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ABSTRACT

In this paper, the motion of fluid parcels in the two-dimensional kinematic model of a meandering jet developed
by Bower and Samelson is studied. The earlier work is extended by considering quasiperiodic spatiotemporal
variability in a reference frame moving with the phase speed of the meander. This necessitates the introduction
of recently developed techniques in dynamical systems theory for analyzing transport in velocity fields with

quasiperiodic variability.

A detailed comparison between exchange for variability with one and two independent frequencies is given,
and it is shown that the exchange rates may be very different for periodic and quasiperiodic variability.

1. Introduction

In this paper we will be concerned with fluid
exchange across kinematical models of meandering
jets. There have been several studies of such models in
the past few years, many of them motivated by the work
of Bower (1991). Based on RAFOS float observations
of the Gulf Stream, she devised a kinematical model
consisting of a jet of uniform width deformed by a
steadily propagating sinusoidal meander. In a reference
frame moving with the meander the fluid motion is

steady and, for eastward meander propagation, con- .

sisted of three regimes: a central jet, exterior retrograde
motion, and intermediate closed circulations above me-
ander troughs and below crests. Since the fluid motion
was steady, no exchange could occur between the three
regimes. However, float observations indicate that
cxchange does occur across some parts of the Gulf
Stream. Samelson (1992) recognized that this must be
due to deviations from the regular pattern of Bower’s
model and modified her model to include additional
spatiotemporal variability in the velocity field. In par-
ticular, he allowed for a time-dependent meander am-
plitude, a time-dependent spatially uniform meridional
velocity superimposed on the basic flow, and a propa-
gating plane wave superimposed on the basic flow. It
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is important to note that Samelson only considered pe-
riodic variability, which resulted in time-periodic ve-
locity fields. This is because time-periodic velocity
fields are of the form where the methods and viewpoint
of modern dynamical systems theory can be brought to
bear on issues related to fluid transport and mixing. To
motivate this, we provide some brief background.

Two-dimensional, incompressible, time-dependent
velocity fields can be written as follows:

Jé=?£(x,y,t),

9y
(1)

where Y(x, y, t) is the streamfunction. These equations
also describe the evolution of fluid particle trajectories.
From the point of view of a dynamical systems theorist,
(1) are just Hamilton’s canonical equations where the
streamfunction plays the role of the Hamiltonian func-
tion and the phase space is just the physical space of
the fluid flow. If the flow is time periodic, then the study
of (1) is typically reduced to the study of a two-di-
mensional Poincaré map. Practically speaking, this
means that rather than viewing a particle trajectory as
a curve in continuous time, one views the trajectory
only at discrete intervals of time, where the interval of
time is the period of the velocity field. The value of
making this analogy with Hamiltonian dynamical sys-
tems lies in the fact that a variety of techniques in this
area have immediate applications to, and implications
for, transport and mixing processes in fluid mechanies.
For example, the persistence of invariant curves in the

=
y= ax(x’y’t)'
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Poincaré map (KAM curves) gives rise to barriers to
transport; chaos and Smale horseshoes provide mech-
anisms for the ‘‘randomization’’ of fluid particle tra-
jectories; Melnikov’s method allows one to analytically
estimate fluxes as well as describe the parameter re-
gimes where chaotic fluid particle motions occur; lobe
dynamics enables one to efficiently compute transport
between qualitatively different flow regimes; bifurca-
tion theory enables one to understand how qualitatively
different flow regimes appear and disappear as system
parameters are varied; etc. In short, many new methods
for the study of fluid transport and mixing can be ob-
tained from dynamical systems theory. For a survey of
this from the dynamical systems viewpoint see Wiggins
(1992) and Beigie et al. (1994), and for a survey from
the fluid mechanics viewpoint see Ottino (1989).

