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ABSTRACT

The adjustment of ocean currents initially traveling over a topographic change in depth has previously been
investigated in the limit of a discontinuous depth change. The present work is an extension to a linear, continuous
depth change. Differences in the time-dopcndent flow are shown to follow from the different properties of double
Kelvin waves over steps and slopes. Qver a slope, double Kelvin waves have a series of cross-slope modes and
can have group speeds in both directions along the slope. Thus, energy propagates both ways along the slope.

The steady state over a linear slope is argued to be similar to that for a step escarpment. The slope separates
the streamlines, isolating the flow on the two sides of the slope. The results of a series of numerical experiments
are given in order to describe the transient flow and to examine the effect of varying the two governing param-
eters: the nondimensional gradient of the slope and the nondimensional slope width. The slope gradient is found
to define the timescale of formation of the tongue and the slope width to define the cross-sectional shape.

1. Introduction

Topography, through topographic steering, strongly
guides the slow motions of the oceans. Willmott (1984)
investigated the forced double Kelvin waves generated
over a topographic step in order to explain cold water
streamers emanating from Cape Mendocino and lying
over the Mendocino escarpment. The step geometry is
convenient to work with analytically and has been ex-
tensively investigated: Johnson (1985), Gill et al.
(1986), Johnson (1990}, Johnson and Davey (1990),
and Spitz and Nof (1991) among others. Extension to
continuous escarpments is more recent; Willmott and
Grimshaw (1991) considered source—sink flow over a
wedge-shaped escarpment that is discontinuous at the
coast, and Johnson (1993) considered scattering of a
low-frequency Kelvin wave over continuous topogra-
phy. The topography in the ocean is continuous, if very
steep in places, and so the problem of the adjustment
of flow over a continuous, linear slope is considered
here in order to generalize thc results that have been
obtained over step topographies. In particular, as we
shall use an initial surface discontinuity to force the
flow, the present work can be viewed as a generaliza-
tion of Gill et al. (1986).

To show the strong similarities between flow over a
step and a slope, we will consider the linear limit of
weak flows and find the form of the steady state. The
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differences between a step and slope are in the time-
dependent response and are illustrated through use of
a numerical model.

Linear flows are tractable through wave theory and
the properties of the waves in the problem are critical
to the solution. An escarpment (a topographic step or
slope) acts as a waveguide for double Kelvin waves
(Rhines 1967). The dispersion relation and wave shape
for these subinertial waves were derived by Longuet-
Higgins (1968a,b) over a step and over a finite slope.
Over a flat bottom, in an infinite domain where the
rotation is uniform, no propagating subinertial fre-
quency waves can exist. The superinertial oscillations
consist of Poincaré waves. Thus, if the motion pro-
duced by Rossby adjustment over a slope is considered
as a combination of waves, the two types of waves,
Poincaré and double Kelvin, will coexist in different
frequency bands.

The dispersion curve for double Kelvin waves is
similar to that for Rossby waves in that the waves have
phase velocity in one direction only, the direction
which keeps the shallow water on the right in the
Northern Hemisphere. The long waves have group ve-
locities, ¢,, in the same direction as the phase velocity,
¢, and in the limit of the alongslope wavenumber, m —
0, the long waves are nondispersive. For a linear slope,
the mode 0 waves have group and phase speeds
bounded by

RAR »
Cg=0Cp = oVgh = (W)\[g_h

and by
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where 4 is the depth of the deep water, R = (gh)'"?/f
is the Rossby radius, W is the width of the slope, Ak
is the depth change across the slope, and Ah'"? is the
difference across the slope of the square root of the
depth. The short waves have group velocity in the op-
posite direction to the phase velocity. For W/R = 5 and
Ah = 0.5h, at wavenumber g ~ 1.3/R, the group ve-
locity for mode 0 is zero. Wave cross sections across
the slope show that, at the longest wavelengths, the
wave energy is spread across most of the slope,
whereas the energy at the shorter wavelengths is con-
centrated at the top of the slope.

The forcing is taken to be small enough that the non-
linear advection terms can be considered negligible.
The effects of finite flow are discussed in Allen (1988).

In section 2 the problem is defined, the initial ad-
justment and steady state described, and the energy
propagation estimated. In sections 3 and 4 the results
of the linear numerical code are described. The results
from the numerical simulations are discussed in terms
of the parameters that affect the flow: the nondimen-
sional width of the slope, W/R, and the nondimensional
slope gradient, o, which is an upper bound on the non-
dimensional long wave speed along the slope.

