transcriptional activ-
ity in the treated cells. Regulation of p21 may be indirect,
because a recent study in U937 myelomonocytic cells
suggests that 1,25(OH)2D3 regulates expression of
HOXA10, one of the homeobox transcription factor fam-
ily members, which in turn directly increases expression
of p21 (Bromleigh and Freedman, 2000). Whether regu-
lation of p21 transcription is mediated by the VDR or
HOXA10 or a combination of both transcription factors
in prostate cancer cells requires further study. Of interest
is the finding that DU145 cells, which lack functional Rb
(Bookstein et al, 1990), are not growth inhibited by
1,25(OH)2D3 (Skowronski et al, 1993). Furthermore, ab-
rogation of Rb function using the SV40 large T antigen
also compromises the ability of 1,25(OH)2D3 to inhibit
the growth of prostate cancer cells (Gross et al, 1996b).
Thus, Rb may be a requirement for 1,25(OH)2D3 mediated
growth inhibition in prostate cancer cells.

Apoptosis—Because 1,25(OH)2D3 induces apoptosis in
some breast cancer cell lines (Welsh, 1994; Simboli-
Campbell et al, 1996), the role of apoptosis in prostate
cancer cells has also been examined. 1,25(OH)2D3 appears
to induce apoptosis in LNCaP cells (Fife et al, 1997;
Hsieh and Wu, 1997; Blutt et al, 2000a); however, the
extent reported varies from none (Zhuang and Burnstein,
1998), to a small population of the cells (10%; Blutt et
al, 2000a), up to 100% of the cell population (Fife et al,
1997). Blutt et al (2000a) found that apoptosis induced
by 1,25(OH)2D3 is accompanied by a decrease in the ex-
pression of 2 antiapoptotic proteins, Bcl-2 and Bcl-XL.
Bcl-2 overexpression substantially reduces LNCaP cell
responsiveness to 1,25(OH)2D3 and blocks the induction
of apoptosis by 1,25(OH)2D3 (Blutt et al, 2000a). The
overall contribution of apoptosis to the reduction in cell
number is uncertain at this point, but is only one of the
effects of 1,25(OH)2D3. Neither LNCaP-Bcl-2 nor PC-3
cells undergo apoptosis in response to 1,25(OH)2D3, yet
both lines are growth inhibited, albeit to a lesser extent
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than the LNCaP cells (Campbell et al, 1997; Blutt et al,
2000a). Further studies will be required to elucidate spe-
cific pathways utilized by 1,25(OH)2D3 in order to trigger
cell death pathways and to determine the relative impor-
tance of apoptosis in its ability to inhibit the growth of
prostate cancer cells.

Role of Androgens and Growth Factors in 1,25(OH)2D3

Action
Androgens—Androgen ablation is often used in the

treatment of metastatic prostate cancer; however, patients
generally relapse with androgen independent disease
(Denis, 1998; Leewansangtong and Crawford, 1998). Be-
cause of the importance of androgens in prostate cancer,
it is important to elucidate any interactions between an-
drogens and 1,25(OH)2D3 in prostate cancer cells. In me-
dia supplemented with androgen-depleted charcoal-
stripped serum (CSS), LNCaP cells grow extremely slow-
ly and 1,25(OH)2D3 does not inhibit their growth, but it
promotes differentiation as measured by PSA secretion
(Miller et al, 1992). When dihydrotestosterone is added
back to CSS-containing media, the cells grow faster and
the antiproliferative effects of 1,25(OH)2D3 are restored
(Zhao et al, 1997). Consistent with these findings,
1,25(OH)2D3 inhibits the growth of LNCaP cells in media
supplemented with fetal calf serum (FCS) that contains
endogenous androgens (Skowronski et al, 1993). More-
over, the growth inhibitory effects of 1,25(OH)2D3 in
LNCaP cells grown in media containing FBS are atten-
uated by the addition of Casodex, an antiandrogen (Zhao
et al, 1997). Thus, the growth inhibitory effects of
1,25(OH)2D3 in LNCaP cells may be androgen receptor–
dependent; the mechanism of this androgen dependence
is mediated, at least in part, by an indirect up-regulation
of AR protein by 1,25(OH)2D3 (Zhao et al, 1997).

Findings in the MDA PCA 2a and 2b cells suggest that
unlike the LNCaP cells, growth inhibition by
1,25(OH)2D3 is androgen independent because Casodex
does not block the inhibitory effects of 1,25(OH)2D3 in
FBS-supplemented media (Zhao et al, 2000). Thus, it
seems that 1,25(OH)2D3 regulation of prostate cell growth
is androgen dependent in the LNCaP cells, but androgen
independent in the MDA PCA cell lines. Furthermore,
1,25(OH)2D3 inhibits the growth of the AR negative PC-
3 cells, demonstrating that in most cellular contexts,
1,25(OH)2D3 inhibits growth by an androgen independent
mechanism.