Traditionally, the mathematical development of
Hamiltonian dynamical systems theory has been in the
context of discrete time (or maps) or for continuous
time where the time dependence is either steady or pe-
riodic. In recent years, many of the techniques de-
scribed above have been extended to the situation
where the time dependence is more general than peri-
odic; however, these techniques have been slow in
making their way into the applied community. In this
paper will reconsider Samelson’s model of a meander-
ing jet, but we will allow for more general spatiotem-
poral variability than time periodicity.

The situation of temporal variability that is more gen-
eral than periodic has not received much attention. One
of the obstructions is that for two-dimensional, temporally
nonperiodic velocity fields there is no reduction to a two-
dimensional Poincaré map in the sense that trajectories of
the Poincaré map are interpolated by the continuous time
trajectories of the flow. The significance of this is that
many of the relevant results of dynamical systems the-
ory—the KAM theorem, the Smale horseshoe construc-
tion, Melnikov’s method—were originally developed in
the context of two-dimensional maps or two-dimensional
time-periodic vector fields. However, in the past few
years many of these results relevant to transport have been
generalized to the case of time guasiperiodic variability,
that is, the case where the variability has a finite number
of independent and possibly incommensurate frequen-
cies; see Beigie et al. (1991, 1992) and Wiggins (1992).
The mathematical theory is significantly more involved
than for the case of time-periodic variability. However,
the general spirit and elements behind the analysis remain
essentially the same. Namely, the mathematical results
and techniques allow one to understand, and deal with,
saddle-type stagnation points that oscillate quasiperiodi-
cally in time. These oscillating stagnation points have sta-
ble and unstable manifolds that have the same signifi-
cance for fluid parcel transport. That is, at each instant of
time they form boundaries in the flow between parcel
trajectories that move in different directions after their
encounter with the quasiperiodically oscillating stagna-
tion point. However, there is a very significant difference
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with the case of time-periodic variability. Namely, in that
case there is a distinguished interval of time: the period,
after which the velocity field returns to its same values at
each point in the flow. As a result, when considering par-
cel trajectories via the Poincaré map, the stable and un-
stable manifolds are fixed curves in space. In this situation
intuition derived from the kinematics of two-dimensional
steady flows is useful (since in that case streamlines are
fixed curves in space), provided we make the correct
interpretation of the kinematics of the trajectories of the
Poincaré map (which are infinite sequences of discrete
points) in terms of parcel trajectories for the unsteady,
time-periodic flow. In the case of quasiperiodically time
varying velocity fields, there is no way to avoid the fact
that the stable and unstable manifolds vary in time, and
consequently we must deal with the problem of transport
across a moving curve. This has the immediate implica-
tion that, even though the flow is incompressible, the in-
stantaneous flux in one direction across such a moving
curve may not equal the instantaneous flux in the opposite
direction. We will see that this does have physical con-
sequences for finite time transport.

2. Derivation of the model

We briefly describe the model of the meandering jet
studied by Bower (1991) and Samelson (1992), and
we follow the notation of this latter reference as closely
as possible.

The streamfunction for the basic meandering jet has
the form

P(x',y, 1)

y — A cosk(x' — c;t)
= — 1 s
‘["’[1 anh(x[l A2 sink(x' — 6,02

(2)

where x’ and y are Cartesian coordinates indicating
positive eastward and northward, respectively, 24 is
referred to as the total eastward transport, \ determines
the width of the jet, and A, k, and ¢, are respectively
the amplitude, wavenumber, and phase speed of the
meander. A frame of reference moving with the me-
ander is given by

X=x"-ct, Y=y, (3)

and in this frame the streamfunction, after nondimen-
sionalization, takes the form

$lem=1- tanh[ T f?ﬁ"f@] +en,
(4)

where

d=y5'Py+cen (&m=\N'X,Y), B=\"A,

k=277t =k\, c=M5lc,,
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and the dimensionless time and length are given by'

T =P, x=NT"x"

Streamlines of the steady flow

Following Samelson (1992), we will fix the param-
eters for the basic meandering jet at the following val-
ues:

The streamlines in the moving frame for these param-
eter values are shown in Fig. 1 of Samelson (1992).
We sketch the separatrices that define the qualitatively
distinct regimes of fluid parcel motion in Fig. 1.

