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Abstract

We show how to significantly speed-up the encryption portion of some public-key cryptosys-
tems by the simple expedient of allowing a sender to maintain state that is re-used across
different encryptions. In particular we present stateful versions of the DHIES and Kurosawa-
Desmedt schemes that each use only one exponentiation to encrypt, as opposed to two and three
respectively in the original schemes, yielding the fastest discrete-log based public-key encryption
schemes known in the random-oracle and standard models respectively. The schemes are proven
to meet an appropriate extension of the standard definition of IND-CCA security that takes into
account novel types of attacks possible in the stateful setting.
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1 Introduction

The discrete-exponentiation computations underlying public-key cryptography are expensive, in
particular having a cost thousands of times that of blockcipher or hash function computations.
This not only results in slowdown, but, on systems of limited computing power such as sensors,
can even be a barrier to adding public-key cryptography at all. Today, the cost of public-key
cryptography is being felt even more acutely due to new resource constraints on emerging computing
platforms: public-key cryptography operations are a severe drain on power and reduce battery life,
which is the main limitation on mobile devices such as cell phones, PDAs, RFID chips and sensors.
For these and more well-known reasons, there is an obvious interest in reducing the number of
discrete exponentiations required for public-key cryptography. This is a domain where a 10%
improvement would be very welcome and a 50% improvement would be dramatic.

Much work goes into improved algorithms, time-space tradeoffs (pre-computation) and faster
implementations for discrete exponentiation. However these methods have been pushed pretty
much as far as they can go, and bring only minor improvements at this point. Our approach is
different. We propose to change the model for public-key encryption. The change is simple, namely
that we allow senders to be stateful, maintaining information that they re-use across different
encryptions. We will show that this is highly effective by presenting stateful encryption schemes
whose encryption time beats that of all known (stateless) schemes by margins of 50% or more
without impacting decryption time or requiring extra storage. We will show that these gains are
not at the cost of assurance by providing security definitions and proofs to support our designs.
We will also explain why stateful encryption is convenient to implement and deploy in systems so
that the cost benefits obtained are realizable in practice. Let us now look at all this in some more
detail.

Background and state of the art. In the standard model of public-key encryption [26], the
sender is stateless (i.e. memoryless), encrypting each message as a function (only) of the message,
recipient’s public key and freshly-chosen coins. Due to its being what is needed for the security of
encryption-using applications [37], security against chosen-ciphertext attack (IND-CCA) [34, 22, 9]
is the accepted security goal. We are interested in discrete-logarithm based, proven-IND-CCA
schemes. (We discuss RSA later.) The most efficient such scheme is DHIES [2], an ElGamal-based
scheme where encryption and decryption cost two and one exponentiations respectively.

The new model. In the new model we propose, the sender maintains state information. The
encryption function applied by the sender takes not only the message, receiver’s public-key and
freshly-chosen coins, but also the current state, returning a ciphertext and a possibly updated state
that replaces the previous one. Decryption is unchanged from a standard stateless system, and
depends only on the ciphertext and secret key of the receiver. (The receiver is not stateful, and
need not even know that the sender is.) Why this simple change to the model should result in
(much) faster encryption may not be clear, but we will now see that it is so.

Stateful DH. We present a stateful variant of DHIES that drops the encryption cost to one
exponentiation without increasing decryption cost. The idea is simple. Recall that the ElGamal
encryption of message M under public key gx has the form (gr, gxr ·M) where r is the random
coins chosen by the sender, anew for each encryption. It is natural to try to use (r, gr) as the state,
meaning re-use r across different encryptions so that gr does not need to be computed each time,
but this is clearly insecure, in particular because the resulting scheme is deterministic. However, if
instead we derive a symmetric key from gxr via a hash function, and send as ciphertext gr together
with a symmetric encryption of M under a (randomized, stateless) IND-CCA secure symmetric
scheme, then the scheme can be shown to be secure. Note that symmetric schemes of the required

3



Scheme Cost Security

Enc Dec Assumption RO?

DHIES [2] 2 1 Gap-DH Yes

StDH 1 1 Gap-DH Yes

KD [30] 3 1 DDH No

StKD 1 1 DDH No

Figure 1: DHIES and KD compared to our stateful variants StDH and StKD. We show the number of

exponentiations for encryption and decryption as well as the assumptions for the proofs of security and

whether or not it is in the RO model. Note all these schemes are hybrid, but for simplicity the table does not

show the (negligible) costs and (standard) assumptions related to the symmetric components of the schemes.

type are easily and cheaply obtained [8, 10]: one can for example use an AES mode of operation
like CBC in encrypt-then-mac combination with a secure MAC like HMAC [7] or CMAC [32].
An interesting feature of our scheme is the crucial use made of hybrid encryption, namely the
combination of asymmetric and symmetric primitives.

Stateful KD. It is common in cryptography that the security proofs of the most efficient proven-
secure schemes are in the random-oracle (RO) model [13]. This is the case for DHIES and its stateful
variant StDH discussed above. Concerns about the difficulty of instantiating ROs [18, 5] have lead
to interest in standard-model schemes. In this domain, the most efficient known (stateless) IND-
CCA scheme is the Kurosawa-Desmedt [30] variant KD of the Cramer-Shoup [21] scheme, where
encryption and decryption cost three and one exponentiations respectively. We present a stateful
variant of KD which needs just one exponentiation each for encryption and decryption, just as for
StDH. Remarkably, not only is StKD the first non-RO scheme that is as efficient as RO ones, but
also it is more efficient than any previous (stateless) schemes, whether with ROs or not!

Instantiation. The preferred choice of group is an elliptic-curve one, where the discrete logarithm
problem is already hard for 160-bits. This minimizes exponentiation time and ciphertext size.

Variants. In StDH and StKD, encryption does not even modify the current state, which stays of
constant size. If one is willing to modify and grow the state with encryption, further optimizations
are possible, taking advantage of the fact that both StDH and StKD encrypt symmetrically under
a key that is a deterministic function of the state and recipient public key. By caching this key in
the state the first time it is computed, subsequent encryptions to the same recipient require only
symmetric operations.

Crash-robustness and state-reset. A sender-side system or application crash is a concern for
stateful schemes because the current state would be lost. The danger this poses is exemplified with
a typical stateful symmetric encryption scheme such as counter-mode with zero-initialized counter.
If the current counter value is lost and encryption restarts with a re-initialized counter, privacy is
compromised. Not so in our schemes, which are robust in the face of crashes. The sender can pick
a new initial state (i.e. reset its state) and restart, and security is maintained. It is safe to pick a
new state when a system reboots, and safe to have different concurrent applications each handling
its own state. Resetting state does have a computational cost, but in our schemes this is exactly
the difference in cost between the stateless and stateful versions. If you reset rarely (as we imagine
will usually be the case) your cost is that of the stateful scheme. In the worst case that you reset
for each and every encryption, you only return to the cost of the stateless scheme.
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Maintaining state. Maintaining state is not difficult on a system, particularly given the ro-
bustness discussed above. Indeed, even though the current model of encryption is stateless at the
mathematical level, systems will typically use state in implementing it, in the form of a seed from
which the encryption algorithm’s random choices are pseudorandomly generated. One issue is that
privacy is lost if the state is compromised, but this can be addressed by not too infrequent (eg. once
a day) state resets.