2. Governing equations

The governing equations are the linear shallow water
equations,

Ou on

o V=8 (12)
Ov on
b = _op —1L 1
o + fu 8 Dy (1b)
an 0 o B
ot + Bx(hu) + dy () =0, (1c)

where 7 is the surface elevation and [u(x, y, t), v(x,
v, t)] is the horizontal velocity of the fluid. Let the x
axis lie along the discontinuity in surface height and let
the y axis lie along the center of the slope, as shown in
Fig. 1. The initial surface height is

= Mo, ¥y <0
T=T= 0, y>o,

where 7, can be considered positive without loss of
generality. The depth of the fluid is 4, for x < —W/2,
h,, for x > W/2, and varies linearly between these two
regions.

In order to obtain the steady-state solution, time de-
rivatives in (1) are set to zero. Cross-multiplying the
momentum equations gives du/dx + du/dy = 0, which

(2)
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FIG. 1. The initial configuration showing (a) a perspective view
and (b) a plan view with cross sections.

implies that geostrophic flow has zero divergence. Sub-
stituting into the conservation of mass equation gives
udh/Ox + vOh/dy = 0. This result is the familiar ten-
dency of steady geostrophic flow to follow the contours
of depth. In the configuration considered here, the to-
pography is independent of y. Thus, over the slope, u
= 0 and from (1b), 9n/3y = 0. The value of n or v
completes the solution over the slope and is given in
section 2b.

The steady-state equation over the flat regions is the
conservation of potential vorticity equation derived
from (1):

R*Vin —n=—mn, (3)
where V3 = 02/0x* + 8*/8y?. Over the flat-bottomed
basins far from the slope the flow will tend to be in-
dependent of x, and the steady-state flow will tend to
the solution over a flat bottom as given in Gill (1982).
The solution in the vicinity of the slope is given by (3)
with boundary conditions that the solution must tend
to the solution over a flat bottom away from the slope
(Gill 1982) and that it must match the solution over
the slope at the slope edges. The solution is similar to
the solutions of Gill et al. (1986) and is illustrated in
Fig. 3.
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The flat-bottom solution far from the slope implies
a flux in the jet of

n0gh
f 2
(Gill 1982). Thus, the flux is proportional to the local
depth of the fluid. Since the depths on the two sides of
the slope are unequal, the fluxes do not match at the

slope. The difference in the flux into and out of the
slope region is

f_ dy hu = 770fR2 = 4)

o8
f

where R, = (gh,)'?*/f and R, = (ghy)""*/f are the
Rossby deformation radii on either side of the slope.
The difference, (5), gives the rate at which fluid must
accumulate or be removed from the slope region.

mof [RZ — RE1 = —= [h, — hy], (5)

a. Early stages of adjustment

The earliest stages of adjustment are determined by the
radiation of Poincaré waves since these waves, being su-
perinertial, have timescales smaller than the subinertial,
double Kelvin waves. Thus, on the order of an inertial
period the flow is, approximately, that given by the so-
lution over a flat bottom based on the local depth. For 7,
positive, consider h, > h, so that the jet flows from the
deep water to the shallow water. There is a net flux into
the slope region that results in an accumulation of fluid
in the vicinity of the slope. By conservation of potential
vorticity, the change in vorticity, , is given by

C . oh\ Ou v
(5 ew) (G s) ©

and the latter relation is arrived at by substitution of (1c).

If we consider the flow after it has undergone Rossby
adjustment given by the local depth in the two flat
regions, the velocity along the line y = 0 is

1 g 1/2
“"tz"°<h> » =0

away from the slope. Integrating (6) across the slope
region at y = 0 gives the average h{ as proportional to
the difference in u between the two edges of the region.
From (7) for flow up the slope with dh/dx < 0, anti-
cyclonic vorticity is produced over the slope.
Therefore, the flow has the same properties as flow
over a step. If the flow is upslope, anticyclonic vorticity
will be generated. As illustrated in Fig. 2, this anticyclonic
vorticity, when added to the jet, bends the jet in such a
way that it moves around a ‘‘tonguelike’’ accumulation
of fluid. It can be shown that for flow downslope, cyclonic
vorticity is generated. Thus, the tongue is always formed
keeping the shallow water to the right in the Northern
Hemisphere as is the case for flow over a step. The dis-
persion relation for double Kelvin waves, which carry

