
A Simple and Unified Method of Proving Unpredictability

Mridul Nandi
School of Computer Science

University of Waterloo
Ontario, Canada N2L 3G1

August 3, 2006

Abstract

Recently Bernstein [4] has provided a simpler proof of unpredictability of CBC construc-
tion [3] which is giving insight of the construction. Unpredictability of any function intuitively
means that the function behaves very closely to a uniform random function. In this paper we
make a unifying and simple approach to prove unpredictability of many existing constructions.
We first revisit Bernstein’s proof. Using this idea we can show a simpler proof of unpredictabil-
ity of a class of DAG based construction [7], XCBC [5], TMAC [8], OMAC [9] and PMAC [6].
We also provide a simpler proof for stronger bound of CBC [1] and a simpler proof of security
of on-line Hash-CBC [2]. We note that there is a flaw in the security proof of Hash-CBC in [2].
This paper will help to understand security analysis of unpredictability of many constructions
in a simpler way.

1 Introduction.

This paper deals how one can obtain a simple proof for a bound of distinguishing advantage of
two classes of object, mainly two classes of functions. We consider several constructions and show
how simply the distinguishing advantage can be obtained. Here we mostly consider distinguishing
attack of existing constructions with popularly known random function (in this paper, we term it as
uniform random function [4]). Unpredictability of a construction intuitively means that there
is no efficient distinguisher which distinguishes this from the uniform random function. Bernstein
has provided a simple proof of unpredictability of CBC-MAC (Cipher Block Chaining-Message
Authentication Code) [4] which is the main motivation of this paper. We first revisit his proof [4]
and show how simply one can extend the proof idea for a class of DAG (Directed Acyclic Graph)
based general construction due to Jutla [7]. This class contains many constructions including CBC
and a variant of PMAC [6]. We give a simpler proof of partial result of improved security analysis
of CBC-MAC [1]. We also study distinguishing advantage with a different class known as uniform
random on-line function introduced in Crypto 2001 [2]. We show that same idea of proof is also
applicable in this scenario and we obtain a simpler proof of Hash-CBC construction [2]. The idea
of all these proofs is based on statistical distribution of the view of the distinguisher. Thus, it gives
information theoretic security and hence the security bound holds for computationally unbounded
distinguishers also.

This simple idea can help to understand better about the insight of the construction and can
help to come up with very nice constructions and results. For example, we modify slightly the the

1

DAG based class due to Jutla [7], so that it will include all known constructions like XCBC [5],
TMAC [8], OMAC [9], PMAC [6] etc.

Organization of the paper. In this paper, we first build mathematics for the security bound
of the distinguisher in Section 2 which would be used throughout this paper. Then we rewrite the
simple proof of security of CBC given by D. J. Bernstein in Section 3. In Section 4, we generalize
his idea of proof to have a proof for a general class proposed by Jutla. We see that security of
arbitrary length MAC construction like XCBC, TMAC, OMAC, PMAC etc. can be derived from
it. In Section 5, we give a simple proof of a part of result proving the improved bound of CBC
given by Bellare et. al. [1]. In Section 6 we provide a simpler proof of security of Hash-CBC. We
note that in the original paper there is a flaw in the proof. Finally we conclude.

2 Mathematics for security proof in Distinguishing Attack.

2.1 Different Notion of Distances and Its Cryptographic significance.

In this section, we define two notions of distances of two random variables. Then we state the
relationship between them.

(1) Statistical Distance :

Let X and Y be two random variables taking values on a finite set S. We define statistical distance
between two random variables by

dstat(X, Y) := maxT⊂S

∣∣Pr[X ∈ T]− Pr[Y ∈ T]
∣∣.

Note that, Pr[X ∈ T]−Pr[Y ∈ T] = Pr[Y /∈ T]−Pr[X /∈ T] and hence dstat(X, Y) = maxT⊂SPr[X ∈
T]−Pr[Y ∈ T]. It measures the distance between the distribution of the random variables. In fact,
it is really a metric or distance function on the set of all distributions on S. It measures how close
their distributions are. For identically distributed random variables X and Y , dstat(X,Y) = 0 and
if the random variables are disjoint1 then the statistical distance is one. In all other cases it lies
between zero and one. Now we prove an equivalent definition of statistical distance and study some
standard examples.

Lemma 2.1. dstat(X, Y) = Pr[X ∈ T0]− Pr[Y ∈ T0] = 1
2 ×

∑
a∈S

∣∣Pr[X = a]− Pr[Y = a]
∣∣, where

T0 = {a ∈ S : Pr[X = a] ≥ Pr[Y = a]}.
Proof. For T0 as given in the Lemma 2.1, it is easy to see that

∑

a∈S

∣∣Pr[X = a]− Pr[Y = a]
∣∣ = 2× (

Pr[X ∈ T0]− Pr[Y ∈ T0]
)
.

For any T ⊂ S, 2× (Pr[X ∈ T]− Pr[Y ∈ T])

=
∑

a∈T

(
Pr[X = a]− Pr[Y = a]

)−∑
a/∈T

(
Pr[X = a]− Pr[Y = a]

)

≤ ∑
a∈S |Pr[X = a]− Pr[Y = a]|.

1X and Y are said to be disjoint if X occurs with some positive probability then Y does occur with probability
zero and vice versa. More precisely, there exists a subset T such that Pr[X ∈ T] = 1 and Pr[Y ∈ T] = 0

Example 2.1. Let X and Y be uniform distributions on S and T ⊂ S respectively. Then by
Lemma 2.1, dstat(X,Y) = 1

2 ×
(
(1
|T | − 1

|S|)× |T |+
|S|−|T |
|S|

)
= 1− |T |

|S| . Thus, if size of T is very close
to S then statistical distance is also very close to zero. On the other hand, if size of T is negligible
compare to that of S then statistical distance is close to one.

Example 2.2. Let S = Func(G,G) where Func(H, G) denotes the set of all functions from H to
G. Let T = Funcinj(G,G) be the subset containing all injective functions (or permutation since
domain and range are same). We say u (or v) is a uniform random function (or uniform random
injective function) if it is a uniform distribution on S (or T respectively). Thus from Example 2.1
we know that dstat(u, v) = 1− N !

NN which is very close to one for large N , where |G| = N .

