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ABSTRACT

Baroclinic inertia—gravity (IG) waves form a persistent background of thermocline depth and sea surface
height oscillations. They also contribute to the kinetic energy of horizontal motions in the subsurface layer.
Measured by the ratio of water particle velocity to wave phase speed, the wave nonlinearity may be rather high.
Given a continuous supply of energy from external sources, nonlinear wave—wave interactions among IG waves
would result in incrtial cascades of energy, momentum, and wave action. Based on a recently developed theory
of wave turbulence in scale-dependent systems, these cascades are investigated and IG wave spectra are derived
for an arbitrary degree of wave nonlinearity. Comparisons with satellite-altimetry-based spectra of surface height
variations and with energy spectra of horizontal velocity fluctuations show good agreement. The well-known
spectral peak at the inertial frequency is thus explained as a result of the inverse cascade. Finally, we discuss a
possibility of inferring the internal Rossby radius of deformation and other dynamical properties of the upper
thermocline from the spectra of SSH variations based on altimeter measurements.

1. Introduction

Possible mechanisms of incrtia—gravity (1G) wave
generation include tidal forcing, atmospheric pressure
and wind stress fluctuations, and various types of hy-
drodynamic instability of vortical oceanic motions.
Due to these, virtually permanent, sources of energy IG
waves form a persistent background of ocean oscilla-
tions. However, with respect to large-scale ocean cir-
culation, open-ocean IG waves (as opposed to coastal
and equatorial trapped waves) are usually considered
to be of little importance. For example, for numerical
modeling, these waves, especially the fast barotropic
mode, represent ‘‘computational noise’’ that has to be
filtered out; for example, by employing a rigid-lid con-
dition at the surface. One factor that might increase
importance of open-ocean IG waves is nonlinear
wave—wave interactions resulting in spectral fluxes of
epergy (as well as action and momenturmn), hence in a
broad spectrum of sea surface height (SSH) and ocean
current fluctuations. Oceanographic implications of
these fluxes are discussed in section 5. Finally, IG wave
turbulence offers a plausible explanation of the peculiar
shape of SSH spectra known from satellite altimeter
observations—as discussed in sections 5 and 6.

In the present work, based on a heuristic analysis of
nonlinear resonant interactions between IG waves (sec-
tion 3), spectral distributions of wave energy and sur-
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face height variations are derived. As indicated in sec-
tion 5, wave turbulence can develop only in baroclinic
modes (we use the Boussinesq approximation) and
may be rather strong. Predicted spectra are analyzed in
sections 4 and 5 and comparisons with in situ and sat-
ellite altimeter measurements are provided.

In the range of scales containing a Rossby radius of
deformation, IG waves are characterized by a rather
complicated dispersion law:

w? =f?+ Ci k2, (1)
where k = |k|, fis the Coriolis parameter (considered
to be constant), and C,,, is the phase velocity of Kelvin
waves for vertical mode number m. A special case of
m =_0 corresponds to barotropic waves with Cyp
= VgH, where H is the (constant) ocean depth. Short-
and long-wave asymptotics of (1) are obtained, re-
spectively, for wavenumbers much greater and much
smaller than the inverse Rossby radius

(2)

For simplicity, we shall limit our consideration to the
lowest baroclinic mode and ignore its possible inter-
actions with other vertical modes. Thus, we shall omit
subscript m in the subsequent equations. This case
would be most appropriate for a two-layer fluid.

The presence of characteristic scale R in (1) makes
the problem of nonlinear waves highly nontrivial. In
the short-wave approximation and for the lowest degree
of nonlinearity, the wave spectrum was derived (Fal-
kovich and Medvedev 1992) by taking advantage of
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an approximate scale-invariance of the collision inte-
gral. As shown in section 3, these assumptions repre-
sent an oversimplification with respect to ocean waves.
Therefore, we employ an alternative approach called
the multiwave interaction theory. Developed originally
for deep water gravity and capillary—gravity waves
(Glazman 1992, 1993, 1995), it does not require either
scale invariance or weak nonlinearity. However, the
heuristic nature of this theory makes it difficult to es-
timate the range of its validity. The experimental data
presented in sections 4 and 5 seem to corroborate the
theoretical predictions, although some issues remain
unresolved. The most difficult one is the dependence
of the effective number of the resonantly interacting
wave components on appropriate external factors con-
trolling the degree of the wave nonlinearity.

For the reader unfamiliar with the subject, a few rel-
evant concepts on wave turbulence are sketched in the
next section. This presentation is rather qualitative and
is focused on physical ideas; a more rigorous and de-
tailed account of this material is available in the special
literature (e.g., Zakharov 1984; Zakharov et al. 1992).

2. 1G wave turbulence: An overview

The motion equations for a shallow layer of a rotat-
ing fluid are

(g; + U~V)U +fkxXU=-gV{

%, . _
5+ V(H + )U) = 0.