)
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Fic. 2. Plan view of a schematic of the response of the current to
the slope. Generation of anticyclonic vorticity at the slope strengthens
the flow on one side of the jet and weakens it on the other. The
position at which the jet crosses the slope moves continually away
from the original discontinuity, keeping the shallow water on the
right.

information along the slope, implies that the long waves
have group velocity in the direction the tongue tends to
form but the short waves have group velocity in the op-
posite direction (Longuet-Higgins 1968b).

b. Steady state

To determine the details of the steady state, that is,
the value of the surface height or the velocity v over
the slope, the time evolution of the flow must be con-
sidered. As the governing equations are linear, the prin-
ciple of superposition holds and any flow can be con-
sidered as the sum of the steady state and the waves
generated by the initial conditions or formally as the
Fourier superposition:

n = N + f dwf dm[n.(w, m, x) cos(my — wt)
0 —0

(8)

where each 7. and each 7, satisfies the ordinary differ-
ential equation, derived from (1),

0 0 5
les (1) + @ =1
gmf Oh

2 =
ghm " 3x] n=0 (9)
and where the solution for w = 0 is termed 7.

For a similar problem, Willmott and Grimshaw
(1991) derived analytically the steady-state solution
over a wedge-shaped escarpment. They considered a
source—sink geometry with a rigid lid so that Poincaré
waves were excluded. As time ¢ — oo, the only contri-
bution to the Fourier integral was due to a pole at m
= 0 in 7,. Johnson and Davey (1990) found a similar
result over a vertical step including a free surface. This
pole corresponds to the long double Kelvin wave.

Consider the Rossby adjustment problem: the sur-
face elevation is initially a step function (in y) but
the final steady state, over the slope, is constant in y.
Step function implies the presence of a pole atm = 0
in 7,. Analogous to the problem solved in Willmott

+ ny(w, m, x) sin(my — wt)],
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and Grimshaw (1991), it can be argued that this pole
should determine the steady-state solution and that it
corresponds to long double Kelvin waves.

Longuet-Higgins (1968b) gives the dispersion re-
lation and governing equation for double Kelvin
waves over a slope. All long waves (m - 0) have
group velocities that keep the shallow water to the
right. Furthermore, for low-frequency waves the equa-
tion and boundary conditions governing the cross-
slope mode shape are of Sturm—Liouville form, and
thus the modes form a complete set (over the slope
itself). Hence, the slope acts as a waveguide; these
long waves determine the steady state and, because
they travel in only one direction along the slope, the
solution is asymmetric.

For the case h, > h,, for which the long waves travel
from negative y to positive y, the waves carry the sur-
face height information from y — —c. The surface
height for y negative initially is a constant 7,, and as
the long waves travel toward positive y and as they
form a complete set, the final surface height over the
slope is this constant. For the case h, > h,, a similar
argument gives 1 = 0 over the slope.

The surface height over the slope is constant and
there is no flow over the slope in the steady state. The
fluid over the slope is stagnant and completely sepa-
raies the flow in the deep basin from that in the shallow
basin. Figure 3 shows a wire-mesh plot of the surface
elevation of the steady-state solution. The potential
vorticity of the steady-state solution, @ = {k — fn, in
the region over the slope in the direction the long dou-
ble Kelvin waves travel, is less than that of the initial
state by fn,. It is unchanged in all other regions.

The steady-state solution for the slope is thus very
similar to solution for a step found by Gill et al. (1986)
with the surface height over the slope a constant and
equal to that over a step.

¢. Presence of a coast

Now consider the case of a vertical coast parallel to
the original discontinuity in the direction in which the
short waves propagate. The surface elevation at the
coast will be maintained by Kelvin waves to be the
surface elevation from the deep water. As shown
above, long double Kelvin waves will carry this surface
height information away from the wall. The steady-
state surface elevation over the slope will be a constant
and will completely separate the flow in the deep basin
from that in the shallow basin.

d. Energy propagation

It is perhaps not surprising that the steady solution for
the slope is very similar to the steady state for the step in
that the steady state is determined by the very longest
waves, and for these the slope appears steplike. However,
energy transport depends on the full spectrum of waves
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and is not the same for a step and a slope. The step only
supports group speeds in one direction, whereas short
waves on the slope travel in the opposite direction.