What about pre-computation? The above-quoted factor of two or more performance improve-
ment of our schemes compared to previous ones does not take into account pre-computation based
speed-up. The bottom-line is that while pre-computation narrows the gap it does not eliminate
it. Most importantly, the stateful schemes achieve the greater efficiency without any of the storage
cost associated to pre-computation, which is attractive for platforms which are storage-limited. To
elaborate, recall that exponentiation to a fixed base can be made a factor w faster by pre-computing
and storing a table of (160/w)2w appropriate powers of the base. This can be applied to one of
the two exponentiations underlying DHIES (the base is not fixed for the other one) and not at all
to StDH (where the base is not fixed). If we set w, to, say, 5, the ratio of the cost of DHIES to the
cost of StDH drops from 2 to 1.2. However, not only is a 20% improvement not to be sneezed at,
but StDH achieves this without the need to store the 160 · (160/5) · 25 = 163, 840 bit table needed
to speed-up DHIES, so that, overall, statefulness remains a win.

What about RSA? Encryption is already fast in RSA because we can use a small encryption
exponent like 3, but one needs a 1024-bit modulus to get the same security as elliptic-curve discrete-
logarithm based schemes offer with 160-bit groups. The result is that RSA decryption, even though
a single exponentiation, is slower than in the discrete-log based schemes. Also, ciphertexts are
larger. Thus the discrete-log based systems are more attractive in many settings, particularly if
encryption time is dropped as in our stateful schemes.

Security Proofs. In introducing a new model and schemes, there is the danger of having also
introduced new security vulnerabilities. The high cost associated to software or hardware updates
resulting from bugs in deployed cryptography means that we want to address this by providing pre-
implementation security assurance. The most convincing form for this is a proof that the schemes
meet an appropriate, well-defined notion of security. This is what we provide.

Security definition. We begin with a threat-analysis that identifies paths for attack not covered
by the classical definition of IND-CCA security for stateless schemes [34, 22, 9]. Briefly, there are
two main issues. The first is that encryption now depends on a quantity not a priori known to
the adversary, namely the sender’s state, and so the ability of an adversary to see ciphertexts is no
longer captured merely by giving it the public key as in [26, 34, 22]. We address this by giving the
adversary an oracle for encryption under the sender’s state. The second issue is that encryptions
sent by one sender to different receivers, being computed using the same or related state, are not
independent of each other, and so an adversary might be able to compromise privacy of messages
encrypted under one public key by seeing ciphertexts of related messages encrypted by the same
sender under a different, maliciously chosen public key. Thus we need to consider attacks in which
the adversary is allowed to choose public keys for malicious receivers and see ciphertexts that a
sender encrypted under these keysin an attempt to determine information about a ciphertext that
the same sender encrypted to an honest recipient. A definition taking all these issues into account
is provided in Section 3, and, above and below, when we refer to a stateful scheme being IND-CCA,
we mean that it meets this definition.

Proofs for our schemes. We prove StDH is IND-CCA secure in the RO model assuming Gap-
DH. (The Gap-DH assumption, due to Okamoto and Pointcheval [33], says that CDH remains hard
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even given an oracle for DDH.) We prove StKD is IND-CCA secure assuming, as in [30, 25], that
the DDH (Decision Diffie-Hellman) problem is hard. In both cases we also make assumptions on
the security of the symmetric encryption schemes used. These are slightly stronger than the ones
made in the original papers [2, 25], but symmetric schemes satisfying these assumptions are easily
and efficiently built via blockcipher modes of operation and MACs.

However there is one difference between what is proven about StDH and StKD. Recall that in
our model the adversary can choose public keys and ask the sender to encrypt under them. For
StKD, we only let the adversary provide public keys if it knows the corresponding secret key. (In
the formal model, which we call the known secret key model and was first used in [6, 15], we simply
require it to provide the secret key.) This reflects the assumption that the CA requires a proof of
possession of a secret key corresponding to any public key it certifies. Removing this assumption
without invoking ROs is an interesting open problem.

Related work. The multi-recipient encryption schemes of Kurosawa [29] and Bellare, Boldyreva
and Staddon [6] allow a sender to batch-encrypt n messages to n different encryptions at a cost lower
than that of n separate encryptions. For example, their ElGamal based scheme uses for this task
only n + 1 exponentiations rather than the naive 2n. However their schemes are limited, requiring
that the recipients have to all be different, meaning have different public keys, and requiring that
the sender have all the public keys and messages together and process them as a batch. Our work
is an extension of theirs. Our model is more flexible. Once an initial state is chosen, we can process
any number of on-line encryption requests, these to any recipient. Repeat encryptions to a single
recipient are allowed. Yet we pay only one exponentiation per encryption. Our schemes use the
randomness-recycling idea of [29, 6] but differ from theirs in the crucial use of hybrid encryption.
Note that our schemes yield new multi-recipient encryption schemes, in particular, via StDH, the
first one that does not use the known secret key model. (All the schemes of [29, 6] use this model.)

In the signcryption model [38, 4, 3] where both the sender and receiver have (certified) public
keys, say gr, gx respectively, one can encrypt (and authenticate) cheaply under the implicitly shared
key grx. In our setting however the sender does not need a public key or certificate. (And we are
interested only in privacy.) This is the more pragmatic setting, reflecting a typical Internet SSL
connection, where the server has a certificate but the client does not.

IBE-based approaches have been yielding efficient IND-CCA public-key encryption schemes in
the standard model [19, 14, 28]. It is interesting to ask whether these schemes have stateful variants
with lower encryption cost.

As noted in Figure 1, DHIES too can be proved under the Gap-DH assumption in the RO model.
However, DHIES is also proved IND-CCA secure in [2] in the standard model under an assumption
they call Oracle-DH (ODH). StDH can be proved under this assumption too, thereby avoiding the
RO model. But ODH is a non-standard assumption mixing a hash function and number-theory.

Stateful encryption is well-known in the symmetric setting with schemes like counter mode
encryption, analyzed in [8]. Our work extends this to the asymmetric setting.

2 Notation

A string means a binary one. If x, y are strings, then |x| is the length of x. If S is a finite set, then

|S| is its cardinality, and s
$
← S denotes the operation of assigning to s an element of S chosen at

random. If A is a randomized algorithm, then y
$
← A(x1, . . .) denotes the operation (experiment)

of running A on inputs x1, . . ., and letting y denote the output.
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Setup sp

KG sk

pkPKCk

0/1

EncM

stNwSt

C Dec M or ⊥

Figure 2: Components and operation of a stateful public-key encryption scheme.