(3)
Here U is the horizontal velocity vector averaged over
the layer depth H, and k is the unit vector along the
earth rotation axis. For simplicity, the Coriolis param-
eter is assumed to be constant ( f~plane approximation)
and the gravity force g parallel to k. Therefore, our
consideration applies to midlatitudes.

For the case of baroclinic waves, which we discuss
in terms of a two-layer model, g in (3) is the reduced
gravity g’ (in which the prime is dropped): g’ = g(p,
— p2)/pi. Depth H is then related to the depths of the
upper and lower layers by H = H H,/(H, + H,), and
H, + {(x, t) is the interface between the two layers—
the instantaneous thermocline depth. We also assume
H, < H, and H, to be sufficiently large compared to
the amplitude of {(x, t) oscillations. The free surface
plays a passive role: its undulations mimic oscillations
of the thermocline boundary—although with a much
smaller amplitude and opposite sign (e.g., LeBlond and
Mysak 1978, Chapters 16 and 17; Gill 1982, §6.2).
Therefore, we shall sometimes refer to oscillations of
the thermocline boundary as surface height oscilla-
tions—implying that their spectra are identical (up to
a constant factor).
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We are interested in stationary wave solutions
of (3) whose general form is given by {(x, ¢)
= [ eikx+won g7 (k) with dZ(k) representing a spec-
tral increment of the surface height’s (or thermocline
boundary’s) complex amplitude. A similar expression
can be written for the velocity field. The presence of
advective terms in (3) leads to the energy exchange
among Fourier components. As a result, the wave field
exhibits a highly complicated (random) behavior. An
appropriate description of such fields is provided by
their statistical moments. The simplest such character-
istic is the power spectrum F(k) of {(x, t) variations

F(k))6(k, — k)dk,dk = (dZ(k)dZ*(k,)), (4)

where the angle brackets denote ensemble averaging.
This implies statistical spatial homogeneity of field
C(x, t). Subscript { becomes useful in sections 4 and
5—when we analyze kinetic and potential energy
spectra.

A statistically stationary wave field is observed if the
external source, supplying energy at a constant rate,
works long enough to result in a steady spectral flux of
wave energy (and of other integrals conserved in the
spectral cascade). In many problems of wave turbu-
lence the external input is considered to be confined to
a narrow band of wavenumbers/frequencies. In other
words, outside the ‘‘generation range’’ the spectral
fluxes are assumed to be purely inertial. Similarities
with the 3D or 2D eddy turbulence in an incompressible
fluid are obvious. For instance, the energy flux toward
high wavenumbers is identified with the rate of energy
dissipation (as in 3D turbulence) and an inverse spec-
tral cascade is possible (as in 2D turbulence) (Zak-
harov 1984). There are also considerable differences
between eddy and wave turbulence. In particular, wave
turbulence depends on the intrinsic relationship be-
tween wavenumber k and frequency w. For eddy tur-
bulence, dispersion relationships do not exist. Similar
to the case of surface gravity waves on deep water, (1)
forbids three-wave resonant interactions. The lowest-
order resonance occurs in wave tetrads

klikzik3_‘tk4=0

Wt w T ws*+w,=0.

(3)

The formal, small-perturbation theory describes this
type of processes in the framework of the kinetic equa-
tion (Hasselmann 1962; Zakharov et al. 1992), which
is usually written for the spectral density of wave ac-
tion, N(K, t) = F(Kk, t)/w, where F(k, t) is the energy
spectrum. The relationship between F(k, ¢) and Fy(k,
t) may be rather complicated. For the inertial interval,
the kinetic equation in the approximation of four-wave
interactions is

BN(k, t)/at = f IT0123]26(&) + wy — Wy — LU3)

X 6(k + k; — ks — k3) fuinndk koks, (6)
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in Whichﬁlzg = NkN]NzM(I/Nk + I/NJ - 1/N2 -1/
N,) and the subscripts designate arguments (such as k,
k;, etc.). The integral describes *‘collisions’’ that result
in the ‘“‘birth’” of two waves in place of two initial
waves. Other types of collisions are neglected. The ma-
trix element 7,53 is a complicated function of wave-
number vectors and frequencies. Its explicit expression
for IG waves is given by Falkovich and Medvedev
(1992).

Considerihg the spectral cascade of wave action, we
shall treat the integral in (6) as the divergence (in the
wavenumber space) of the wave action flux P. To em-
phasize this interpretation, we shall use the Phillips
[1985 and 1977, Eq. (4.8.9)] symbolic notation

J. | To13]%6(w + wy — w; — w3)8(k + k; — Ky — k3)

X ﬁ123dk1k2k3 = Vk'P(k, t)

Assuming that a steady state can be reached (i.e., ON/
ot = 0), (6) becomes

Vi'P(k, 1) = 0. (7)

Its 1D version—obtained by integrating (7) as ffw
(- - -YkdO—gives the conservation of the wave action
- in the spectral cascade, OP(k)/0k = 0, or

P(k) = P, (8)

where P, is a constant input flux at, say, kK = k,. This
conservation law is approximate and is relevant only
for nonlinear dynamics dominated by resonant tetrad
interactions (5).