Example 2.3. Given any distinct x1, · · · , xk ∈ G, let the k-sampling output of u be (u(x1),· · · ,u(xk))
and denoted as u[k](x1, · · · , xk). Let X = (u(x1), · · · , u(xk)) and Y = (v(x1),· · · ,v(xk)). Then
we can see that X has a uniform distribution on S = Gk and Y has a uniform distribution
on T = G[k] := {(y1, · · · , yk) ∈ Gk : yi’s are distinct} and hence (again by Example 2.1)
dstat(X, Y) = 1 − N(N−1)···(N−k+1)

Nk ≈ 1 − exp−k(k−1)/2N . Here we note that if k <<
√

N then
the statistical distance is very close to zero.

Now, we prove two results which will help to give an upper bound of statistical distance of two
distributions. If the probability of the event {X = a} is not small compare to that of {Y = a} for
all choices of a (or on a set with high probability) then the statistical distance is also small. More
precisely, we have the following two lemmas.

Lemma 2.2. Let X and Y be two random variable taking values on S and ε > 0. If Pr[X = a] ≥
(1− ε)× Pr[Y = a], ∀a ∈ S or Pr[X = a] ≤ (1 + ε)× Pr[Y = a], ∀a ∈ S then dstat(X, Y) ≤ ε.

Proof. For any subset T ⊂ S, Pr[X ∈ T] ≥ (1− ε)×Pr[Y ∈ T] since Pr[X = a] ≥ (1− ε)×Pr[Y =
a] ∀ a. So, Pr[Y ∈ T]− Pr[X ∈ T] ≤ ε× Pr[Y ∈ T] ≤ ε. Thus, dstat(X, Y) ≤ ε. Similarly one can
prove for the other case.

Lemma 2.3. Let X and Y be two random variables taking values on S. Let for a subset T ⊂ S,
Pr[X = a] ≥ (1− ε1)× Pr[Y = a], ∀a ∈ T and Pr[Y /∈ T] ≤ ε2 then dstat(X,Y) ≤ 2ε1 + 2ε2.

Proof. For any subset T1 ⊂ T , Pr[Y ∈ T1]− Pr[X ∈ T1] ≤ ε1 × Pr[Y ∈ T1] ≤ ε1. From the given
relation we also note that Pr[X ∈ T] ≥ (1 − ε1) × Pr[Y ∈ T]. Thus, Pr[X /∈ T] ≤ ε1 + ε2 − ε1ε2.
Thus, dstat(X,Y) ≤ ε1 + Pr[X ∈ ¬ T] + Pr[Y ∈ ¬ T] ≤ 2(ε1 + ε2).

(2) Computational Distance :

The statistical distance is also popularly known as information theoretic distance. In cryptography,
there is another notion of distance, known as computational distance. Let A(·) be a probabilistic
algorithm which runs with an input a ∈ S and giving output 0 or 1. Define, A-distance between X
and Y as follows;

dA(X, Y) =
∣∣Pr[A(X) = 1]− Pr[A(Y) = 1]

∣∣.
Here, A(X) means the distribution of output ofA(z) where z follows the distribution of X. Similarly
for A(Y). As A is a probabilistic algorithm it can use a string r chosen from some set R with
a distribution which is independent with X and Y . So we consider that A is having two inputs
r ∈ R and z ∈ S. We state a fact which shows a relationship between statistical and computational
distances.

Lemma 2.4. For any A, dA(X, Y) ≤ dstat(X,Y). Conversely, there exists an algorithm A0 (may
not be efficient) such that dA0(X,Y) = dstat(X, Y).

Proof. Output of A is completely determined by a pair (r, z), where r is the random string chosen
from R and z is the input. Let Sr0 = {a ∈ S : A(r0, a) = 1}. Thus, dA(X, Y)

=
∣∣Pr[A(r,X) = 1]− Pr[A(r, Y) = 1]

∣∣
=

∣∣ ∑
r0∈R Pr[r = r0]

(
Pr[A(r0, X) = 1 | r = r0]− Pr[A(r0, Y) = 1 | r = r0]

)∣∣
=

∣∣ ∑
r0∈R Pr[r = r0]

(
Pr[A(r0, X) = 1]− Pr[A(r0, Y) = 1]

)∣∣
=

∣∣ ∑
r0∈R Pr[r = r0]

(
Pr[X ∈ Sr0]− Pr[Y ∈ Sr0]

)∣∣ ≤ dstat(X,Y).

The equality holds if Sr0 = T0 as in Lemma 2.1. Thus, on input z, A0 computes the probability
Pr[X = z], Pr[Y = z] and outputs 1 if Pr[X = z] ≥ Pr[Y = z], otherwise 0. Hence dA0(X,Y) =
dstat(X, Y).

In the above proof note that A0 may not be efficient and does not use any random string. One
can consider only deterministic algorithm when it has unbounded computational power. Intuitively,
one can make computation for all random choices and choose the random string where it has the
best performance. Later, we will show that we can ignore the random string while we distinguish
two classes of functions by using unbounded computation.

2.2 Distinguisher of Families of Functions or Random Functions.

In this section we describe how a distinguisher can behave. We also show that how the advantage of
the distinguisher can be obtained by computing the statistical distance of view of the distinguisher.

By random function we mean some distribution on the set Func(H, G), set of all functions from
H to G. In Example 2.2, we have already defined two random functions, they are uniform random
function and uniform random injective function. In cryptography, they are used as ideal candidates.
In this paper we will also study another ideal function known as uniform random on-line injective
function. We will define this in Section 6. Now we follow the notations used in Example 2.2 and 2.3.
Let f be a random function. For each x = (x1, · · · , xk) ∈ H[k], f [k](x) = (f(x1), · · · , f(xk)) follows
the distribution induced by the distribution of f . More precisely, for any y = (y1, · · · , yk) ∈ Gk,

Pr[f [k](x) = y] =
∑

f0∈I

Pr[f = f0], where I := {f ∈ Func(H,G) : f [k](x) = y}.

Let f and g be two random functions and a distinguisher D has a function oracle which can be
either chosen from f or from g. Distinguisher is behaving as follows :

- First it chooses a random string r from R.
- Based on r it makes oracle query say x1 := x1(r) ∈ H. It obtains a response y1 ∈ G.
- Then it makes queries x2 = x2(r, y1) ∈ H and obtains response y2 ∈ G and so on.