3 Stateful encryption schemes

Syntax and operation. A stateful public-key encryption scheme StPE = (Setup, KG, PKCk,
NwSt, Enc, Dec) is specified by six algorithms (all possibly randomized except the last) whose op-
eration is illustrated in Figure 2. The setup algorithm Setup is run by an authority to produce
system parameters sp. Any entity that wants to receive encrypted data can run the key-generation
algorithm KG on input sp to get a public and secret key for itself. A sender maintains state st
whose initial value is obtained by running the new state algorithm NwSt on input sp. At any time,
the sender can apply the encryption algorithm to sp, a public key pk , message M and its current
state st to get two outputs. The first, C , is a ciphertext for the receiver whose public key is pk , and
the second is an updated value for the state variable for the sender. We write this algorithmically

as (C , st)
$
← Enc(sp, pk , M, st). At any time, the sender can refresh its state by again running

NwSt, which is important for robustness in the face of state-loss due to system failures as discussed
in Section 1. The deterministic decryption algorithm Dec, run by the receiver, takes input sp, the
receiver’s secret key sk and a ciphertext C and returns either a message M or ⊥ to indicate that
the ciphertext is invalid.

The security of our schemes requires that the sender avoid encrypting unless the given public
key passes some simple check, which in our case just involves testing that certain components of
the key are members of the underlying group. Such a group-membership check could either be done
by the encryption algorithm or by a CA as a condition to issuing a certificate for the public key.
(Implicitly we are assuming that encryption is not done unless the sender has a valid certificate
for the receiver’s public key, just as for standard public-key encryption.) Which is better would
depend on the cost or other things. In any case, since such a check could be placed in several places,
we have represented it in the syntax via a separate public-key verification algorithm PKCk that
given sp and a string pk returns a bit representing the outcome of the check on candidate public
key pk . Note we are talking only about very simple checks, like whether components of the public
key are members of the underlying group, not whether the supplier of the public key “knows” a
corresponding secret key, which we will discuss below in the context of security. Simple checks like
this (that things are group elements) are sometimes required for the security of standard schemes
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as well but not made explicit [17, 2].
Note that the sender uses the same state for communicating with different receivers who have

different public keys, and the generation of a fresh state requires only sp and no information about
potential receivers. In our main schemes, the encryption algorithm does not even modify the state,
meaning that the output state is the same as the input one and in particular has constant size, but
we will see variants in which it does. Different senders maintain different states. Receivers are not
stateful, and in particular there is thus no state synchronization issue.

We require a natural consistency condition, which says that for any sp generated by Setup, any
n ≥ 1, and any keys (pk1, sk1), . . . , (pkn, skn) generated via KG(sp), if st0 is an output of NwSt(sp)
and (Ci, st i) is an output of Enc(sp, pk i, Mi, st i−1) for all i ∈ {1, . . . , n}, then Dec(sk i, Ci) = Mi for
all i ∈ {1, . . . , n}.

Basic security model. To define IND-CCA security of stateful public-key encryption scheme
StPE = (Setup, KG, PKCk, NwSt, Enc, Dec) we consider a game played with an adversary A. The
game begins with the initializations

sp
$
← Setup ; (pk1, sk1)

$
← KG(sp) ; c

$
← {0, 1} ; n← 1 ; st

$
← NwSt(sp)

to generate system parameters, a key-pair for a (single) honest recipient, and a challenge bit c.
Adversary A is then given input sp, pk1 and allowed to query various oracles, after which it outputs
a bit. The following shows what types of oracle queries A can make, what action the game takes
in each case, and what response the game returns to A:

Oracle query Action taken by game Response

MkBdRec(pk) If PKCk(sp, pk) = 1 then n← n + 1 ; pkn ← pk n

LOR(M0,M1) (C, st)
$
← Enc(sp, pk1,Mc, st) C

Encrypt(i,M ) (C, st)
$
← Enc(sp, pk i, M, st) C

Decrypt(C) M ← Dec(sp, sk1, C) M

The game is modeling a (single) stateful sender communicating with multiple receivers. Only one
receiver, who in the game has index 1, is honest, having keys generated via KG. A controls the
public keys of all other receivers: via MkBdRec(pk), it can create a receiver with whose public key
is any string pk of A’s choice that passes the public-key verification test. (This models the fact that
encryption will not be performed under a public key that does not pass the test, either because the
CA would not certify it or because the encryption algorithm would refuse to do the test, depending
on where we place the check in the scheme.) A can call LOR with arguments M0,M1 of its choice,
with the restriction that |M0| = |M1|, to have the sender encrypt challenge message Mc, under the
sender’s current state and the public key of the honest receiver, and return the resulting ciphertext
to A. In this game, we restrict A to at most one LOR query in its entire execution. (We will see
below that this is wlog, and it simplifies proofs.) A can call Encrypt(i,M ), with the restriction
that 1 ≤ i ≤ n, to have the sender encrypt M , under the sender’s current state and the public key of
receiver i, and return the ciphertext to A. (Encryptions to different users are not independent since
they depend on a common state. This query is to capture the possibility that encryption under
maliciously chosen public keys leaks state information compromising encryption under the honest
public key.) The Decrypt oracle allows a chosen-ciphertext attack on the honest receiver, and of
course A can call Decrypt(C) only if C has not been previously returned in response to a LOR

query. At the end of its execution, A must output a bit. Denoting it by d, the ind-cca-advantage
of A is

Advind-cca
StPE (A) = 2 · Pr [d = c]− 1 .

The above reflects the unknown secret key (USK) model in which the CA is not assumed to require
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a proof of knowledge of the secret key corresponding to a registered public key. In the known
secret key (KSK) model, where this assumption is made, the only change is that the MkBdRec

oracle takes not one but two arguments, pk and sk , and the adversary is restricted to calling this
oracle with pk , sk which are possible outputs of KG(sp). (This way of abstracting out the proofs of
knowledge begins with [6, 15] and leads to a simple and convenient model.) The action taken by
the game is simply n← n+1; pkn ← pk , and the response returned is n. (The check as to whether
PKCk(sp, pk) = 1 is now redundant and thus omitted.) We will generally refer to the notion of
security as IND-CCA in either case, clarifying whether it is the USK or KSK model as necessary.

An extended security model and equivalence with the basic one. The above model
is a simplified one. It turns out security in this model implies many extra security features not
explicit in the model. For example, it implies that the sender can reset its state at any time and
retain security, which as we have seen is important to running a stateful system in practice. It
also implies that, even if the current state is compromised, encryption under a reset state remains
secure, so that resets can be used to recover from compromise. The basic model allows only a
single sender, single honest receiver, and single LOR query, but one should ask whether allowing
all these to be multiple would give the adversary more power. It does not, even if the adversary is
allowed to dynamically corrupt receivers and obtain their secret keys, and reset or expose sender’s
states. In Appendix A we reflect all this. We define a richer, extended model which allows the
extra capabilities we have discussed, and, via standard hybrid and guessing arguments, show that
security in the extended model follows from security in the basic one. Specifically, the adversary’s
advantage changes by a factor that is at most polynomial in the number of oracle queries it makes.
Given this, we use the basic model throughout the paper because doing so simplifies our proofs.