The energy available to the double Kelvin waves can
be conceptually separated into two parts: the energy
available from the initial surface discontinuity over the
slope and the energy from the incoming jet. The energy
from the jet increases with time and feeds the surface
height change, which moves in the positive direction
along the slope. This energy is further discussed in sec-
tion 3c. In this section we will consider the energy
available from the initial surface discontinuity over the
slope as a portion of it moves in the negative direction.

For simplicity we will only consider the case 4,
> h,, that is, the water is deep, denoted by subscript
D, for x < —W/2 and shallow, denoted by subscript
S, forx > W/2.

Multiplying (8) by sin(my) and then integrating
over all y gives 7, as the Fourier sine transform of the
initial surface height minus the steady state:

( m m 1
2 7+ 2 2
m +ap m+ap m

Xexp[(x+ W/2)(ab+m*)'?], x<—-W/2

o =

27 ﬁ m’
m m 1
2 3+ 2 2

m +ay m+as m

X expl—(x— Wi2)(ai+m»)'?], x> W/2.

In order to estimate the energy traveling in the neg-
ative direction along the slope (that is, in the opposite
direction of the long double Kelvin waves) it is nec-
essary to estimate the separation between the Poincaré
and double Kelvin waves. Assuming that the Poincaré
waves are generated in the same way as if the bottom
was locally flat, the part of the sine transform (10)
attributable to the Poincaré waves is m/(m?> + «?),
where «; is the reciprocal of the local Rossby radius.
This assumption is justified by the numerical experi-
ments; see Fig. 4. Making the geostrophic approxima-
tion we can approximate the velocity: u ~ (m/
a)(nRfIh)and v = [(m + o)/ ;] (nRf/h). Then we
integrate over wavenumber from m,, to infinity, where
m., 1s the wavenumber corresponding to zero group
speed. To estimate an upper bound, m,, was approxi-
mated as m,q, the critical wavenumber for the gravest
mode. Evaluation gives the energy at any x on the slope
as

| x| < W/2 (10)

2 o 1 1 m
- @ e
p2 81 2(af + m2) 20 af + m?
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F1G. 3. A wire mesh showing the surface elevation of the steady-
state solution. The x axis runs from top right to lower left. The slope
lies under the ‘‘tongue’’ protruding toward the lower right; the shal-
low water is towards the lower left. Grid lines are Rp/2 apart. The
slope has width 5.0R,, and the depth change is 50%.

where £ is the local depth. The total energy originally
over the slope available to double Kelvin waves is
0.125gn3h/ a,. For the case of a slope five Rossby radii
wide and with a depth change of 50%, m.,, = 1.32,
giving an upper bound on the energy traveling in the
negative direction, integrated across the width of the
slope, of 20%. The amount of energy traveling in the
negative direction increases as m, decreases and thus
increases for increasing slope width or decreasing slope
gradient.

Energy traveling in both directions along the slope

is dependent on the finite width of the slope and is not -

observed over step topography.

3. Results from the numerical code

This section presents the results produced by the lin-
ear numerical simulation. The numerical code is a mod-
ified version of the one used to simulate flow over a
step and is described in Gill et al. (1986). The domain
of the numerical simulation is rectangular and scaled
in terms of the deep water Rossby radius, R. The max-
imum (and usual) grid size is Rp/2. The depth varies
in the x direction and the boundary conditions are pe-
riodic or radiative/sponge in x and periodic or free-slip
in y. The flow is forced by adding fluid to the region
on one side of the forcing discontinuity. Rather than
adding all the fluid at # = 0, the fluid addition is spread
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over 5 inertial periods to reduce the amplitude of the
Poincaré waves produced. There is no explicit viscosity
in the model.

a. Description of the observed flow

First, a detailed, principally qualitative, description
of the flow is presented for a particular set of parame-
ters: a slope from deep water to shallow with a slope
width of five Rossby radii and a depth change of 50%;
that is, W/R = 5.0 and ¢ = 0.1.