Even if x2 can depend on x1, it is a function of r and y1 since x1 is a function of r only. Thus,
xi is a function of (r, y1, · · · , yi−1). We say these functions x1, x2, · · · are query functions (or
x = (x1, · · · , xk) is k-query function) and the tuple (y1, · · · , yk) ∈ Gk is the conditional view of
the distinguisher (condition on the random string r) where k is the number of queries. Note that

the output of D is completely determined by the chosen random string r and the conditional view
(y1, · · · , yk). We define the distinguishing advantage of DO to distinguish between f and g

Advf,g(D) = |Pr[Df = 1]− Pr[Dg = 1]|.

Define df,g(k) = maxDAdvf,g(D), where maximum is taken over all oracle algorithms D which make
at most k queries. This denotes the maximum distinguishing advantage for two random functions
f and g where the attacker is making at most k queries. Note that there is no restriction on the
computational resources of D. We can think D as a tuple of function (x1, · · · , xk,A) where xi’s are
query functions and A is the final output function which takes input as (r, y1, · · · , yk). Denote this
view without the random string (y1, · · · , yk) by f [k]r,x1,··· ,xk

or g[k]r,x1,··· ,xk
for the random function

f and g respectively. Here, A is distinguishing two families of random variable {f [k]r,x1,··· ,xk
}r∈R

and {g[k]r,x1,··· ,xk
}r∈R. Thus,

Advf,g(D) =
∣∣ ∑

r∈R
Pr[A(r, f [k]r,x1,··· ,xk

) = 1]× Pr[r]−
∑

r∈R
Pr[A(r, g[k]r,x1,··· ,xk

) = 1]× Pr[r]
∣∣

=
∑

r∈R
Pr[r]× dA(f [k]r,x1,··· ,xk

, g[k]r,x1,··· ,xk
)

≤
∑

r∈R
Pr[r]× dstat(f [k]r,x1,··· ,xk

, g[k]r,x1,··· ,xk
)

So, given any probabilistic distinguisher D = (x1, · · · , xk,A) one can define a deterministic distin-
guisherD0 = (x1, · · · , xk,A0) such that Advf,g(D) ≤ Advf,g(D0). Here, D0 chooses a random string
r0 with probability one (i.e., a deterministic algorithm) such that dstat(f [k]r0,x1,··· ,xk

, g[k]r0,x1,··· ,xk
) =

maxr∈R dstat(f [k]r,x1,··· ,xk
, g[k]r,x1,··· ,xk

) and A0 behaves as in Lemma 2.4. Now we will make fol-
lowing assumptions in this paper.

Assumption 1 (Distinguishers are deterministic) : We assume that all distinguishing algo-
rithms are deterministic. Thus, x1 is a constat and xi is a function of (y1, · · · , yi−1).

Assumption 2 (Query functions are distinct) : To avoid complicity of notations we use the
same notation xi to denote the function as well as the output of the function. We will assume that
all outputs of xi’s (or xi as a functional value) are distinct (otherwise one can restrict on the set of
distinct values of xi).

Now we use the notation f [k]x1,··· ,xk
instead of f [k]r,x1,··· ,xk

to denote the view of the distin-
guisher. We can write that

df,g(k) = maxxdstat(f [k]x, g[k]x),

where maximum is taken over all k-query functions x = (x1, · · · , xk). Thus, to obtain an upper
bound of df,g(k), it would be enough to bound dstat(f [k]x, g[k]x) for each k-query functions x. The
following theorem says how one can obtain this. This theorem has been stated and proved By
D. J. Bernstein [4].

Theorem 2.5. If Pr[f [k](a) = y] ≥ (1− ε)× Pr[g[k](a) = y] for each a ∈ H[k] and y ∈ Gk, then
for any k-query function x = (x1, · · · , xk), dstat(f [k]x, g[k]x) ≤ ε and hence df,g(k) ≤ ε.

Proof. Pr[f [k]x1,··· ,xk
= (y1, · · · , yk)]

= Pr[f [k](a1, · · · , ak) = (y1, · · · , yk)] ((a1, · · · , ak) is uniquely determined by (y1, · · · , yk))

≥ (1− ε)× Pr[g[k](a1, · · · , ak) = (y1, · · · , yk)]

= (1 − ε) × Pr[g[k]x1,··· ,xk
= (y1, · · · , yk)], ∀ (y1, · · · , yk) ∈ Gk. The Theorem follows from

Lemma 2.2.

3 A short proof of the unpredictability of CBC due to D. J. Bern-
stein [4].

Here, we rewrite the security proof of CBC based on uniform random function given by Bernstein [4].
We also show that the similar result can be obtained for uniform random injective function.

Let f be a function on a group (G,+) (i.e, from (G,+) to (G,+)) where |G| = N . For m ≥ 1,
define the iterated functions recursively as follow :

f+(g1, · · · , gm) := f+
m(g1, · · · , gm) = f(f+

m−1(g1, · · · , gm−1) + gm),

where gi ∈ G, f+
0 () = f+

0 (λ) = 0 and λ is the empty string. Let x = (x1, · · · , xk) ∈ (Gm)k and
(y1, · · · , yk) ∈ Gk where x1, · · · , xk are distinct elements of Gm. We define P := P(x) ⊂ G∪· · ·∪Gm,
by the set of all non-empty prefixes of xi’s. Note that P(x) ≤ mk for any x ∈ (Gm)k. Let
P1 := P1(x) = P(x) \ {x1, · · · , xk}.
Example 3.1. Let G = Z100 and x = ((1, 2, 2), (1, 2, 3), (2, 2, 2)) then P(x) = {1, 2, (1, 2), (2, 2),
(1, 2, 2),(1, 2, 3), (2, 2, 2)} and P1(x) = {1, 2, (1, 2), (2, 2)}.

We fix any x. Given any f , define the intermediate induced output function (or simply induced
output function) opf : P1(x) → G as opf (p) = f+(p). Any function from P1(x) to G is called as
output function. Note that all output functions may not be an induced output function. We char-
acterize the output functions which are induced output functions. Given op define a corresponding
input function ip : P→ G such that

ip(p) = op(chop(p)) + last(p) if p /∈ G
= p if p ∈ G

}
(1)

where if p = (q, g′) ∈ Gi, chop(p) := q ∈ Gi−1, last(p) := g′ ∈ G, i ≥ 2.