Random oracle model. For schemes in the random oracle (RO) model [13], as usual, any of
the constituent algorithms may have access to a RO, and in the security experiment, the adversary
gets access to it as well.

4 The stateful DH scheme

This section describes our stateful DH/ElGamal scheme StKD which is effectively a stateful version
of the IND-CCA DHIES [2]. (Note ElGamal is only IND-CPA, not IND-CCA.)

Building blocks. We describe the building blocks used and assumptions made about them:

• A cyclic group G whose order is denoted m. Let Gen(G) denote the set of generators of G. We
assume the Gap-CDH problem [33] is hard in G, captured by defining the gap-dh-advantage of
an adversary AG as

Adv
gap-dh
G

(AG) = Pr
[

Z = gxr : g
$
← Gen(G) ; r, x

$
← Zm ; Z

$
← A

ddhg(gr,·,·)
G

(g, gr, gx)
]

,

where the restricted DDH oracle ddhg(g
r, ·, ·), on input Y, W , returns 1 if Y, W ∈ G and

W = Y r, and 0 otherwise. This is weaker than a full DDH oracle because gr is fixed, but the
ensuing weaker assumption suffices for our results.

• A symmetric encryption scheme SE = (SEnc, SDec) with keylength k, specified by its (random-
ized) encryption algorithm SEnc and (deterministic) decryption algorithm SDec. It is assumed
IND-CCA secure, captured by defining the ind-cca-advantage of an adversary ASE as

Advind-cca
SE (ASE)

= 2 · Pr
[

d = c : K
$
← {0, 1}k ; c

$
← {0, 1} ; d

$
← A

SEnc(K,·),LOR(K,·,·,c),SDec(K,·)
SE

]

− 1 .
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Above, LOR(K,M0,M1, c) returns Cs

$
← SEnc(K,Mc). ASE is allowed only one query to this

left-or-right encryption oracle, consisting of a pair of equal-length messages, and is not allowed
to query SDec(K, ·) on a ciphertext previously returned by the LOR oracle. (Thus we are using
the find-then-guess notion from [8], formulated in a different but equivalent way.)

Scheme. The Setup algorithm of the stateful DH scheme StDH = (Setup, KG, PKCk, NwSt, Enc, Dec)
returns as system parameters a generator g chosen at random from Gen(G). A receiver’s secret
and public keys, as created by KG(g), are (x, X) and X respectively, where x is chosen at random
from Zm and X = gx. PKCk(g, X) simply verifies that X ∈ G. The new state algorithm NwSt(g)
picks r at random from Zm and returns st = (r, R) where R = gr. Given system parameters g,
public key X assumed to be in G, message M , state st = (r, R), and access to random oracle
H : G

3 → {0, 1}k, encryption algorithm Enc computes the k-bit key K = H (R, X, Xr) and sym-

metric ciphertext Cs

$
← SEnc(K, M), returns (R,Cs) as the ciphertext, and returns an unmodified

state (r, R). Note encryption in this scheme does not change the state, and all the randomness for
the encryption (without which the scheme cannot be secure) comes from the symmetric encryption
scheme. Given g, secret key (x, X), ciphertext C = (R,Cs) and oracle H , decryption algorithm
Dec returns ⊥ if R 6∈ G and otherwise returns SDec(H (R, X, Rx),Cs) (which may be ⊥).

Instantiations and cost. The cost for public-key operations is one exponentiation each for
encryption and decryption, namely half and the same, respectively as for standard (stateless)
DH/ElGamal type schemes such as DHIES [2]. State initialization costs one exponentiation, but
this is expected to be done rarely. (And in the worst case that it is done before each encryption,
the total cost only returns to that of the stateless scheme.) The most suitable group to use is a
160-bit elliptic curve one, in which case the cost for PKCk, namely a group membership test, is
cheap enough to neglect. Note one can use a group with an efficiently computable pairing, in which
case the assumption drops to just CDH since DDH is easy in such groups. (Interestingly, in this
case, the pairing is used only by the algorithms in the proof of security and does not impact the
performance of the scheme.) One can also use a group of integers modulo a prime or subgroup
thereof, but there seems no point since the group will need to be larger, slowing everything down,
and the check could cost an exponentiation. Ciphertext expansion (length of ciphertext minus
length of plaintext) is 160 bits plus the expansion from the symmetric encryption.

For a symmetric IND-CCA scheme, the easiest is to use an encrypt-then-mac generic compo-
sition [10] with an AES mode of operation like CBC and a MAC like CBC-MAC or HMAC [7].
Using a dedicated authenticated encryption mode like OCB [35] will halve the cost. In both of
these cases, we get a 128+80 bit expansion for the symmetric part. The expansion can be reduced
at the cost of more block cipher operations by the schemes of [23]. But in any case, the symmetric
costs are negligible compared to the asymmetric ones unless the message is very long.

The symmetric scheme needed in DHIES is slightly weaker than the one here because it only
needs to be one-time IND-CCA. The computational cost of upgrading to IND-CCA is however
negligible. But we do add 128 bits to the size of the ciphertext.

Variant. The symmetric key H(R, X, Xr) could be computed only the first time the sender
communicates with the receiver whose public key is X and then “cached” as part of the state,
reducing the cost of further encryptions to this receiver to merely symmetric operations. Note in
this scheme the encryption algorithm does modify the state.

Security of Stateful DH. The following implies that if the Gap-DH problem is hard in G

and SE is IND-CCA secure then Stateful DH meets the notion of IND-CCA security for stateful
schemes we defined previously, even in the USK model.
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procedure Initialize

001 x1
$
← Zm ; r

$
← Zm

002 X1 ← gx1 ; R← gr

003 c
$
← {0, 1}

004 n← 1

005 K[R, X1]
$
← {0, 1}k

procedure MkBdRec(X)
101 If X ∈ G then
102 n← n + 1 ; Xn ← X
103 If (not K[R, X]) then

104 K[R, X]
$
← {0, 1}k

105 Reply n

procedure Encrypt(i,M )

201 Cs

$
← SEnc(K[R, Xi],M )

202 Reply (R,Cs)

procedure LOR(M0,M1)

301 Cs

$
← SEnc(K[R, X1],Mc)

302 Reply (R,Cs)

procedure Decrypt(C)
401 Parse C as (S,Cs)
402 If S 6∈ G then reply ⊥

403 If (not K[S, X1]) then K[S, X1]
$
← {0, 1}k

404 Reply SDec(K[S, X1],Cs)

procedure H (S, X, D)

501 H [S, X, D]
$
← {0, 1}k

502 If S = R and D = Xr then
503 If X 6= X1 then

504 If (not K[R, X]) then K[R, X]
$
← {0, 1}k

505 H [R, X, D]← K[R, X]
506 Else
507 D∗ ← D
508 bad← true

509 H [R, X1, D]← K[R, X1]

510 Reply H [S, X, D]

procedure Finalize(d)
601 If c = d then return 1
602 Else return 0

Figure 3: Game G0 includes the boxed statement, while game G1 does not.