Within the first inertial period, an initial adjustment
to the local depth is reached. The surface contours at
this time are shown in Fig. 4. Over the flat basins away
from the influence of the slopes the steady-state solu-
tion in the absence of topography is realized. Over the
slope, the jet varies in width depending on the depth of
the fluid, being wider in the deeper water (it scales, as
expected, with the Rossby radius ). These results verify
the assumption made in section 2 that the fluid adjusts
over a short timescale to a solution close to the steady
state over a flat bottom based on the local depth.

Fluid accumulates over the slope as the jet flows
from deep water into the shallow water. The jet deflects
to the right (looking downstream) turning out along the
slope, crossing the slope, flowing back along the slope
and turning to join the jet over the shallow basin. As
time increases, the peak height increases above 7, and
the peak widens to approximately 4/5 the width of the
slope. The peak advances with the tongue and de-
creases again in width as the tongue narrows. Behind
the peak a trough forms (after 10 inertial periods) and
behind that a second peak forms (after 20 inertial pe-
riods). After 50 inertial periods, dispersion of wave-
numbers and modes leads to the dramatic structure of
the tongue shown in Fig. 5. The leading long wave,

10

% 1 T . 15

slope

FiG. 4. Results of the simulation for W/R = 5.0 and Ah = 0.5/hD.
The surface height contours are shown after 1 inertial period. Dis-
tance is in units of Rp; L marks the position of the initial discontinuity
and the arrows along the x axis mark the bottom and top of the slope,
respectively. The solid contours are 7 < 7,/2 and the dotted ones are
n < /2. The walls are well below and above the region shown.
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FiG. 5. Results for the same simulation as Fig. 4. A surface height
wire mesh is shown after 50 inertial periods. Alignment as for
Fig. 3.

gravest mode (mode 0) is visible followed by mode 2
and then mode 4 long waves. As each wave mode
passes, the surface elevation over the ridge comes
closer to being independent of x and equal to 7,. Trav-
eling in the other direction along the slope, the short
gravest-mode waves are visible.

The flow field after 10 inertial periods is shown in
Fig. 6. The streamlines nearly follow the surface con-
tours, as they would if the flow was steady. Most of
the flow over the slope is around the front of the ac-
cumulated fluid. However, there is a weak back flow
downslope behind the peak, giving closed anticyclonic
streamlines over the slope.

A slope from shallow water to deep water is essen-
tially the mirror image of the above about the line of
the initial discontinuity and with the surface height in-
verted. The tongue travels in the opposite direction, still
with the shallow water to its right and carries a negative
change in surface height.

b. Presence of a coast

If the surface discontinuity is moved close to a coast
modeled as a free-slip wall in such a way that the
tongue propagates away from the wall, the pattern of
the tongue produced is qualitatively the same as in the
absence of the wall. The height of the depth change is
reduced to be equal to the depth at the wall in the deep
water. In order to resolve the flow near the wall, the
grid size must be reduced. For a grid size of R,/8 the
surface height at the wall is constant within 2% after
100 inertial periods.

slope 1 X =

01— _ .

0 f

FIG. 6. Results for the same simulation as Fig. 4. The velocity field
is shown after 10 inertial periods.

¢. Energy of the flow

The kinetic energy in the simulation domain is plot-
ted versus time in Fig. 7. The initial adjustment to local
geostrophic flow can be seen and is essentially com-
plete by the sixth inertial period, one period after the

Kinetic Energy vs Time

1 v 1 T F T v T v Tt r 1T

18 T

KE (pgRn,*/4)

i I S S S ' ) SR T I SR 'Y
] 19 20 30 40 50 69 78 80 98 100
t (27/f)

F1G. 7. Graph of the kinetic energy per unit length along the x axis.
Same parameters as Fig. 4. Time is in inertial periods. Note that the
forcing is spread over 5 inertial periods; see the text. Solid: over
slope, x > 0; long dashed: away from the slope, deep water; long-
short dashed: away from the slope, shallow water; short dashed: over
slope, x < 0.
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forcing is stopped. There is a slight ‘‘overshoot’’ in the
kinetic energy, which is due to the large v velocity com-
ponents necessary to relax the forcing discontinuity.
After this first rise in kinetic energy, there is a slow rise
as the tongue grows and the jets on each side of it
become longer. This rise indicates that the bottom to-
pography allows more kinetic energy to be released
from the spatial variation in the surface height than is
possible in the absence of topography.