Lemma 3.1. Let op be an output function and ip be its corresponding input function. An output
function op is an induced output function if and only if op(p1) = op(p2) whenever ip(p1) = ip(p2).
In particular, op is an induced output function if corresponding input function is injective (the above
condition is vacuously true).

Proof. Given any f , opf (p) = f+(p) = f(ip(p)) where ip is the corresponding input function of
opf . Thus, the converse of the statement is also true. Now we prove the forward implication of the
Lemma. Given any op and its corresponding input function ip, we define

f(x) = op(p) if ip(p) = x
= ∗ otherwise

}
(2)

Here, ∗ means that we can choose any arbitrary element from G. This is well defined as ip(p1) =
ip(p2) = x implies op(p1) = op(p2). Recursively, one can check that f+(p) = op(p) and hence
op = opf .

Example 3.1. (contd.) Let op(1) = op(1, 2) = 99, op(2) = 1 and op(2, 2) = 0. Note that it
satisfies the condition of above Lemma. For example, op(1) = op(1, 2) where, ip((1, 2)) = ip(1) = 1.
Thus for any f such that f(1) = 99, f(2) = 1 and f(3) = 0, opf = op. Here note that ip((1, 2, 2)) =
1, ip((1, 2, 2)) = 2 and ip((2, 2, 2)) = 2. So, for this output function and for any f such that
opf = op, we have f+((1, 2, 2)) = 99, f+((1, 2, 3)) = 1 and f+((2, 2, 2)) = 1.

Following lemma count the number of functions which induce a given induced output function.

Lemma 3.2. Let op be an induced output function such that |ip(P1)| = q where ip is the corre-
sponding input function and ip(P1) = {ip(p) : p ∈ P1} is the range of it. Then there are exactly
NN−q many f such that op = opf .

Proof. This is immediate from the construction of f in Equation 2.

Corollary 3.3. If op is an output function such that corresponding input function ip is injective
then there are NN−|P1| many f ’s such that opf = op and there are NN−|P1|−k many f ’s such that
opf = op and f+[k](x) = y.

Example 3.1. (contd.) In this example, ip(P1) = {1, 2, 3} and hence we have 10097 many f ’s
such that opf = op. More precisely, all functions f such that f(1) = 99, f(2) = 1 and f(3) = 0
hold.

Now we give a lower bound of the number of output functions such that corresponding input
function is injective. For each p1 6= p2 ∈ P, let Cp1,p2 be the set of all output functions such that the
corresponding input function has same value on p1 and p2. Let C be the set of all output functions
such that the induced input function is not injective. Thus, C =

⋃
p1 6=p2∈P Cp1,p2 . Now for each

p1 6= p2 with p1 = (q1, g1) and (q2, g2) where gi ∈ G,

Cp1,p2 = {op ; op(q1)− op(q2) = g2 − g1} if q1 6= q2

= ∅ if q1 = q2

}
(3)

Here, we define op() = 0. So we obtain that |Cp1,p2 | ≤ N |P1|−1 and hence |¬C| ≥ N |P1|(1− |P|(|P|−1)
2N)

(note that the total number of output functions is N |P1|). Let E = {f ∈ Func(G,G) ; f+
m[k](x) =

y} then by Corollary 3.3

|E| ≥ |¬C| ×NN−|P1|−k ≥ NN−k(1− |P|(|P| − 1)
2N

).

Thus,

Pr[u+[k](x1, · · · , xk) = (y1, · · · , yk)] ≥ (1− ε)
Nk

,

where u is a uniform random function and ε = mk(mk−1)
2N since we have |P1| ≤ mk. By Theorem 2.5

we have the following main Theorem of this section.

Theorem 3.4. For any x = (x1, · · · , xk) ∈ G[k] and y = (y1, · · · , yk) ∈ Gk we have Pr[u+[k](x) =
y] ≥ (1−ε)

Nk , where ε = mk(mk−1)
2N . We also have, dstat(u+

m[k]x, u(m)[k]x) ≤ mk(mk−1)
2N and hence

du+
m,u(m)(k) ≤ mk(mk−1)

2N where u(m) is the uniform random function on Func(Gm,G) and x is any
k-query function.

3.1 CBC based on uniform random injective function.

Here we prove a similar result for uniform random injective function v. The proof is exactly same
except in the place of counting the set {v : v+[k](x) = y}, where yi’s are distinct. So we fix
any y ∈ G[k]. Let for each p1 6= p2 ∈ P, C1

p1,p2
be the set of all output functions op such that

op(p1) = op(p2) and C1 =
⋃

p1 6=p2
C1

p1,p2
. We define C∗ = C ∪ C1. Thus, op /∈ C∗ means that both

input and output functions are injective. It is easy to check that |C1| ≤ N |P1|−1 × (|P1|)(|P1|−1)
2 and

hence we have

• |¬C∗| ≥ N |P1| × (1− (
mk−k)(mk−k−1)2N − mk(mk−1)

2N) ≥ (1− mk(mk−1)
N).

We have a similar result like Corollary 3.3. For each op /∈ C∗, there are exactly N !
(N−|P|)! many

injective f ’s which induces op and f+[k](x) = y (see the constructions of all f in Equation 2 in the
proof of Lemma 3.1). Thus,

|{f ∈ Funcinj(G,G) : f+(x) = y}| ≥ N |P1| × (1− ε1)× N !
(N − |P1| − k)!

where ε1 = mk(mk−1)
N . Hence, Pr[v+[k](x) = y] ≥ N−k × (1 − ε1) for all y ∈ T := G[k] = {y ∈

Gk : y1, · · · , yk are distinct} and x ∈ Gm[k]. Now we have, Pr[u(m)[k](x) /∈ T] ≤ k(k−1)
2N . Thus by

Lemma 2.3 we have,

dstat(v+
m[k]x, u(m)[k]x) ≤ k(k − 1)

N
+

2mk(mk − 1)
N

for any k-query functions x and hence

dv+
m,u(m)(k) ≤ k(k − 1)

N
+

2mk(mk − 1)
N

.