Growth Factors—There is evidence that the insulin-
like growth factor (IGF) axis plays a role in prostate
growth and elevated serum IGF-I levels have been found
in men with prostate cancer (Chan et al, 1998; Wolk et
al, 1998; Kaplan et al, 1999; Stattin et al, 2000). The
contribution of elevated IGF-I levels to prostate cancer
growth is not yet known. The IGFs are normally secreted

by the stromal cells and stimulate the growth of the over-
lying epithelial cells; however, many prostate cancer cell
lines secrete their own IGFs (reviewed in Russell et al,
1998). Epithelial-produced IGF binding proteins
(IGFBPs) regulate bioavailability of the IGFs, and there
is evidence in prostate cancer cell lines that 1,25(OH)2D3

antagonizes the actions of the IGFs by increasing expres-
sion of IGFBPs, including IGFBPs-3 and 6 (Drivdahl et
al, 1995; Huynh et al, 1998; Boyle et al, 2001). Regula-
tion of IGFBP-3 appears to be required for 1,25(OH)2D3-
dependent inhibition of LNCaP cells grown in defined
medium and for up-regulation of p21; interestingly, both
antisense oligonucleotides and anti-IGFBP-3 antibodies
negated 1,25(OH)2D3 effects both on growth and on up-
regulation of p21 protein levels (Boyle et al, 2001).
Therefore, 1,25(OH)2D3 actions in prostate cancer may
also involve abrogation of IGF-stimulated growth of the
epithelial cells.

Vitamin D and Angiogenesis and Metastasis
In addition to the effects of 1,25(OH)2D3 on tumor cell
growth, 1,25(OH)2D3 may also act in vivo by reducing
angiogenesis within the tumor or by reducing the ability
of the tumor cells to metastasize.

Angiogenesis—In order for a tumor to thrive, it must
have the ability to stimulate invasion by a blood supply
to provide nutrition and oxygen for the rapidly dividing
tumor cells (Folkman, 1992), a process known as angio-
genesis. 1,25(OH)2D3 inhibits endothelial cell growth,
sprouting, elongation, and the ability to form networks in
vitro due to induction of apoptosis in the sprouting en-
dothelial cells; it also reduces the number of blood vessels
in xenograft breast carcinoma tumors in vivo (Mantell et
al, 2000). Furthermore, 1,25(OH)2D3 in combination with
9-cis retinoic acid synergistically inhibits angiogenesis in
tumors of various origins (Majewski et al, 1996), sug-
gesting that combination therapies would be effective in
inhibiting tumor growth. Obviously, further studies on
1,25(OH)2D3 and its ability to inhibit angiogenesis are
warranted.

Metastasis—There is a limited amount of evidence
suggesting that 1,25(OH)2D3 inhibits metastasis. First, in
vitro studies showed that a 1,25(OH)2D3 analog (1,25-
dihydroxy-16-ene-23-yne-cholecalciferol) inhibits the
invasion of DU145 cells in an Amgel assay (Schwartz
et al, 1997). Second, 1,25(OH)2D3 reduces invasion, ad-
hesion, and migration to laminin, a basement membrane
protein, in vitro via down-regulation of two laminin re-
ceptors, the �6 and �4 integrins, in the PC-3 and DU145
cells (Sung and Feldman, 2000). Finally, 1,25(OH)2D3

and one of its analogs (Ro25–6760) reduces the size and
number of metastases derived from Dunning prostate tu-
mors in vivo (Getzenberg et al, 1997). Thus, these few
studies suggest that 1,25(OH)2D3 not only inhibits the
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growth of prostate cancer cells, but may also reduce the
ability of the cells to metastasize.

Clinical Studies—Although the effects of 1,25(OH)2D3

have not been tested widely, a recent clinical study tested
the potential effects of 1,25(OH)2D3 in 7 men whose dis-
ease had failed either radical prostatectomy or radiation
therapy, and who had increasing serum PSA levels (Gross
et al, 1998). Treatments were given in escalating doses
from 0.5 �g/day to 2.5 �g/day. Six of the 7 patients
showed significant decreases in the rate of increase of
serum PSA values, and, interestingly, 1 patient exhibited
a drop in serum PSA. Some of the patients had stabili-
zation of their serum PSA values for more than a year.
However, all of the subjects also developed hypercalci-
uria. Thus, whereas 1,25(OH)2D3 may have some effects
on tumor growth in vivo, less calcemic analogs such as
EB1089 ought to be tested to try to eliminate the calcemic
effects of 1,25(OH)2D3 treatment.