A similar expression is obtained for the energy flux
by multiplying (6) by w(k)k and integrating over azi-
muthal angle. For the inertial range of the direct energy
cascade the result is 9Q(k)/0k = 0, or

Q(k) = Qo, (9)

where Q, is the rate of energy input. In contrast to (8),
this conservation law is exact and it holds for an arbi-
trary number of the resonantly interacting Fourier com-
ponents. .

Equation (6) may have several stationary solutions
(Zakharov 1984). However, some of them may be
physically meaningless. In the case of weakly nonlin-
ear, sufficiently shoit IG waves, (1) can be replaced
with

w ~ Cok<1 + % (kR)—2> : (10)

Falkovich and Medvedev (1992) showed that, in this
approximation, (6) has two physically meaningful so-
lutions, corresponding to two types of spectral cascade:
the inverse cascade of wave action and the direct cas-
cade of wave energy. In what follows, we assume that
both cascades are local in the wavenumber space. Va-
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lidity of this assumption with respect to the direct en-
ergy cascade is discussed in section 3.

So far, equations of type (6) yielded closed-form
solutions only for scale-invariant systems characterized
by simple dispersion laws and simple expressions for
the wave energy. Scale invariance leads to drastic sim-
plifications of the matrix element T},,3, which becomes
a homogeneous function of k: T(AKk, Ak;, Ak,, Aks3)
= N"T(Kk, k;, k3, k3). As a result, power-law solutions
F(k) « k™ become possible. For short (but not too
short) waves, an approximate solution corresponding
to the inverse cascade of wave action is

F(k) o P§k=15 (11)

(Falkovich and Medvedev 1992). This is a 2D spec-
trum of wave energy in which the angular dependence
is omitted (being assumed constant). Solution (11) is
valid only for a very narrow range of wavenumbers in
which the reduced dispersion (10) is substantially
stronger than the wave nonlinearity (as required by the
small-perturbation theory). In section 3, we provide a
more general result for the inverse cascade.

When the nonlinearity is greater than that implied in
the lowest-order theory, the derivation of a kinetic
equation (to account for higher-order terms in the per-
turbation series ) becomes impractical. However, as an
introduction to the heuristic arguments of section 3, it
is useful to review some qualitative aspects of the for-
mal perturbation theory. Suppose the perturbation ex-
pansion is carried to an arbitrary order. The first non-
linear terms in deterministic equations [ for properly
normalized Fourier amplitudes a(k, 1) ~ O(e)], are
of order ¢” and the subsequent terms are of order €,
€*, etc., where € is the measure of the nonlinearity. For
most wave problems, including 1G waves, € = u/c,
where u is the characteristic velocity of water particles
and ¢ is the wave phase speed (for a given wave-
length). Suppose further that, based on the dynamical
equations (and assuming random forcing), one can de-
rive a closed-form kinetic equation for statistical mo-
ments such as (a(k, t)a*(K,, t)). In terms of the action
transfer, this equation could be written symbolically as

ON(K, t)

Y = y(K)N(k, 1),

+ 1(3) + 1(4) +4 1(5) KRN

(12)

where ‘‘partial collision integrals’> I account for n-
wave interactions. If three-wave interactions are non-
resonant, term I is eliminated by an appropriate ca-
nonical transformation of the Hamiltonian. This, how-
ever, is relevant only to weakly nonlinear waves
(Zakharov et al. 1992) —when all terms starting with
n = 5 are negligible. Apparently, the collision integrals
in (12) scale as e2*~ "), Furthermore, y(K)N(K, t) rep-
resents the external source (or sink, or both) where
y(K) is an increment (decrement) of wave growth (at-
tenuation ), which is zero in the inertial range. Weakly
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nonlinear waves (i.e., € <€ 1) permit neglect of all par-
tial collision integrals except for the first one. Indeed,
if € = 0.1, the first collision term in (12) is 10? times
as large as the subsequent terms. However, this is not
the case if the nonlinearity is stronger. For a weak in-
equality € < 1, we would have to retain a series of terms
(up to n =~ 6 for the case of ¢ ~ 0.5) in order to main-
tain the same accuracy as in our example with € ~ 0.1.
Of course, the numbers should not be taken too liter-
ally, for the real situation is more complicated. How-
ever, the suggestion that multiwave interactions with n
= 5, 6, etc., could become as important as the lower-
order interactions is plausible. Finally, when ¢ — 1,
interactions of all orders become of comparable im-
portance. This case of strong wave turbulence, with n —
, results in ‘‘saturated’’ spectra. Larraza et al. (1990)
showed that the Phillips spectrum F(k) ~ k~* for deep
water gravity waves is just one example. A similar con-
sideration is presented in (Glazman 1993 ) for capillary
waves, while a monotonous transition from weak to
strong turbulence is studied in (Glazman 1995) for
scale-dependent capillary—gravity waves. Theoretical
and empirical relationships between the effective num-
ber of resonantly interacting wave components and the
external parameters of the problem are also suggested
in those works.