Theorem 3.5. dstat(v+
m[k]x, u(m)[k]x) ≤ k(k−1)

N +2mk(mk−1)
N for any k-query function x = (x1, · · · , xk).

and hence dv+
m,u(m)(k) ≤ k(k−1)

N + 2mk(mk−1)
N .

4 DAG (Directed Acyclic Graph) based PRF [7]

In this section, we state a class of PRF based on DAG proposed by Jutla [7]. We modify the
class slightly so that it contains many known constructions like PMAC, OMAC, TMAC, XCBC
etc. The security analysis would be immediate from that of the general class. We first give some
terminologies related to DAG.

Terminologies on DAG :

Let D = (V, E) be a directed acyclic graph with finite vertex set V and edges E. We say that
u ≺ v if there is a directed path from u to v. Note that it is a partial order on V . Let D have
exactly one sink node vf (the maximum element with respect to ≺) and at most two source nodes
(the minimum element with respect to ≺). If there are two such we call them as vs and viv. In
the original paper, Jutla considered only one source node. Here we extend it to two so that it can
contain one more source node for initial value.

• For each node v ∈ V , define Dv by the subgraph induced by the vertex set Vv = {u : u ≺ v}.
We define, N(v) = {u ∈ V : (u, v) ∈ E}, the neighborhood of v.

• Any map c : E →M is said to be color map on D where M is a field. A colored DAG is pair
(D, c) where c is a color map on D.

• Two colored DAG (D1, c1) and (D2, c2) are said to be isomorphic if there is a graph iso-
morphism between D1 and D2 which preserves the color map. More precisely, a graph
isomorphism ρ : D1 → D2 satisfies c2(ρ(e)) = c1(e) ∀ e ∈ E1. In this case we write
(D1, c1) ∼= (D2, c2).

Definition 4.1. We say a colored graph G = (D, c) is non-singular if for all u, v ∈ V , Gu :=
(Du, c[u]) ∼= (Dv, c[v]) := Dv implies either u = v or {u, v} = {vs, viv} with c(vs, w) 6= c(viv, w)
whenever (vs, w) and (viv, w) ∈ E. Here the color map c[u] is the restriction of c on Du.

Definition 4.2. We say a sequence of colored graph S = 〈Gl = (Dl, cl) = ((V l, El), cl)〉l≥1 is
PRF-preserving if each Dl is non-singular and Gl 6∼= Gl′

u = (Dl′
u , cl′ [u]) for u ∈ V l′ and l′ 6= l.

Functional Representation of Message

Given a sequence of colored graph 〈Gl = (Dl, cl)〉l≥1, let U l = V l \ {vl
iv}. We fix a sequence of

initial values ivl ∈ M, l ≥ 1. Let X : U l → M be a function, called as a message function. We
define its corresponding message-initial value function X on Gl as follows :

X(v) = X(v) if v ∈ U l

= ivl if v = vl
iv

}
(4)

In the definition of X we include the graph Gl as a domain even if it is defined only on the set of
vertices. Here, we look message in Ml as a message function on Gl. For any well order < on U l we
can correspond Ml with a message function on U l where |U l| = l. Namely, X(u1) ‖ · · · ‖ X(ul) ∈
Ml where u1 < · · · < ul and U l = {u1, · · · , ul}. Later we will see that each node of the DAG has
the underlying function f . The input for the invocation of f at any node is the sum of previous
output (outputs of neighborhood nodes) and the value of message-initial value function X at that
node.

PRF (pseudo random function) Domain Extension Algorithm :

Let f : M → M be a function, (M, +, ·) be a field with |M| = N . Let S = 〈Gl〉l≥1 be a
PRF-preserving sequence of DAG. Given any X : U l →M we have message-initial value function,
X : V l →M. We define two functions, af , bf : V l →M recursively as follows :

af (v) = X(v) +
∑

w∈N(v)

cl((w, v)) · bf (w) and bf (v) = f(af (v)), v ∈ V l. (5)

The output of fS(X) is bf (vl
f) where vl

f is the unique sink node. When v is a source node, N(v) = ∅
and hence af (v) = X(v).

Security Analysis

Two message-input functions on colored DAG, X1 : G1 → M and X2 : G2 → M are said to be
identical if G1

∼= G2 and X1(u) = X2(v) where v is the image of u under a graph isomorphism. If not
then we say that they are non-identical. We identify all identical message-functions. Given v ∈ V
and a message-initial value function on G = (D, c) we define X[v] by the function X restricted on
Gv.

Let X1, · · · , Xk be k distinct functions, Xi : U li →M and let Xi be its corresponding message-
initial value function. Let P := P(X) = {X : X = Xi[v], v ∈ V li} where X = (X1, · · · , Xk). We
call this also prefix set for X. This is a generalized notion for prefixes of messages in CBC case (see
Section 3). Here we similarly have |P| ≤ Q, where Q is the total number of message blocks from
M. Now we make similar analysis like CBC.

We fix any X. Given any f , define the intermediate induced output function (or simply induced
output function) opf : P1(X) → M as opf (p) = bf (v) where p = Xi[v] and bf is given as in
Equation 5 while we compute fS(X) using the colored graph Gli . Any function from P1(X) to M
is called as output function. Let p = Xi[v] ∈ P, define last(p) = Xi(v) and chop(p) = {Xi[u] : u ∈
N(v)}. It is an empty set for source node v. Let Xi[u] = q ∈ chop(p), then we denote the edge
(u, v) by eq,p. Given op, define a corresponding input function ip : P→M as

ip(p) = last(p) +
∑

q∈chop(p)

cli(eq,p) · op(q).

Now we state a analogous statement of Lemma 3.2 and Corollary 3.3.

Lemma 4.1. Let op be an induced output function such that |ip(P1)| = q where ip is the corre-
sponding input function and ip(P1) is the range of it. Then for any y = (y1, · · · , yk) ∈ Gk there
are exactly NN−q many f such that op = opf and fS [k](x) = y.

Corollary 4.2. If op is an induced output function such that corresponding input function ip is
injective then there are NN−|P1| many f ’s such that opf = op and there are NN−|P1|−k many f ’s
such that opf = op and f+[k](x) = y.