Theorem 4.1 Let StDH be the stateful DH public-key encryption scheme associated to cyclic group
G and symmetric encryption scheme SE. Let A be an ind-cca-adversary against StDH in the USK
model. Then there exists a gap-dh-adversary AG against G and a ind-cca-adversary ASE against
SE such that

Advind-cca
StDH (A) ≤ 2 ·Adv

gap-dh
G

(AG) + Advind-cca
SE (ASE) . (1)

Furthermore the running times of AG, ASE are that of A plus some overhead, in the first case for
some computations of SEnc, SDec, and in the second for a number of exponentiations equal to the
number of random-oracle queries of A.

Proof of Theorem 4.1: We use game-playing in the style of [11]. We first recall some of the
notation and conventions from the latter used in the games of Figure 3. When adversary A interacts
with game G ∈ {G0, G1}, first the Initialize procedure is executed. Then A is executed, its queries
answered by the corresponding game procedures. The output bit d of A is the input to the Finalize

procedure which then produces the game output, denoted GA. The games use arrays K[·, ·], H[·, ·, ·]
assumed to be initially everywhere undefined, and a test of the form (not K[S, X]) returns true if
K[S, X] is undefined and false otherwise.

We assume wlog that A never repeats a query to the random oracle. We first claim the following:

Advind-cca
StDH (A) = 2Pr

[

GA
0 ⇒ 1

]

− 1 (2)

= 2 · (Pr
[

GA
0 ⇒ 1

]

− Pr
[

GA
1 ⇒ 1

]

) + 2 · Pr
[

GA
1 ⇒ 1

]

− 1 (3)

≤ 2 · Pr
[

GA
0 sets bad

]

+ 2 · Pr
[

GA
1 ⇒ 1

]

− 1 . (4)
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To conclude the proof, we will design AG and ASE so that

Pr
[

GA
0 sets bad

]

≤ Adv
gap-dh
G

(AG) (5)

2 · Pr
[

GA
1 ⇒ 1

]

− 1 ≤ Advind-cca
SE (ASE) . (6)

Inequality (1) follows from (4), (5) and (6). We will now justify the above claims.

To justify (2), we claim that game G0 perfects mimics the game defining the ind-cca-advantage of
A. Game G0 begins by picking the secret and public key for recipient 1, the challenge bit c, and
an initial state (r, R) for the sender. For any public key X, where either X = X1 or A queried
MkBdRec(X), the game maintains as K[R, X] a k-bit key that plays the role of H (R, X, Xr). This
value is picked ahead of time as needed to answer queries to the Encrypt, LOR and Decrypt

oracles. Note that neither x1 nor r are used in replying to these queries. In replying to random-
oracle queries, the game “patches” H to return K[R, X] to query R, X, Xr, and returns a random
value if the query does not have this form. The patching code is broken into cases for X = X1

and X 6= X1, but since line 509 is included in G0, the result is to always patch as we have just
said. Game G0 sets the flag bad when A makes the “crucial” random-oracle query R, X1, X

r
1 , the

response to which should be the symmetric key K[R, X1] under which the challenge message is
symmetrically encrypted. However, the flag does not affect the oracle responses. It also saves Xr

1

as D∗ in this case. Note that in responding to H queries, the value r is used, at line 502.

Equation (3) is obtained merely by adding and subtracting Pr[GA
1 ⇒ 1].

Games G0, G1 are identical-until-bad as defined in [11], meaning differ only in statements that
follow the setting of the flag bad to true. The Fundamental Lemma of Game Playing [11] thus says
that Pr[GA

0 ⇒ 1]− Pr[GA
1 ⇒ 1] ≤ Pr[GA

0 sets bad ]. This justifies (4).

Adversary AG has as input g and group elements that we (suggestively) denote as R, X1. It also
has access to the restricted DDH oracle ddhg(R, ·, ·). It begins by executing lines 003, 004 of
Initialize, so that quantities R, X1, c, n, K[R, X1] corresponding to the ones in G0 are defined.
(But AG does not know r, x1.) Now it runs A on inputs g, X1, replying to A’s oracle queries as per
the procedures of G0. We argue that it can do this. This is easy for MkBdRec, Encrypt, LOR

and Decrypt queries because the corresponding procedures have already been written to not use
r or x1 and can thus be executed as shown. But AG can also execute the procedure to reply to
H queries because it can call its ddhg(R, ·, ·) oracle on inputs X, D to implement the line 502 test
as to whether D = Xr. When A halts, AG ignores its output bit d. If the value D∗ is defined
(meaning if line 507 was executed) then AG outputs D∗, and else it outputs some default value,
like 1 ∈ G. Clearly if R, X1 are random group elements then AG perfectly mimics game G0. The
value D∗ is defined iff bad is set to true, and, if defined, has value Xr

1 . We have justified (5).

In Game G1, the reply to query H (R, X1, X
r
1) will not be the “correct” value K[R, X1] but rather

a random, unrelated value. We take advantage of this to design adversary ASE. It begins by
executing lines 001, 002 and 004 of Initialize. It has oracles that we suggestively denote by
SEnc(K[R, X1], ·), LOR(K[R, X1], ·, ·, c), SDec(K[R, X1], ·), meaning we are identifying the key
underlying these oracles with K[R, X1] and the challenge bit c with that of Game G1, so that
quantities R, X1, c, n, K[R, X1] corresponding to the ones in G1 are defined. (But AG does not know
K[R, X1] or c.) Now it runs A on inputs g, X1, replying to A’s oracle queries as per the procedures
of G0. We argue that it can do this. For MkBdRec, it can execute the procedure as shown. For
Encrypt, it uses its SEnc(K[R, X1], ·) oracle. For LOR, it uses its LOR(K[R, X1], ·, ·, c) oracle.
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For Decrypt, to simulate line 404, it uses its SDec(K[R, X1], ·) oracle if S = R and otherwise
runs the code shown in that line. It can execute G1’s procedure to reply to H queries as shown
because it does have r and also because line 509 is omitted. When A halts with an output bit d,
ASE also outputs d and halts. If K[R, X1] is a random k-bit string and c is a random bit then ASE

has perfectly simulated G1, and thus Pr[c = d], in the game defining the ind-cca-advantage of ASE,
equals Pr[GA

1 ⇒ 1]. We have justified (6).