3. Heuristic theory of IG wave turbulence

Let us introduce the ‘‘effective number’’ v of reso-
nantly interacting Fourier components on the hypoth-
esis that all interactions up to this order make compa-
rable contributions to the spectral flux. The energy
transfer equation is obtained by multiplying (12) by
w(k) and truncating the series of partial fluxes at an
appropriate order v;

LD 13 V@ = 9O F (K, .

n=3

(13)

The use of the flux divergence form V,-Q® in place
of w(k)I™ is justified here because—as mentioned in
connection with (9) —the energy is conserved in the
direct cascade for an arbitrary number of resonantly
interacting wave components. In a steady state (13)
reduces to (9) with

0=30". (14)

The effective number » of resonant wave components
depends on the degree of the wave nonlinearity; hence,
it is a monotonously increasing function of the ‘‘inter-
nal parameter’” ¢ and can be, hopefully, related to ex-
ternal factors such as the energy input Q,. As discussed
earlier (e.g., Glazman 1995), parameter v is a statis-
tical characteristic of the wave process and is not nec-
essarily an integer number.
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Considering the energy cascade, one can introduce
the amount of energy, E;, transferred by the local non-
linear interactions from a given narrow range of scales
(the jth step in the cascade) to the next (the j + 1 step
in the cascade):

kj+l
E = f F(k)kdk,
&

where
kj+1/kj =r (15)

and r > 1 is a constant. The characteristic time 7 of the
spectral transfer at step j, called the turnover time,
should be taken as the largest among all individual turn-
over times associated with partial fluxes in (13). In-
deed, it is the slowest process that controls the end re-
sult. By scaling the terms in (13), one ultimately finds

(16)

where w is related to £ by (1) and € = u/c¢ is explained
in the preceding section.

Expression (16), with v = 4 and ¢ = ak, where a is
the characteristic wave amplitude, was employed by
Kitaigorodskii (1983 ) and Phillips (1985) to re-derive
the Zakharov-Filonenko (1966) spectrum of weak tur-
bulence in deep water gravity waves. For an arbitrary
v and € = ak, Eq. (16) was suggested by Larraza et al.
(1990).

In terms of (15) and (16), the spectral flux of wave
energy is simply

-1 2(v—2
fj ~ WE 1 ),

Q= Els. (17)

Obviously, this cascade model of wave turbulence is
rather similar to that of eddy turbulence (e.g., Frisch et
al. 1978). Remembering (9), we shall use E;/t; = QO
in place of the kinetic equation. Expressing E; and # in
terms of £, v, and other relevant quantities one can
estimate the shape of the spectrum. This, however, pre-
sumes that the spectrum falls off sufficiently fast as the
wavenumber increases (Glazman 1995). Indeed, dif-
ferentiating (15), OE;/9k; = — (F(k)k; — F(k;r)k;r?),
we find
1 OE;
This approximation is valid if, and only if, the spectrum
falls off not slower than k~° where the exponent s sat-
isfies r*~* < 1. Assuming for now that this condition
holds, we shall check it a posteriori.

The kinetic and potential energies of IG waves (per
unit mass of water, per unit surface area) are

_qup
L

For a narrow frequency band between &; and k;., the
energies are referenced to the corresponding character-

(18)

Y
EK EP =2 2-. (19)
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istic scales of the wave amplitude a;, wavenumber £;,
etc. (In what follows, we will often omit the subscript
Jj at k; and w;.) The ratio of these energies increases with
an increasing wavelength (e.g., Gill 1982). Approxi-
mately,

EK; o14+-2_
EP, (kR)®’

Physically, the absence of energy equipartition is be-
cause the orbits of water particles are not strictly ver-
tical (as would be the case for pure gravity waves).
Their inclination is the greater, the larger the relative
importance of the Coriolis force (e.g., LeBlond and
Mysak 1978, Fig. 17.1). Since the total energy is £
= EK + EP, it is useful to express both components in
terms of E;:

(20)

E 1
EKj~2<1+1+(kR)2> (21a)
_E_(kR)?
BP = S T R (21b)

In view of (19) and (21a), the characteristic particle
velocity at scale k is given by

u*(k) = (1 + (22)

1
1+ (kR)Z) '

Based on (1), the characteristic phase speed is .

2 1
i1 + k).