Now we give a lower bound of the number of output functions such that corresponding input
function is injective. For each p1 6= p2 ∈ P, let Cp1,p2 be the set of all output functions such that
the induced input function has same value on p1 and p2. Let C be the set of all output functions
such that the induced input function is not injective. Thus, C =

⋃
p1 6=p2∈P Cp1,p2 . Let Xi1 [v1] =

p1 6= p2 = Xi2 [v2], chop(p1) = {qi = Xi1 [ui] : 1 ≤ i ≤ l} and chop(p2) = {q′i = Xi2 [wi] : 1 ≤ i ≤ l′}.
Now we have three possible cases as given below :

Case-1: chop(p1) = chop(p2) = {q1, · · · , ql} and c1(eqi,p1) = c2(eqi,p2), ∀ i where ci is the
color function corresponding to pi. Then the underlying graphs for p1 and p2 are identical.
Since p1 6= p2, X(v1) 6= X(v2) and hence Cp1,p2 = ∅.
Case-2: Let chop(p1) = chop(p2) = Q but there exists q ∈ Q such that c1(eq,p1) 6= c2(eqi,p2).
Then ip(p1) = ip(p2) implies Xi1(v1) +

∑
q∈chop(p1) eq,p · op(q) = Xi2(v2) +

∑
q∈chop(p2) eq,p ·

op(q). Hence,
∑

q∈Q aq · op(q) = a for some constants aq and a where all aq’s are not zero
(since color functions are different on Q). Thus, |Cp1,p2 | = N |P1|−1.

Case-3: Let chop(p1) 6= chop(p2). In this case ip(p1) = ip(p2) implies
∑

q∈Q aq · op(q) = a

where Q is not empty and all aq’s are not zero. Thus, |Cp1,p2 | = N |P1|−1.

So we obtain that |Cp1,p2 | ≤ N |P1|−1 and hence |¬C| ≥ N |P1|(1− |P|(|P|−1)
2N). By Corollary 3.3

|E| ≥ |¬C| ×NN−|P1|−k ≥ NN−k(1− |P|(|P| − 1)
2N

),

where E = {f ∈ Func(G,G) ; fS [k](X) = y}. Thus,

Pr[uS [k](X) = y] ≥ (1− ε)
Nk

,

where ε = Q(Q−1)
2N and u is a uniform random function. By Theorem 2.5 we have the following main

Theorem of this section.

Theorem 4.3. For any X = (X1, · · · , Xk) and y = (y1, · · · , yk) ∈ Gk where Xi’s are distinct
message function, we have Pr[uS [k](X) = y] ≥ (1−ε)

Nk , where ε = Q(Q−1)
2N and Q is the total number

of message blocks in queries. We also have, dstat(uS [k]X, U [k]X) ≤ mk(mk−1)
2N and hence duS ,U (k) ≤

mk(mk−1)
2N where U is the uniform random function from the set of all message functions to M.

Remark 4.4. The same security analysis can be made for the PRF based on a uniform random
injective function like CBC case. We leave the details to the reader as it is very much similar to
the CBC case.

Remark 4.5. Let M = {0, 1}n := GF(2n). To define a pseudo random function on {0, 1}∗ one
can pad 10i (for minimum i ≥ 0) so that the length is the multiple of n and then can apply the PRF
algorithm as above. So for any distinct messages, the padded messages are also distinct and hence
it would be a pseudo random function on the input set {0, 1}∗. There is another way to pad it.
We pad 10i to a message X if it is not a multiple of n, otherwise we would not pad anything (this
is the case for OMAC,TMAC, XCBC etc.). In this case we have two sequences of colored graph
Gl

1 and Gl
2 (for all messages with size multiple of n and all messages with size not multiple of n

respectively). Here, we require the combined sequence 〈Gl
1, G

l
2〉l≥1 is PRF-preserving (thus, even if

after padding the messages are equal the corresponding message functions are not identical). The
similar analysis also can be made in this scenario.

4.1 Some Known PRFs for Variable length Input.

There are three popularly known constructions which deals with variable size input and uses CBC
mode. These are XCBC [5], TMAC [8], OMAC [9] and PMAC [6]. Let K1 and K2 be two secret
constants from {0, 1}n. Given M = M1 ‖ · · ·Ml−1 ‖ Ml with |M1| = · · · = |Ml−1| = n, |Ml| = n1,
1 ≤ n1 ≤ n and a random function f on {0, 1}n, define f∗ as follows :

f∗(M) = f+
l (M1 ‖ · · · ‖ Ml−1 ‖ (Ml ⊕K1)) if n1 = n

= f+
l (M1 ‖ · · · ‖ Ml−1 ‖ (Ml10i ⊕K2)) if n1 < n, i = n− n1 − 1

}
(6)

XCBC, TMAC and OMAC are defined on the basis of choices of K1 and K2.

• If K1 and K2 are chosen independently from f then it is known as XCBC.

• If K2 = c · K1 and K1 is chosen independently from f then it is known as TMAC where
c ∈ {0, 1}n is some fixed known constant not equal to 1 and 0, and · is a field multiplication
on {0, 1}n = GF(2n).

• If K1 = c · L and K2 = c2 · L where L = f(0) then it is known as OMAC.

Security of OMAC

Here we only consider security for OMAC. For the other constructions, one can make a similar
treatment as in CBC. For OMAC as in the previous Remark 4.5 we have two sequences of colored
DAGs Gl

1 and Gl
2. Each graph is a sequential graph with one more edge at the end. More precisely,

V l = {vs = 1, · · · , l = vf , viv} and El = {(1, 2), · · · , (l − 1, l), (viv, l)}. The color function for Gl
1 is

as follows : cl((i, i + 1)) = 1 and cl((viv, l)) = c, where c 6= 0, 1. Similarly, the color function for
Gl

2 is as follows : cl((i, i + 1)) = 1 and cl((viv, l)) = c2. We choose ivl = 0 ∈ {0, 1}n. It is easy to
check that each colored DAG is non-singular. Any colored DAG can not be isomorphic to a colored
subgraph as the sink node has inward degree 2 where as the other nodes have inward degree 1.
Thus, the sequence is admissible. The pseudo randomness property follows from the Theorem 4.3.