5 The stateful KD scheme

This section describes our stateful version StKD of the Kurosawa-Desmedt [30] variant of the
Cramer-Shoup [21] scheme.

Building blocks. We describe the building blocks used and assumptions made about them:

• A cyclic group G whose order is denoted m. We assume m is a prime. Let G
∗ = G−{1} denote

the set of generators of G. We assume the DDH problem is hard in G, captured by defining the
ddh-advantage of an adversary AG as

Advddh
G (AG) = Pr [ AG(g1, g2, g

r
1, g

r
2) = 1 ]− Pr [ AG(g1, g2, g

r
1, g

s
2) = 1 ] ,

where g1, g2
$
← G

∗ and r, s
$
← Zm.

• A symmetric encryption scheme SE = (SEnc, SDec) with keylength k. It is assumed IND-CPA
secure [8], captured by defining the ind-cpa-advantage of an adversary ASE as

Adv
ind-cpa
SE

(ASE) = 2 · Pr
[

d = c : K
$
← {0, 1}k ; c

$
← {0, 1} ; d

$
← A

SEnc(K,·),LOR(K,·,·,c)
SE

]

− 1 ,

where the LOR oracle is as in Section 4. We also assume integrity of ciphertexts (INT-CTXT)
[27, 10], captured by defining the int-ctxt-advantage of an adversary ASE as

Advint-ctxt
SE (ASE) = Pr

[

A
SEnc(K,·),SDec(K,·)
SE

forges : K
$
← {0, 1}k

]

,

where ASE forges it it makes a query C to SDec(K, ·) such that the latter does not return ⊥ but
C was not previously returned by SEnc(K, ·). Note IND-CPA+INT-CTXT is (strictly) stronger
than IND-CCA [10], but schemes with this property are easily obtained via the encrypt-then-
mac construction [10].

• A family H: {0, 1}k×G×G→ Zm of hash functions in which H(K, ·, ·): G×G→ Zm for each
k-bit key K. It is assumed universal one-way [31], also called TCR [12], captured by defining
the tcr-advantage of an adversary AH as

Advtcr
H (AH) = Pr [ H(K, S1, T1) = H(K, S2, T2) ∧ (S1, T1) 6= (S2, T2) ]

in the experiment where we first run AH to get (S1, T1), only then pick key K at random,
given K to AH , and have it now provide (S2, T2) [31]. Note TCR is a weaker requirement than
collision-reistance, so that, in particular, any practical collision-resistant function can be used.

• A key-derivation function F : G→ {0, 1}k. We assume its output on a random input is compu-
tationally indistinguishable from a random k-bit string, captured by defining the kdf-advantage
of an adversary AF as

Advkdf
F (AF ) = Pr [ AF (F (S)) = 1 ]− Pr [ AF (K) = 1 ] ,

where S
$
← G and K

$
← {0, 1}k. Such functions are easily built out of cryptographic hash

functions.

The assumptions are the same as made in [25] for the KD scheme except that we need a randomized
symmetric encryption scheme whereas a one-time scheme sufficed in [25]. The cost of upgrading
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the symmetric scheme is however negligible.

Scheme. The Setup algorithm of the stateful KD scheme StKD = (Setup, KG, PKCk, NwSt, Enc, Dec)
returns as system parameters a pair g1, g2 of generators chosen at random from G

∗ and a random k-
bit key KH for H. A receiver’s secret and public keys, as created by KG(g1, g2), are (x1, x2, y1, y2)
and X, Y respectively, where x1, x2, y1, y2 are chosen at random from Zm and X = gx1

1 gx2

2 and
Y = gy1

1 gy2

2 . PKCk((g1, g2, KH), (X, Y )) does nothing, simply returning 1, since the conditions put
on keys by the KSK model already imply that any public key arising in the system will be a possible
output of KG((g1, g2, KH)) so that, in particular it will consist of a pair of group elements. The new
state algorithm NwSt((g1, g2, KH)) picks r at random from Zm and returns st = (r, R1, R2, α) where
R1 = gr

1, R2 = gr
2 and α = H(KH , R1, R2). Given system parameters g1, g2, KH , public key (X, Y )

assumed to consist of a pair of group elements, message M and state st = (r, R1, R2, α), encryption

algorithm Enc sets Z = XrY rα, K = F (Z), computes the symmetric ciphertext Cs

$
← SEnc(K, M),

returns (R1, R2,Cs) as the ciphertext, and returns an unmodified state (r, R1, R2, α). (As with
StDH, encryption does not change the state, and all the randomness for the encryption comes from
the symmetric encryption scheme.) Given system parameters (g1, g2, KH), secret key (x1, x2, y1, y2)
and ciphertext C = (R1, R2,Cs), decryption algorithm Dec returns ⊥ if R1 or R2 are not in G and
otherwise sets α = H(KH , R1, R2), Z = Rx1+y1α

1 Rx2+y2α
2 and K = F (Z), and returns SDec(K,Cs)

(which may be ⊥).

Instantiations and cost. Since a multi-exponentiation a, b, A, B 7→ AaBb has essentially the
same cost as an exponentiation, the cost for public-key operations is one exponentiation each for
encryption and decryption, namely one-third and the same, respectively as for KD, and the same as
for StDH. State initialization costs two exponentiations, but this is expected to be done rarely, and
in the worst case that it is done before each encryption, the total cost only returns to that of KD.
The symmetric primitives used can be instantiated in practice via block ciphers and cryptographic
hash functions.

Variant. As with StDH, the StKD scheme has the nice feature that the symmetric key K computed
by the encryption algorithm is a deterministic function of the system parameters, state and public
key. Thus it could be computed only the first time the sender communicates with a particular
receiver and then cached in the state, reducing the cost of further encryptions to this receiver to
merely symmetric operations.

Security. While the proof of security of this scheme does not rely on the random oracle model, we
unfortunately have to make the assumption that we are in the KSK model. Recall this captures the
assumption that the CA issues a certificate for a public key only upon receiving a proof of knowledge
of the corresponding secret key. In practice, this would likely be implemented by having receivers
run proofs of knowledge of representations of X and Y with respect to g1 and g2 (see [20, 16]) as
part of the certification protocol. When a sender encrypts under a public key, it suffices that it
simply verifies the certificate, as usual. Note that some security practitioners have long advocated
a “proof of possession of secret key” when certifying a public key. The current application and
those in [6, 15] are some that appear to benefit from this.

Theorem 5.1 Let G be a group of prime order m in which the DDH problem is hard. Let SE =
(SEnc, SDec) be an IND-CPA+INT-CTXT secure symmetric encryption scheme with keylength k.
Let H: {0, 1}k ×G×G→ Zm be a family of TCR hash functions. Let F : G→ {0, 1}k be a secure
key derivation function as defined above. Then the StKD scheme associated to these primitives is
IND-CCA secure in the stateful KSK model.
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Theorem 5.1 can be proved by slightly modifying the proof of security of the ordinary KD scheme
given in [25]. We sketch this at a very high level, but the reader should be able to easily fill in the
details by consulting [25].