The energy continues to increase as potential energy
is converted to kinetic energy. From where the energy
appears to come depends on the choice of origin for
the calculation of the potential energy. Taking the ob-
vious choice of the undisturbed fluid height, the incom-
ing jet energy is higher than the outgoing and this is
the source of energy for s, > h,, that is, an elevated
tongue. If 4, < h,, the flux difference between the jets
is overshadowed by the potential energy release of the
tongue formation, as the tongue is a depression.

However, if we take the symmetric choice, the mid-
point of the two original elevations, 7,/2 as the origin
for the potential energy calculation, then there is no
energy flux in either jet. The steady-state tongue cross
section has less potential energy than the undisturbed
fluid and this is the source of the kinetic energy (as in
the depression case above).

4. Effect of varying the parameters
a. Effect of o

Varying the slope gradient, o = (4, — h,)Rp/(Whp),
primarily effects the timescale of the adjustment. The
most obvious instance of this effect is in the speed of
propagation of the disturbance along the slope. In the
positive direction along the slope, that is, the direction
in which the long double Kelvin waves move, the lead-
ing edge of the disturbance is easily characterized by
the foremost position over the slope where the surface
elevation is 70/2. After 5 inertial periods the variation
of this position with time is observed to be approxi-
mately linear. The propagation speed of the disturbance
is determined by a least squares fit on position versus
time data from the 15th to the 100th inertial period and
is plotted for various values of ¢ in Fig. 8. As expected,
the values are within 1% of the group speed of the long
mode-0 double Kelvin wave.

In the negative direction along the slope, the leading
edge of the disturbance is defined to be the furthest
point, from the line of the forcing discontinuity, where
the velocity |#| = Vu® + v? < eupq. The velocity,
Unmax» 18 the maximum velocity observed in Rossby ad-
justment over a flat bottom of the same depth as the
deep water. The parameter ¢ is taken to be 0.005. One
run (W/R = 5.0, Ah = 0.5hp) was repeated for €
= 0.0075 and yielded results differing by less than 1%.
The speed of propagation alongslope is determined by
a least squares fit to the data between the 15th and the
100th inertial period and is plotted in Fig. 8.
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Propagation Speed vs Slope Gradient
—

T T T T T

.16 @ -

] .
.BE» : %

.96

c/(gh)"

.84 | R

.82 | e -

-.02 - * -

»*

~.p4 - . -
*

-.06 L 1
e A

IS EU SIS Y S N 1 I 1
.2 .3 .4 -5 .6

a

FEN B I L !
.7 .8 9 1.9

FiG. 8. Plot of the propagation speed of the tongue, ¢, nondimen-
sionalized by \/Eﬁ versus o. Plus sign: x > 0, using surface height
method; open circle: x > 0, using velocity method; asterisk: x < 0,
using velocity method; see text.

The forward propagation speed can also be calcu-
lated using the velocity. This method gives values up
to 10% higher than the surface elevation method.

b. Effect of W/R

In Fig. 9, the surface height contours after 30 inertial
periods are plotted, for a slope of width W = 0.5R and
for a slope of width W = 7.5R (both having o = 0.1).
The speed of propagation is slightly greater for the wider
slope. However, the main difference is the shape of the
disturbance. For small slope widths, W < 1.0R, the dis-
turbance is symmetrical as was observed by Johnson and
Davey (1990) over a step; see their Fig. 3. For larger
slope widths the disturbance is not symmetric; the peak
first forms approximately 1R from the top of the slope.
Thus, the wider the slope the more asymmetric the pat-
tern. As the disturbance propagates, the leading portion»
becomes more symmetric, whereas the portion near the
initial discontinuity remains asymmetric as can be seen
in Fig. 5, which shows the surface contours after 50
inertial periods for a slope of W/R = 5.

The asymmetry is easily understood in terms of dou-
ble Kelvin waves. The higher the wavenumber and the
wider the slope, the more the waveform is concentrated
at the top of the slope. The long waves move faster,
leaving the short waves behind. The long waves are
nearly symmetric for all slope widths whereas the short
waves, which form the peak, are asymmetric, particu-
larly for wide slopes. The rate of formation of the peak
decreases as slope width increases.
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FI1G. 9. Plan view of the surface height contours after 50 inertial periods for (a) W/R = 0.5 and (b) W/R = 7.5. ¢ = 0.1.
Distance is in units of Rp,.