Security of PMAC

One can similarly observe that PMAC also belong to this class. The underlying graph Dl = (V l, El),
where V l = {viv, 1, · · · , l− 1, vf} and El = {(viv, i), (i, vf), 1 ≤ i ≤ l− 1}∪{(viv, vf)}. There is two
color functions depending on the message size. When message size is multiple of n, c1(viv, i) = ci

and c1(viv, vf) = 0, otherwise it takes constant 1. The other color function is same except that
c2(viv, vf) = a. Here, c and a are some constants not equal to 0 and 1, and ivl = 0 ∈ {0, 1}n.

5 Improved Security bound of CBC [1].

In this section we will give a simple partial proof of improved security analysis given by Bellare
et. al. [1]. We will follow same notation as in Section 3. We say an output function op is induced
if there exists an u such that opu = op. We define an event D∗[k] where the corresponding input
function of induced output function ip : P→ G satisfies the following property :

∀ p1 ∈ {x1, · · · , xk}, p2 ∈ P and p1 6= p2, ip(p1) 6= ip(p2). (7)

In [1] for k = 2, it has been proved that Pr[¬D∗[2]] ≤ (8m/N + 64m4/N2). For k ≥ 2 it
is easy to check that Pr[¬D∗[k]] ≤ k(k − 1)/2 × (8m/N + 64m4/N2). Here we will assume this
result as we have not found any simple proof of this. Secondly, one can translate this into a purely
combinatorial problem which was solved rigorously by Bellare et. al. (Lemma 2 of [1]). Now
Pr[u+

x1,··· ,xk
= (y1, · · · , yk) | D∗[k]] = 1/Nk. This is true that for any induced output function op

with above property there exists NN−q1 many u’s which induces op and there are NN−q1−k many
u’s which induces op and u+(xi) = yi ∀ i, where q1 denotes the size of range of induced input
function of op (see Corollary 3.3). Here, we do not need that the corresponding input function
is injective. We can still have a similar statement like in Corollary 3.3 as the input function is
taking completely different values on {x1, · · · , xk} from the values on P1 (see Equation 7). Thus,
Pr[u+

x1,··· ,xk
= (y1, · · · , yk)] ≥

(
1− k(k−1)×(8m/N+64m4/N2)

2

)× 1
Nk . Thus we have,

Theorem 5.1. Advu+
m,u(m)(k) ≤ k(k − 1)/2× (8m/N + 64m4/N2).

6 A simple proof for On-line Cipher Hash-CBC [2].

In this section we define what is meant by on-line cipher and what is the ideal candidate for that.
Then we give a simpler security proof of Hash-CBC [2] and note that in the original proof there is
a flaw which could not not be easily taken care unless we make further assumptions.

An online cipher, Hash-CBC construction is given by Bellare et. al. [2]. In Crypto 2001 [2],
the notion of On-Line cipher has been introduced and a secure Hash-CBC construction has been
proposed. First we define what is meant by On-Line cipher and the definition of Hash-CBC con-
struction.

1. Let G be a group and G[1,m] = ∪1≤i≤nGi and |G| = N . A function f : G[1,m] → G[1,m] is
called a length preserving injective function if f restricted to Gi is an injective map from Gi

to Gi.

2. Let f be a length-preserving injective function and M = M1 ‖ · · · ‖ Mm, then we write
f(M) = (f (1)(M), · · · , f (m)(M)), where f (i)(M) ∈ G. f is said to be on-line if there exists a
function X : G[1,m] → G such that for every M = M [1] ‖ · · · ‖ M [m], f (i)(M) = X(M [1] ‖
· · · ‖ M [i]). It says that first i blocks of cipher only depends on the first i blocks of message.
Note that for each i ≥ 1, and (M [1] ‖ · · · ‖ M [i − 1]) ∈ Gi−1, X(M [1] ‖ · · · ‖ M [i − 1] ‖ x)
is an injective function from G to G as a function of x since f is length-preserving injective
function. We also say that X is an on-line function.

3. XU is said to be uniform random on-line function if X is chosen uniformly from the set of all
on-line functions from G[1,m] to G.

Hash-CBC :

Let H be a random function from G to G which satisfies the following property. Pr[H(x1)−H(x2) =
y] ≤ ε for all x1 6= x2 ∈ G and y ∈ G. We say this random function by ε-almost universal random
function. Thus for any (xi, yi), 1 ≤ i ≤ k, with distinct xi’s we have,

Pr[H(xi) + yi = H(xi) + yj for some i 6= j] ≤ k(k − 1)ε
2

. (8)

Given an ε-almost universal random function and a uniform random injective function v on G we
define a random on-line function F , known as HCBC (or Hash-CBC), as follows:

X(M [1] · · ·M [j]) = C[j], where C[i] = v(H(C[i− 1]) + M [i]), 1 ≤ i ≤ j and C[0] = 0.

Note that X is a random on-line function. Let x1, · · · , xk ∈ G[1,m] and P be the set of all non-empty
prefixes of these messages. Let yp ∈ G, where yp’s are distinct and not equal to 0 and |P| = q.
Now we want to compute Pr[X(p) = yp, ∀p ∈ P] where the probability is based on uniform random
injective function v and ε-almost universal random function H. Let D be the event that for all p,

(H(ychop(p))+ last(p))’s are distinct where yλ := 0 and λ is the empty string. Since yp’s are distinct
and not equal to 0, Pr[D] ≥ 1− q(q−1)ε

2 . Condition on D all inputs of v are distinct. Thus,

Pr[X(p) = yp,∀p ∈ P | D] =
1

N(N − 1) · · · (N − q + 1)
and hence

Pr[X(p) = yp, ∀p ∈ P] ≥ (1− q(q−1)ε
2)

N(N − 1) · · · (N − q + 1)
by Equation 8

≥ (1− q(q − 1)ε
2

)× Pr[XU (p) = yp, ∀p ∈ P]

since Pr[XU (p) = yp, ∀p ∈ P] ≤ 1/N(N − 1) · · · (N − q + 1). Given any query functions, let XU [q]
and X[q] denote the joint distribution of XU and X on P respectively. Let

T = {(yp)p∈P : ychop(p) 6= 0 ∀p, and yp
′s are distinct }

It is easy to check that Pr[XU /∈ T] ≤ q(q−1)
2N . Now by Lemma 2.3 we obtain the following main

Theorem of this section.