We can now express the interaction time t in terms of
;> k, w(k), and Co [ which is the same as Co,,, appearing
m (1) and (2)]: using (1), (22), and (23) the end

result is
1 v=2
T+ /}2)2>] ’

(24)

(k) =~ (23)

; ~C0R"(l+k2)”2[E (1
C3

where

k=kR (25)

is the nondimensional wavenumber. It is also conve-
nient to nondimensionalize other quantities:

0o = (RIC})Qo, E;=EiIC}, F(k)
=aqF(k)/(C0R)2. (26)

The last relationship contains a nondimensional con-
stant of proportionality a,, which plays the same role
as the Kolmogorov constant in classical fluid turbu-
lence—it allows us to use sign ‘‘="" in the subsequent
formulas. With ¢;' given by (24), Eq. (17) can be
. solved for E;. In the nondimensional form, the result is
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E, = Qg 20D (] _ 1/72)= =201 (27)
where we introduced

z=1+k (28)

According to (1) and (2), this new variable coincides
with the squared nondimensional frequency [w(k)/f]2.
In terms of z, Eq. (18) takes the form

. OF,;
Flky = 257 (29)
4 z=1+k?
This yields the 2D speétrum of the total wave energy
o Ql/(u—l) _
F k (v=7/2)(v—1)
(k) = -1 b4

X (22 — 1)~ D2 4 4y — 9). (30)

In order to investigate the validity of the present the-
ory at high wavenumbers, we need the short-wave as-
ymptotic of (30). This is given by

Fk) < k(1 + 4vk™), (31)

where s = 2 + 1/(v — 1). Obviously, the necessary
condition for (18) to be valid is s > 2. A strong in-
equality, s > 2, means that the spectral cascade is local.
This is so because the spectral width of a cascade step
[measured by parameter r of (15)] does not have to be
very large in order to satisfy the requirement *~° < 1.
At high k—as follows from (31)—the locality of
wave—wave interactions comes into guestion because
we only have a weak inequality s > 2. Therefore, in
the high-wavenumber range our simple theory needs to
be complemented with a model of energy dissipation
due to an intermittent breaking of steep wavelets. Such
a model would describe a nonlocal energy transfer to
small scales, similar to that observed in deep water
gravity waves.

For weakly nonlinear waves (when v = 4), an ad-
ditional physically meaningful stationary solution of
(6) corresponds to the inverse cascade of wave action
(8). This solution is found based on the conservation
of the action flux, that is,

Nit; = Py, (32)

where N; = [, F(k)w™'kdk. In the same fashion as
before, we arrive ultimately at
F'(ic) Ngﬁ /3 1/3(Z 1)—5/3’ (33)
where P, = a,P,/C}. The Kolmogorov constant a,
generally differs from «, introduced in (26), and the
ratio of these constants can be set based on the require-
ment that the spectra corresponding to the direct and
inverse cascades match at common wavenumbers. Fig-
ure 1 compares the energy spectrum (33) with the spec-
trum (11) based on the approximate dispersion rela-
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F(kk

Q01 -
0.001 1

0 1 )
0.1 1 10 100

k

Fi6. 1. The nondimensional 1D spectrum of total wave energy
based on the inverse cascade of wave action. Solid curve: Eq. (33).
Dashed curve: asymptotic solution (11) (Falkovich and Medvedev
1992) plotted as a 1D spectrum k™72,

tionship (10). We shall plot the results in terms of 1D
spectra kF'(k). This plot gives an idea about the range
in which (11) is in an approximate agreement with our
prediction; roughly this is & < 2. At higher wavenum-
bers, when the wave dispersion becomes small com-
pared to the wave nonlinearity, the Falkovich—Med-
vedev theory does not apply.

4. G wave spectra

The spectra usually reported in experimental litera-
ture are based on measurements of surface height and
horizontal velocity fluctuations. Therefore, in this sec-
tion we provide wavenumber and frequency spectra for
the kinetic and potential energy densities. The potential
energy spectrum F, (k) is found based on (21b). It dif-
fers from the spectrum of surface (i.e., interface) height
oscillations only by a dimensional factor: Fe(k) = (2H/
g)F,(k). In the nondimensional form, the surface
height spectrum is

O)¥ =1 (z-1)z+4v —9)
2(1/ _ 1) (22 - 1)(21}—3)/(1/—\)25/2(1/—1) *

and its dimensional expression is Fy = 2(HR)217"§. Our
choice of scales makes the nondimensional spectrum
of wave potential energy identical to the nondimen-
sional_spectrum of surface height variations: F,(k)
= F(k). Since the angular dependence in our 2D spec-
tra is ignored, the corresponding 1D spectrum of sur-
face height is simply Fi(k)k. The plot of this spectrum
is shown in Fig. 2 for several values of v.

Fy(B) ~ (34)
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The spectrum of surface height variations due to the
wave action cascade is based on (33). Employing
(21b), we find

F~§(l~c) ~ gﬁ(l)mz-z/a(zz ~ )Pz —1). (35)

Based on (21a) and (28), kinetic energy spectra F are
related to the spectra of total wave energy, (30) and
(33), by

1+
‘F
2z

In Fig. 3, these spectra are plotted for both the direct
and the inverse cascade: the former is assumed to occur
at £ = 1.6 and the latter at £ < 1.6. To match the two
branches at k =~ 1.6, we had to multiply (30) and (34)
by 1/, which is equivalent to selecting an appropriate
ratio of the Kolmogorov constants. As pointed out in
the next section, the example presented in Fig. 3 is
relevant to a case of baroclinic inertia—gravity waves
generated by a semidiurnal tide in a midlatitude region.