1,25(OH)2D3 in Combination Therapies for Prostate
Cancer
1,25(OH)2D3 is also promising as a treatment in combi-
nation with other agents. EB1089 in combination with
other treatments including radiation therapy and tamoxi-
fen further decreases breast cancer cell growth compared
with either treatment alone (Vink-van Wijngaarden et al,
1994; Sundaram and Gewirtz, 1999). A number of in vitro
studies in prostate cancer cells suggest that combination
treatments may also enhance 1,25(OH)2D3 effects in vivo.

One obvious candidate for combination therapy in
prostate cancer is 9-cis retinoic acid, because VDR het-
erodimerizes with RXR, and addition of the ligands in
combination may have differing effects on prostate cell
growth than either ligand alone. At high concentrations,
addition of 9-cis retinoic acid inhibits the growth of
LNCaP cells and induces cellular differentiation as mea-
sured by expression of PSA (Esquenet et al, 1996). In
LNCaP cells, cotreatment of 1,25(OH)2D3 and low levels
of 9-cis retinoic acid are more growth inhibitory than ad-
dition of 1,25(OH)2D3 alone (Blutt et al, 1997). In fact,
administering 9-cis retinoic acid and 1,25(OH)2D3 in com-
bination reduces the amount of 1,25(OH)2D3 needed to
inhibit the growth of LNCaP cells. These data suggest a
potential use of 9-cis retinoic acid in combination thera-
pies with EB1089 to inhibit the growth of prostate cancer
in vivo.

Platinum agents such as cisplatin have been tested in
clinical trials as a treatment for prostate cancer and other
cancers with little success (Qazi and Khandekar, 1983;
Trump et al, 1990). However, in LNCaP cells, platinum
agents (cisplatin or carboplatin) are growth inhibitory
(Moffatt et al, 1999) and addition of both 1,25(OH)2D3

and either of these platinum drugs results in greater
growth inhibition of the cells than either added alone

(Moffatt et al, 1999). Therefore, combinations of
1,25(OH)2D3 and platinum agents may be of benefit in
the treatment of prostate cancer.

1,25(OH)2D3 is inactivated by the enzyme 25-hydro-
xyvitamin D 24-hydroxylase (24-hydroxylase), which is
also a transcriptional target of VDR (Horst and Reinhardt,
1997). Induction of 24-hydroxylase results in rapid
1,25(OH)2D3 metabolism, which may reduce its ability to
inhibit cancer cell growth in vivo. Ly et al (1999) dem-
onstrated that use of liarozole, a nonspecific P450 enzyme
inhibitor (24-hydroxylase falls into this enzyme class), in-
hibits the activity of 24-hydroxylase and increases the
half-life of 1,25(OH)2D3 in DU145 cells. Furthermore, use
of combinations of liarozole and 1,25(OH)2D3 inhibited
the growth of DU145 cells, whereas neither agent added
alone had any effect on cell growth (Ly et al, 1999).
These promising results suggest that combinations of lia-
rozole and 1,25(OH)2D3 may boost the growth inhibitory
effects of 1,25(OH)2D3 in prostate tumors. Because lia-
rozole is not a specific 24-hydroxylase inhibitor, the ob-
served effects may be due to inhibition of other enzymes
in addition to 24-hydroxylase. Further studies are neces-
sary to determine whether liarozole and 1,25(OH)2D3 will
be a useful combination therapy in vivo.

Summary

The original hypothesis of Schwartz and Hulka (1990)
proposing that vitamin D deficiency may be a risk factor
for prostate cancer has triggered many studies. Epide-
miological studies have supported this hypothesis with
findings that sunlight exposure is inversely proportional
to prostate cancer mortality and that prostate cancer risk
is greater in men with lower levels of vitamin D (Han-
chette and Schwartz, 1992; Corder et al, 1993; Ahonen
et al, 2000). Prostate cancer cells express receptors for
1,25(OH)2D3 and some cell lines are growth inhibited
when treated with 1,25(OH)2D3 (reviewed in Blutt and
Weigel, 1999). The mechanism of action of these growth
inhibitory effects of 1,25(OH)2D3 in LNCaP cells in-
volves G1 accumulation, induction of quiescence, and an
increase in apoptosis of the cancer cells (Blutt et al,
1997, 2000a; Zhuang and Burnstein, 1998). In vivo,
1,25(OH)2D3 and its analogs slow tumor growth and hin-
der metastasis of prostate tumors in rodent models
(Schwartz et al, 1995; Getzenberg et al, 1997; Lokesh-
war et al, 1999; Blutt et al, 2000b), and 1,25(OH)2D3

may have clinically relevant effects (Gross et al, 1998).
More work is required to elucidate the mechanism of
1,25(OH)2D3 action in prostate cancer cells and to iden-
tify optimal 1,25(OH)2D3 analogs in a search for com-
pounds with a better separation of growth inhibitory ef-
fects from hypercalcemic effects.
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