S. Discussion and summary

Rossby adjustment across a slope in a homoge-
neous fluid generates a tongue along the slope in a
manner similar to adjustment over a step. Because
the flux in the jet depends on the depth, the flux dif-
ferential at the slope causes an accumulation or de-
pletion of fluid over the slope. The flow bends around
the accumulation/depletion and the process contin-
ues, producing a tongue. The tongue width is depen-
dent on the width of the slope and a region of slowly
eddying fluid is found in the center of the tongue
bounded by jets on both sides. Dispersion effects re-
sult in a series of peaks and troughs in the tongue.
Unlike the step case these are not symmetric and they
are displaced toward the shallow edge of the slope.
The finite width slope allows cross escarpment
modes and as time progresses, the tongue organizes
into trains of waves with the mode-0 waves leading
followed by mode 2 and 4. The odd number modes
have small amplitudes.

The finite width slope allows wave and energy prop-
agation in both directions along the slope. Total kinetic
energy along the slope in the direction the long waves
propagate grows without bound as kinetic energy is
continually extracted from potential energy. This en-
ergy is in the zero-wavenumber double Kelvin wave.
Kinetic energy in the other direction was shown to be
bounded above by 20% of the energy in all other wave-
numbers for the case of a 5 Rossby radii wide slope
and a depth change of 50%.

The tongue propagates alongslope with the shal-
low water on the right in the Northern Hemisphere
at a rate given by the long wave speed of the mode-
0 double Kelvin wave, which, in turn, depends pri-
marily on the parameter o, which is dependent on the
gradient of the slope. The timescale of the tongue
formation is given by 1/0f and as a ‘‘rule of thumb”’
for general flow problems, if the background flow is
steady over a timescale large compared to 1/gf, the
effect of a slope on the flow should not be neglected.
The shape of the tongue depends on the width of the
slope, W/R. As W/R increases, the flow becomes
more asymmetric with the disturbance propagating
faster and the peaks/troughs become closer to the
shallow edge of the slope.

The tongue approaches a steady state consisting of
stagnant fluid over the slope and jets traveling up along
one edge of the slope and down along the other. The
presence of the topography enables more potential en-
ergy to be released from the initial discontinuity in sur-
face elevation. The concept of a greater amount of en-
ergy release due to a more complicated geometry can
be generalized by realizing that the major contribution
to the change in kinetic energy, when moving from
simple to complicated geometry, is the length of the
geostrophic jet.' In steady geostrophic flow, the flow is

! The other possible contribution is due to movement of the jet into
deeper water; the kinetic energy is proportional to h'2.
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along the depth contours. Thus, any geometry that ini-
tially causes the flow to cross depth contours will cause
more kinetic energy to be released from the potential
energy field.

The finite width slope, as opposed to a step, allows a
multitude of modes and, more importantly, allows prop-
agation in both directions along the slope. However, it
has been shown that the steady state is similar to that over
a step (except for the stagnant region over the slope itself)
and the presence of a wall has little effect if the propa-
gation of the long waves is away from the wall.

The effect of a nearby wall perpendicular to the slope
(parallel to the slope gradient) on flow over a slope
depends on its orientation. If the wall is oriented so that
the long double Kelvin waves travel away from the
wall, the flow is modified but not greatly changed. An
analytical solution for a step abutting a wall is given in
Johnson and Davey (1990). Willmott and Grimshaw

(1991) considered the related problem of flow over a

wedge-shaped escarpment. This particular geometry
reduces the effect of the higher-mode double Kelvin
waves. The problem of Kelvin waves crossing stepped
topography abutting a wall has been considered by
Johnson (1990) and over continuous topography in-
cluding a linear slope by Johnson (1993). Figure 2
from Johnson (1993) shows a low-frequency wave
over a linear escarpment; the flow near the wall is sim-
ilar to the development of the tongue over the slope
seen in Fig. 6 here. However, higher cross-slope modes
do not seem to form to the same extent in the case of
Kelvin wave scattering as they do in the Rossby ad-
justment problem.

If, on the other hand, the long double Kelvin waves
travel into the wall, the jet is squeezed against the wall
and accelerates, producing a nonlinear steady state cur-
~ rent (Allen 1988).

Generalization of this work to two-layered stratified
flow is considered in Allen (1988) and Willmott and
Johnson (1995) have considered two-layer flow over a
step.
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