The spectra in Fig. 2 contain interesting information.
The first (actually, rather smooth) ‘‘break’’ in the spec-
trum (at k ~ 0.8) tentatively separates the range of
inertial oscillations from that strongly affected by the
gravity force. The second break (at k =~ 3) is pro-
nounced only if the wave nonlinearity is sufficiently
high (v = 7). At 0.8 < k < 3 we have *‘fully’’ dis-

Fk=

(36)

10 ~ T

~ o~

Fkk o1

0.01

0.001 L .

0.1 1 10 100

FIG. 2. The nondimensional 1D wavenumber spectrum Fy(k)k of
the thermocline boundary spatial oscillations. Solid curves: Eq. (34)
based on the direct energy cascade. The degree of the wave nonlin-
earity, in terms of the effective number of the resonantly interacting
Fourier components v, is indicated at each curve. Dotted curve: Eq.
(35) based on the inverse cas;ade of wave action.
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10 r. T T

Kinetic

Potential

~ o~ o~

F(k)k o.1 | .
oot } -
v=4
0.001 1 1 L
001 01 1 10 100
k

Fi1G. 3. The nondimensional, composite 1D spectra of kinetic and
potential energies. For low wavenumbers (k < 1.6), the spectra are
calculated based on the inverse cascade of wave action: the potential
energy spectrum is given by (35), and the kinetic energy spectrum is
based on (36) and (33). For high wavenumbers, k¢ > 1.6, we used
(34) for the potential energy and (35) with (30) for the kinetic energy.
Numbers at the curves designate the effective number of resonantly
interacting wave components used in the calculations of the direct
cascade. Dashed curves represent v = 10 (highly nonlinear case) for
both the kinetic and the potential energy.

persive IG waves whose spectrum is sensitive to the
degree of the wave nonlinearity. In this range, the spec-
trum fall-off may be as fast as k3, which is faster than
in either of the asymptotic regimes of k — 0 or k — .
This is the most nontrivial result of the present theory.
At k > 3, wave dispersion has only a weak effect on
the spectrum, and the wave dynamics become domi-
nated by nonlinear factors. This regime of nondis-
persive (‘‘acoustic’’) waves is characterized by rather
flat spectra [ approaching ~k~! in terms of the 1D spec-
trum kF(k)k]. The nonlinearity of such waves is not
counteracted by competing factors; hence, it should
eventually lead to the formation of *‘shock’” waves ac-
companied by a vigorous wave breaking. Indeed, spec-
trum F(k) ~ k™' means that the (1D) surface {(x) is
discontinuous in the mean-square sense. Hence, at
small scales wave crests tend to become highly asym-
metric, having a steep, near-vertical front face and a
gentle rear face. In section 6 we discuss implications
of this spectral range for dynamical processes in the
thermocline.

The frequency spectra can be estimated based on the
following relationship between the 2D wavenumber
spectrum F (k) and the 1D wave-frequency spectrum
S(w):
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kdk

S(w) = [-—F(k)] . (37)
k=k(w)

dw

In particular, the nondimensional frequency specfrum
corresponding to (30) is found to be

~ Q~(1)/(u—1) &(31/—8)/(1/—1)(&)4 +4rv —9)

S(‘Ij) - (Z/ _ 1) ((:)4 — l)(2u—3)/(v—1) (38)
The kinetic and potential energy spectra are
. « L P+
Su®) = §(@) = (39a)
20
_— o 0t =1
S,(@) = S(©) YT (39b)

Like most results of the present approach, these for-
mulas are approximate because we use dispersion law
(1) and energy ratio (20) from linear theory and scal-
ing relationships, (18) and (24), in place of a rigorous
kinetic equation.

For the direct energy cascade S, (&) is plotted in Fig.
4 based on (38) and (39a). However, it is easy to show
that at @ = 1.8 the kinetic energy spectrum based on
the inverse cascade of wave action is almost identical
to the spectrum based on (38). Therefore, one can view
the spectra in Fig. 4 as consisting of two branches
joined at & ~ 1.8—similar to the composite spectra
reproduced in Fig. 3.

A case of weak wave turbulence is presented in Fig.
4 by the solid curve for which v = 4, while the dashed
curve illustrates a higher degree of wave nonlinearity:
v = 8. Evidently, the influence of the wave nonlinearity
on the spectrum shape is weaker here than in the case
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FIG. 4. Theoretical nondimensional frequency spectra of the kinetic
energy of horizontal motions caused by baroclinic IG wave turbu-
lence, as based on (38) and (39a). The vertical axis is in arbitrary
nondimensional units of the spectral density, and the horizontal axis
is the dimensional frequency obtained from @ as (&/27)2Q sin(f).
Solid curve: v = 4; dashed curve: v = 8.