Proof sketch. Let A be an adversary attacking StKD in our stateful KSK model. Let st =
(r∗, R∗

1, R
∗
2, α

∗) denote the sender’s state, which is generated at the beginning of the game, and
remains fixed throughout, and let X∗, Y ∗ denote the public-key of the honest receiver (namely,
receiver 1), and (x∗

1, x
∗
2, y

∗
1, y

∗
2) its corresponding secret key. We also define Z∗ = gr∗

1 gr∗α∗

2 and
K∗ = F (Z∗). For a given ciphertext C = (R1, R2,Cs), we call (R1, R2) the preamble, and Cs the
body. We call (R∗

1, R
∗
2) the target preamble. We say a preamble (R1, R2) is valid if logg1

(R1) =
logg2

(R2).
The first step is to observe that we may assume A makes no Encrypt queries except those

of the form Encrypt(1, ·). This is because when the adversary registers a public key (X, Y ) for
a “dishonest receiver” (namely one whose index is i > 1), he must, according to the KSK model,
present a corresponding secret key (x1, x2, y1, y2) such that X = gx1

1 gx2

2 and Y = gy1

1 gy2

2 . Because
he knows this secret key, he can encrypt any message M he likes with respect to the public key
(X, Y ) (and the given state) by computing

Z ← (R∗
1)

x1+y1α∗

(R∗
2)

x2+y2α∗

; K ← F (Z) ; Cs

$
← SEnc(K, M) .

This is where we make critical use of the fact that all users must register private keys (or at least
present a proof of knowledge to the CA). Note that to make this work, the adversary may need
to make a preliminary query of the form Encrypt(1, ·), just to obtain the target preamble. With
this simplification, note that the Encrypt and LOR oracles encrypt messages using the same
symmetric key K∗.

We further assume the adversary does not submit to the Decrypt oracle a ciphertext that
was previously output by the LOR or Encrypt oracles. This is justified, since (a) by definition,
the adversary is not allowed to get an output of LOR decrypted, and (b) the adversary already
“knows” the decryption of any ciphertext output by Encrypt.

We now have an attack game which is much closer to the standard (non-stateful) IND-CCA
attack game. The only difference is that the same state is used to encrypt several messages,
instead of just one. In the proof of [25], only a single message was encrypted using a given state,
and because of that, a weaker assumption on the symmetric encryption scheme, namely that it was
IND-CPA+INT-CTXT in a single encryption attack, sufficed. Having strengthened the assumption
to IND-CPA+INT-CTXT in a multiple encryption attack, it is really just an exercise to modify
the proof in [25] appropriately.

We give an outline of this proof here. The proof is a sequence of games [36, 11], Game 0,
Game 1, etc. Game 0 is the original attack game (with the above simplifications). We denote by
Si the event that A guesses the hidden bit in Game i. Our goal is to show that Pr[S0] ≈ 1/2.

Game 1. We modify the decryption oracle so that it rejects all ciphertexts whose preambles do
not match the target preamble, yet hash to the same value. The TCR assumption on H implies
that Pr[S1] ≈ Pr[S0].

Game 2. We modify the way that the challenger computes Z∗ (and hence K∗): as

Z∗ ← (R∗
1)

x∗
1+y∗

1α(R∗
2)

x∗
2+y∗

2α∗

.

This is purely a conceptual change, so Pr[S2] = Pr[S1].

Game 3. We now replace the target preamble by a randomly chosen, invalid preamble. The DDH
assumption implies that Pr[S3] ≈ Pr[S2].
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Game 4. We now modify the decryption oracle, so that it rejects any ciphertext whose preamble
does not match the target preamble, and is invalid (note that to implement this efficiently, we now
assume the challenger knows logg1

(g2)). Let E4 be the event that some ciphertext is rejected using
this new rejection rule that would not have been otherwise rejected. We have |Pr[S4]− Pr[S3]| ≤
Pr[E4]. We want to show that Pr[E4] ≈ 0. To do this, we augment Game 4 slightly: we have the
challenger choose at random one particular decryption query, called the chosen decryption query,
and define E′

4 to be the event that that particular ciphertext was rejected using the new rule. If Q
is a bound on the number of decryption queries, then Pr[E4] ≤ QPr[E′

4], and so it will suffice to
show that Pr[E′

4] ≈ 0. We will establish this later, in Game 6′.

Game 5. We make two changes:

• First, we replace Z∗ by a completely random group element. This is done in a consistent fashion,
so that not only the Encrypt and LOR oracles use this value of Z∗, but so does the decryption
oracle on ciphertexts whose preamble matches the target preamble.

• Second, in processing the chosen decryption query, if the preamble is different from the target
preamble, does not hash to the same value as the target preamble, and is invalid, then either
the symmetric encryption algorithm will reject the ciphertext, or if not, the new rejection rule
introduced in Game 4 will reject it. For the purposes of determining if the new rejection rule
is needed, a random group element Z̃ is chosen, and the body of the ciphertext is decrypted
using the symmetric key K̃ = F (Z̃): if this decryption does not result in ⊥, we say “the new
rejection rule applies”; in any case, the decryption oracle returns ⊥ to the adversary.

Let E′
5 denote the event that the new rejection rule applies in Game 5. We have Pr[S5] = Pr[S4]

and Pr[E′
5] = Pr[E′

4]. This follows from the usual 4-wise independence argument, as in the original
Cramer-Shoup analysis: the joint distribution of all the relevant random variables defining these
events is identical.

The proof now forks in two different directions, making two different modifications to Game 5.

Game 6. Now we replace K∗ be a random k-bit key. This is done consistently throughout the game:
in the LOR oracle, the Encrypt oracle, and the Decrypt oracle (for those ciphertexts whose
preamble matches the target preamble). Under the assumption that F is a good key derivation
function, we have Pr[S6] ≈ Pr[S5]. Moreover, note that K∗ is essentially used in this game as a
key in a standard symmetric chosen ciphertext attack, and under the security assumption for SE,
it follows that Pr[S6] ≈ 1/2.

Game 6′. We now modify Game 5 in a different way. Instead of computing K̃ as F (Z̃), we simply
choose K̃ as a random k-bit key. Define E′

6′ to be the event that the new rejection rule applies in
Game 6. Under the assumption that F is a good key derivation function, we have Pr[E′

6′ ] ≈ Pr[E′
5].

Moreover, under the assumption that SE provides ciphertext integrity, we must have Pr[E′
6′ ] ≈ 0.

It follows now that Pr[E′
4] = Pr[E′

5] ≈ Pr[E′
6′ ] ≈ 0, and hence Pr[S4] ≈ Pr[S3].

Tracing through the logic of the above sequence of games, we see that Pr[S0] ≈ Pr[S6] ≈ 1/2,
which proves the theorem.