Theorem 6.1. For any query function, the statistical distance dstat(XU [q], X[q]) ≤ q(q−1)ε+ q(q−1)
N

and hence AdvXU ,X(q) ≤ q(q − 1)ε + q(q−1)
N .

Remark 6.2. In [2], authors also consider chosen-cipher text security for a variant of the above
construction. In this scenario, there are two different types of queries. Let P denotes the set of
all prefixes of the queries of on-line function X and P∗ denotes the set of all prefixes of queries of
corresponding inverse on-line function Y (say). Now one can similarly prove that

Pr[X(p) = yp, ∀p ∈ P and Y (p) = wp∀p ∈ P∗]

≤ (1− ε)× Pr[XU (p) = yp, ∀p ∈ P and Y U (p) = wp∀p ∈ P∗],
where XU and Y U denote the uniform random on-line function and it’s corresponding inverse
function respectively. So we have same security analysis. We leave reader to verify all the details
of the chosen cipher text security.

6.1 A flaw in the proof of the original paper [2]

In the original paper due to Bellare et. al. [2], the security proof has some flaw. The Claim 6.5 of [2]
says that if some bad event does not occur then the the distribution of the view is identical for both
classes of functions. More precisely, X(p)’s and XU (p)’s are identically distributed condition on
some bad event does not occur (i.e., the inputs of uniform random injective function v are distinct).
In case of XU , all conditional random variables XU (p)’s are uniformly and identically distributed
on the set T . But, conditional distribution of X(p)’s is not so as the condition is itself involved with
X(p) and an unknown distribution due to H. For example, when p1 = x1 and p2 = x1 ‖ x2 then
X(p1) = v(H(0)⊕ x1) and X(p2) = v(H(X(p1))⊕ x2). The conditional event E (the complement
of bad event) is H(0) ⊕ x1 6= H(X(p1)) ⊕ x2 and v(H(0) ⊕ x1) 6= 0. According to their claim for
any 0 6= y1 6= y2, p = Pr[v(H(0) ⊕ x1) = y1, v(H(X(p1)) ⊕ x2) = y2 | E] = 1

(N−1)(N−1) (note that
y2 can be zero). Let a := x1 ⊕ x2, C = H(0)⊕ x1 and εy,z,c = Pr[H(y)⊕H(z) = c].

Now, p1 := Pr[v(H(0)⊕ x1) = y1 ∧ v(H(y1)⊕ x2) = y2 ∧ E]

=
∑

h1,h2 : h1⊕h2 6=a

Pr[v(h1 ⊕ x1) = y1, v(h2 ⊕ x2) = y2,H(0) = h1,H(y1) = h2] =
ε0,y1,a

N(N − 1)

and p2 := Pr[E] = Pr[v(C) 6= 0,H(v(C)⊕ x2) 6= C]

=
∑

z,h : z 6=0

Pr[v(h⊕ x1) = z, H(0) = h,H(z) 6= h⊕ a] =
1
N
×

∑

z : z 6=0

Pr[H(0)⊕H(z) 6= a].

Thus, p = ε0,y1,a

(N−1)×Pz 6=0 ε0,z,a
6= 1

(N−1)(N−1) in general. This can occur if ε0,z,a = ε0,y1,a for all z 6= 0,

but there is no such assumption for H in [2]. A similar flaw can be observed in the Claim 8.6 of [2]
where the chosen cipher text security is considered.

7 Conclusion and Future Work.

In this paper we make a unifying approach to prove the unpredictability of many existing con-
structions. This paper attempts to clean up several results regarding unpredictability so that the
researchers can feel and understand the subject in a better and simpler way. As a concluding
remark we would like to say that one can view the security analysis in the way we have observed in
this paper and can have better and simpler proof for it. Some cases people have wrong proofs due
to length and complicity of it. Thus, a more concrete as well as simple proof is always welcome.

In future, this unifying idea may help us to make good constructions. It seems that one may
find constructions where the security bound is more than the birth day attack bound. Till now,
there is no known construction based on ideal function (having output n-bit) which has security
close to 2n. One may obtain a better bound for CBC as we have used only those output functions
which induces an injective input functions. One can try to estimate the other output functions
also.

References

[1] M. Bellare, K. Pietrzak and P. Rogaway. Improved Security Analysis for CBC MACs. Advances
in Cryptology - CRYPTO 2005. Lecture Notes in Computer Science, Volume 3621, pp 527-545.

[2] M. Bellare, A. Boldyreva, L. Knudsen and C. Namprempre. On-Line Ciphers and the Hash-CBC
constructions. Advances in Cryptology - CRYPTO 2000. Lecture Notes in Computer Science,
Volume 2139, pp 292-309.

[3] M. Bellare, J. Killan and P. Rogaway. The security of the the cipher block chanining Message
Authentication Code. Advances in Cryptology - CRYPTO 1994. Lecture Notes in Computer
Science, Volume 839, pp 341-358.

[4] Daniel J. Bernstein. A short proof of the unpredictability of cipher block chaining (2005). URL:
http://cr.yp.to/papers.html#easycbc. ID 24120a1f8b92722b5e1 5fbb6a86521a0.

[5] J. Black and P. Rogaway. CBC MACs for arbitrary length messages. Advances in Cryptology
- CRYPTO 2000. Lecture Notes in Computer Science, Volume 1880, pp 197-215.

[6] J. Black and P. Rogaway. A Block-Cipher Mode of Operations for Parallelizable Message
Authentication. Advances in Cryptology - Eurocrypt 2002. Lecture Notes in Computer Science,
Volume 2332, pp 384-397.

[7] C. S. Jutla. PRF Domain Extension using DAG. Theory of Cryptography: Third Theory
of Cryptography Conference, TCC 2006. Lecture Notes in Computer Science, Volume 3876 pp
561-580.

[8] K. Kurosawa and T. Iwata. TMAC : Two-Key CBC MAC. Topics in Cryptology - CT-RSA
2003: The Cryptographers’ Track at the RSA Conference 2003. Lecture Notes in Computer
Science, Volume 2612, pp 33-49.

[9] K. Kurosawa and T. Iwata. OMAC : One-Key CBC MAC. Fast Software Encryption, 10th
International Workshop, FSE 2003. Lecture Notes in Computer Science, Volume 2887, pp 129-
153.