JuLy 1996

T

n

—
(]
N
Lot

-t
o

YT

i Jaal

Kinetic energy density (cm2 sec? c.p.h.'1)

1k l[”l] | 3
g f ' :
10"1 L . L L‘l ‘
102 1071 1
Frequency (c.p.h.)

FiG. 5. Frequency spectra of the kinetic energy of horizontal mo-
tions measured in the western Sargasso Sea by Gould et al. (1974)
using subsurface moorings. The local inertial frequency is marked by
/. the semidiurnal tide frequency by fr. Additional discussion of this
plot is provided by Phillips (1977, p. 205).

of wavenumber spectra in Fig. 2. In order to com-
pare (39a) to the experimental spectra presented in
Fig. 5, we plotted S, versus dimensional frequency
(D/27)282 sin() in cph, where € is the earth’s rota-
tion frequency. The vertical (nondimensional) axis in
Fig. 4 is in arbitrary units. Comparing Figs. 4 and 5,
one finds that the theoretical spectrum is in good agree-
ment with observations—except, of course, for the nar-
row frequency band centered around the tidal fre-
quency fr. Thus, the well-known spectral peak at the
inertial frequency is due to the inverse cascade of wave
action. Alternative explanations are also available (e.g.,
Pollard 1970; Munk 1980). Apparently, Fig. 5 lends
support to the idea that the tidal energy may provide
sufficient input to maintain spectral fluxes in the inertial
subranges of IG wave turbulence. This point will be
further explored in the next section.

5. Analysis of sea surface height spectra

To some extent, the present work was inspired by
satellite altimeter observations showing that power
spectra of the SSH field often exhibit features of scale-
dependent wave turbulence, such as breaks in power
laws and dependence on the intrinsic scale of the prob-
lem (the Rossby radius). However, the IG wave tur-
bulence represents only one, not necessarily dominant,
component of the total SSH variability. Filtering out
fast SSH oscillations (with periods under one day), this
component disappears (Glazman et al. 1996). In the
wavenumber range of our interest, the spectra of slow
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motions are strongly influenced by baroclinic Rossby
waves and 2D vortical flows (Glazman et al. 1996).
One-dimensional spectra of SSH spatial variations
are presently well documented (e.g., Fu 1983; Gaspar
and Wunsch 1989; De Mey and Menard 1989; Le
Traon et al. 1990, 1994), and 2D spectra and spatial-
temporal autocorrelation functions are beginning to be
reported (Glazman et al. 1996). These statistical char-
acteristics are based on SSH data from which time-
invariant spatial trends have been removed (for in-
stance, by subtracting from each SSH measurement the
mean value found by averaging over the period of ob-
servations). Typical spectra of these ‘‘detrended’” SSH
variations along satellite passes are presented in Fig. 6,
reproduced from Le Traon et al. (1994). The spectra
are calculated separately for ascending and descending
passes and then averaged together. Therefore, they re-
flect SSH spatial variations observed practically instan-
taneously. Really, it takes only about 3 minutes for a
satellite to sample a 1000-km groundtrack segment. At
wavenumbers above the first spectral break, these spec-
tra appear to be in good agreement with the theoretical
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Fig. 6. 1D spectra of SSH spatial variations along altimeter
groundtracks (LeTraon et al. 1994) based on Topex/Poseidon data
for midlatitude regions (courtesy of the authors).



1264

prediction (34) for the direct energy cascade. Spectram
(35) based on the inverse cascade agrees with obser-

vations at wavenumbers roughly below k = 2, as shown -

in Fig. 3. :

The observed trends can be explained as follows.
Depending on the energy source, the relative extent of
the inverse and direct cascade ranges may vary. Sup-
pose that the baroclinic IG wave energy is generated
by barotropic tides (scattering at the ocean floor topog-
raphy). The characteristic wavenumber k, for the IG
wave energy input is found based on (1), (2) as

ko = R"W(weee! f)* — 1 = R™W1/sin?(6) — 1,

(40)
where the last equality is valid for a semidiurnal tide.
With § = 32° and R = 40 km, we find: k, = 0.043
rad km™'. This example—in which both the direct and
the inverse cascades are important—is illustrated in
Fig. 3, where we used ko = koR = 1.6. At § = 50°,
Eq. (40) would yield ko, = 0.8. Therefore, the relative
extent of the direct cascade range would beé much
greater than in the previous example, and Fig. 2 would
be more relevant than Fig. 3. Comparing Figs. 2 and 3,
one finds that the overall shape of the spectrum is not
much different between these two cases and the posi-
tions of the spectrum breaks on the nondimensional
wavenumber axis (i.e., k ~ 0.8 and k = 3) remain
unchanged. The actual (d1mens1onal) spectrum is sen-
sitive to the local baroclinic Rossby radius of defor-
mation and the degree of the wave nonlinearity. This
is confirmed by spectra estimated for different ocean
regions by Le Traon et al. (1990).