Note that from the proof, we see that SE does not need to provide full ciphertext integrity. The
properties needed are that it is IND-CCA secure, and that for any randomly chosen key, and any
adversarially chosen ciphertext, the ciphertext is rejected with overwhelming probability (in this
game, the adversary has no access to an encryption oracle).
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A Extended security model and equivalence with basic one

In Section 3 we presented a fairly simple basic security model that we have used for the results and
proofs in the paper. Here we show that security in this model implies security in a richer, extended
model.

To define IND-CCA security of stateful public-key encryption scheme StPE = (Setup, KG, PKCk,
NwSt, Enc, Dec) in the extended model we consider a game played with an adversary Ae . (The “e”
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stands for “extended.”) We first describe this for the USK model and then discuss what changes
for the KSK model. The game begins with the initializations

sp
$
← Setup ; c

$
← {0, 1} ; n← 0 ; GR, GS← ∅ .

Ae is then given input sp. The following shows what types of oracle queries Ae can make, what
action the game takes in each case, and what response the game returns to Ae :

Oracle query Action taken by game Response

MkGdSen() s← s + 1 ; sts ← NwSt(sp) ; GS← GS ∪ {s} s

Reset(j) st j
$
← NwSt(sp) ; GS← GS ∪ {j} 1

MkGdRec() n← n + 1 ; (pkn, skn)
$
← KG(sp) ; GR← GR ∪ {n} n

MkBdRec(pk) If PKCk(sp, pk) = 1 then n← n + 1 ; pkn ← pk n

LOR(i, j,M0,M1) (C, st j)
$
← Enc(sp, pk i,Mc, st j) C

Encrypt(i, j,M ) (C, st j)
$
← Enc(sp, pk i, M, stj) C

RevealSt(j) GS← GS− {j} st j

CrptRec(i) GR← GR− {i} sk i

Decrypt(i, C) M ← Dec(sk i, C) M

Ae can call MkGdSen() to create a new sender whose index is stored in the set GS of good senders.
Ae can call Reset(j) to reset the state of sender j, with the restriction that 1 ≤ j ≤ s. The lifetime
of sender j is viewed as divided into periods, the p-th period ending with the p-th Reset(j) query
that Ae makes (p ≥ 1). Ae can call MkGdRec() to create a new receiver whose index is added
to the set GR of good receivers and whose keys are chosen honestly by the game, with the public
key returned to Ae . Ae can call MkBdRec(pk), and if pk passes the public-key verification check
then the game creates a receiver with public key pk . Ae can call LOR(i, j,M0,M1) to have sender
j encrypt challenge message Mc under its current state and the public key of receiver i, and return
the ciphertext to Ae , with the restriction that j ∈ GS, i ∈ GR and |M0| = |M1|. Unlike in the basic
model, we do not restrict Ae to just one LOR query. Ae can call Encrypt(i, j,M ) to have sender
j encrypt M under its current state and the public key of receiver i, and return the ciphertext
to Ae , with the restriction that j ∈ GS and 1 ≤ i ≤ n. Ae can call RevealSt(j) to reveal the
current state of sender j, modeling a compromise of j’s private information, with the following
restrictions. First, j ∈ GS. Second, in any period in the lifetime of j in which a LOR(·, j, ·, ·)
query has been made, no RevealSt(j) query is allowed. This captures the goal that a sender can
recover from compromise by resetting its state: as long as the current state has not been exposed,
its communications should remain private. Ae can call CrptRec(i) to expose the secret key of
receiver i, with the restriction that i ∈ GR and no LOR(i, ·, ·, ·) query is ever made. Ae can call
Decrypt(i, C) to obtain the decryption of C under the secret key of receiver i, with the restriction
that i ∈ GR and C has not been returned in response to a previous LOR query. This models a
chosen-ciphertext attack. At the end of its execution, A must output a bit. Denoting it by d, the
ind-cca-e-advantage of A is

Advind-cca-e
StPE (A) = 2 · Pr [d = c]− 1 .

For the KSK model, the difference is like in the basic case. Namely MkBdRec takes input not
just pk but also sk and Ae is restricted to queries where pk , sk is a possible output of KG(sp). The
action taken by the game is simply n← n + 1 ; pkn ← pk , and the response returned is n.

Theorem A.1 Let StPE be a stateful public-key encryption scheme. Let Ae be a USK (resp. KSK)
adversary against StPE in the extended model, making at most q1, q2, q3, q4, q5, q6, q7, q8, q9 queries,
respectively, to its oracles in the order they are listed in the table above, and having running time
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at most t. Then there is a USK (resp. KSK) adversary A against StPE in the basic model such that

Advind-cca-e
StPE (Ae)≤ q5(q1q2)q3 ·Advind-cca

StPE (A) .

Furthermore, A makes q4 + q3 − 1, q6 + q5 − 1, q9 queries to its MkBdRec,Encrypt,Decrypt

oracles respectively. Its running time is that of Ae plus the time for a number of invocations of the
algorithms of the scheme that is linear in the sum of the number of queries.

Proof Sketch: We will prove this for the USK case. The KSK case is similar. We will evolve Ae

into a sequence of simpler adversaries A1
e
, A2

e
, . . ., still in the rich model, until we get one that is

easily realized in the basic model. The table below summarizes the query counts made by these
adversaries and the last line shows the factor loss in advantage involved in the moving to this
adversary from the previous one:

Oracle Ae A1
e

A2
e

A3
e

MkGdSen() q1 q1 1 1
Reset(j) q2 q2 0 0
MkGdRec() q3 q3 q3 1
MkBdRec(pk) q4 q4 q4 q4+q3–1
LOR(i, j,M0,M1) q5 1 1 1
Encrypt(i, j,M ) q6 q6+q5–1 q6+q5–1 q6+q5–1
RevealSt(j) q7 q7 0 0
CrptRec(i) q8 q8 q8 0
Decrypt(i,C ) q9 q9 q9 q9

Factor loss: q5 q1q2 q3

First use a hybrid argument to get an adversary A1
e

that makes only one LOR query. To simulate
the other LOR queries (due to the hybrid, it knows which of the two challenge messages is being
encrypted here) it will use the Encrypt oracle, so the number of queries to this goes up as shown.
Adversary A2

e
guesses the sender j and the period t in its lifetime such that the single LOR query

is from j and made in period t. It simulates all other senders for all their time periods, and also
simulates all other time periods of j by starting from a fresh state each time. It needs no RevealSt

queries since it simulates answers for all but the crucial one, and that one is illegal if the guess is
right. A3

e
guesses the identity i of the honest receiver in the (single) LOR query, and simulates

all MkGdRec queries other than the one creating i via MkBdRec, itself picking the public and
secret keys, so that it can answer CrptRec queries for them. (Such a query is illegal to the guessed
receiver if the guess is right.) From the profile of A3

e
we see that it is effectively an adversary in

the basic model.
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