Finally, let us emphasize that the theoretical spectra
in Figs. 2 and 3 exhibit a relatively slow fall-off as the
wavenumber increases: its rate does not exceed k> and
it may be as low as-k~'. The SSH spectra based on

~satellite measurements show a gentle spectral fall-off
(k% and slower) only in the: low-energy regions (e.g.,
Fu 1983; Le Traon et al. 1990). Near the Gulf Stream,
for example, the spectra fall off at least as fast as k~*.
An explanation of this behavior is simple: in the regions
of high mesoscale eddy activity, the SSH variations are
dominated by the vortical rather than gravity wave
component of fluid motion. The kinetic energy spectra
of 2D eddy turbulence are given by k> or k™%, cor-
responding to the enstrophy or energy cascades re-
spectively (Kraichnan 1967). In terms of 1D spectra
of SSH variations kF¢(k), these translate into k3
k=13, Such high rates of spectral fall-off are consis-
tently observed in regions of high mesoscale eddy en-
ergy (Fu 1983; Le Traon et al. 1990; Glazman et al.
1996).

Apparently, the strong dependence of the (dimen-
sional) wave spectrum on the internal Rossby radius of
deformation points to a possibility of inferring this
oceanographic parameter from statistical characteris-
tics of SSH variations measured by a satellite altimeter.
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Moreover, the shape of the spectrum, especially in the
high-wavenumber range (Figs. 2, 3, and 6), allows one
to estimate the degree of the nonlinearity of baroclinic
waves—an important characteristic of dynamical pro-
cesses in the thermocline.

Comparing potential energy spectra in Figs. 2 and
3 to the spectra in Fig. 6 and to spectra reported for
various regions by Le Traon et al. (1990), one con-
cludes that the degree of the wave nonlinearity (in
terms of parameter v) varies from region to region,
and may become rather high. This should cause no
surprise because the amplitude of the thermocline os-
cillations (i.e., internal waves) can be rather large: it
is’known to attain several tens of meters, hence it may
constitute an appreciable fraction of the thermocline
depth. The physical cause of large-amplitude internal
waves is the extremely small difference between the
densities of the two layers. This allows large oscilla-
tions to be produced by low-energy forcing. The baro-
tropic waves, whose characteristic phase speed is
about 200 m s, could hardly ever attain a similar
degree of nonlinearity.

6. Discussion and conclusions

The present analysis has addressed only the most basic
aspects of the problem. By limiting our consideration to
a single (first) baroclinic mode we excluded possible
exchange of energy with other modes. This exchange
may be important, at least within a certain subrange of
wavenumbers/frequencies. Further theoretical develop-
ments should also include a more elaborate treatment of

the Coriolis force (which becomes important for regions

closer to the equator) and other factors. Furthermore,
since the spectral distribution of energy input to IG wave
turbulence is not yet known, our consideration has been
limited to purely inertial cascades. In principle, one can
generalize the theory to account for a continuous spectral
distribution of the external input. Such a generalization
would also reduce the uncertainty in the effective value
of v (the number of the resonantly interacting wave com-
ponents) (Glazman 1992). However, we do not yet have
enough knowledge about relevant physical processes to
address such issues.

Experlmental comparisons 1nd1cate that the IG wave
spectra in the small-scale range are determined by the
direct energy cascade. This has important implications.
Specifically, spectral transfer of energy from larger
scales should result in energy dissipation at high wave-
numbers. This dissipation can occur through a variety
of mechanisms of which the internal wave breaking and
mixing are most likely. Wave breaking produces small-
scale turbulence. For wind-generated surface gravity
waves, the probability and other statistics of the wave
breaking have been related to the spectrum shape (Sny-
der and Kennedy 1983; Glazman and Weichman
1989). Therefore, we anticipate that further studies of
IG wave turbulence may lead to quantitative charac-
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terization of intermittent events of baroclinic wave
breaking. Such studies might improve our understand-
ing of vertical fluxes and ocean mixing processes. The
plausible suggestion that open ocean tides may provide
an energy source for baroclinic IG wave turbulence
prompts an interesting question about the role of the
inertial cascades in the dissipation of tidal energy and
its conversion into other forms of oceanic motions.

The inverse spectral cascade of wave action may
play a significant role in large-scale ocean dynamics.
The fact that it is responsible for the observed spectral
peak of kinetic energy at the inertial frequency—as first
suggested by Falkovich (1992)—is confirmed in the
present work. Other possible consequences of this cas-
cade are yet to be studied.

The theory indicates that the thermocline oscillations
contain important oceanographic information that can
be derived from observed SSH spectra. The baroclinic
Rossby radius of deformation is just one such item.
Another, presently less understood, property is the de-
gree of the wave nonlinearity. This can be inferred by
analyzing the spectral slope in different wavenumber
subranges.
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