In Fig. 1 we sketch only the separatrices associated
with the jet in the moving frame, and we see that there
are three distinct types of fluid parcel trajectories—
eastward moving parcels in the jet, westward moving
parcels exterior to the jet, and parcels that execute pe-
riodic trajectories. These three types of trajectories ex-
ist in five distinct regions whose boundaries consist of
separatrices connecting saddle-type stagnation points.
In the figure the regions bounded by the separatrices
are denoted by R;, i = 1, - - -, 5. Since the flow is steady
in the moving frame, no exchange between these
regions can occur in the moving frame. Hence, no
~ transport of fluid parcels into or out of the jet can occur
in the moving frame.

3. Exchange due to quasiperiodic variability in the
moving frame: A comparison with periodic
variability

Samelson (1992) considers three types of variability
in the moving frame: a periodically varying meander
amplitude, a superimposed periodically time-varying
spatially uniform meridional flow, and a superimposed
propagating wave train. We will consider exactly the
same forms for the variability, but instead we will allow
them to vary quasiperiodically in time. With this vari-
ability Samelson considers exchange between the
northern recirculation cell and the northern retrograde
region (R, and R, in our notation) and exchange be-
tween the jet core (R;) and the northern ‘recirculation
cell (R,). We will consider the same exchange prob-
lems. By symmetry, exchange between R, and R; is the
same as that between R, and R,, and exchange between
R; and R, is the same as that between R, and R;.

a. Quasiperiodically time-varying meander amplitude

Following Samelson (1992), we allow the meander
amplitude to vary in time by letting B in (4) have the
following form:

!
B =By + €2 v cos(wT + 6;).

i=1

(%)
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R, v

FIG. 1. Separatrices associated with the steady jet
in the moving frame.

Substituting this expression into (4) and Taylor ex-
panding in € gives

(&, n, B) = $(&, m, Bo) + e¢’(§, 1, T) + O(e?),
(6)

where
, ¢ ’
¢ (& 1) = 25 (& m, Bo) X vi cos(wiT + &)
i=1
For this streamfunction the quasiperiodic Melnikov
functions can now be computed, and this is done in
appendix B. With the quasiperiodic Melnikov function
in hand, fluxes can then be computed as described in
appendix A. Here we describe the results.

1) PERIODIC VARIABILITY

In the case of periodic variability studied by Samel-
son (1992), he noted that the maximal flux between R,
and R, occurs when the frequency of the variability, w,
is about 0.035, while the maximal flux between R, and
R; occurs when w is about 0.35. The maximal flux be-
tween R, and R, is about eight times larger than the
maximal flux between R; and R,. The most striking
feature is the relative difference in the strength of the
exchange across the two boundaries. For w = 0.35 the
exchange between R, and R; is much stronger than the
exchange between R; and R,. However, for w near
0.035, the flux between R; and R, is about twice the
value of the flux between R, and R;.

2) QUASIPERIODIC VARIABILITY, AND THE
COMPARISON WITH PERIODIC VARIABILITY

For simplicity we only consider the two-frequency
case (i.e., [ = 2). First, we will consider some transport
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issues related to the finite-time average flux. In Fig. 2
we plot the finite-time average flux from R; into R,,
(®,)., and the finite-time average flux from R, into
Ry, {(®,,)n, up to n = 20 nondimensional periods cor-
responding to w, for the parameter values given in the
figure caption. In Fig. 3 we plot the finite-time average
flux from R, into R;, (P, ), and the finite-time average
flux from R; into R,, (®;3,),. Note that all parameters
are the same in these two figures except the frequencies.

From these figures we easily see that when w,; and
w, are near the ‘‘peak’’ frequency 0.035 for single fre-
quency variability, the finite-time average flux from R,
into Ry, (®,,),, is larger than the finite-time average
flux from R, into R;, (®,),, when w; and w, are near
the corresponding ‘‘peak’’ frequency. Thus, at least for
finite times, the situation is the opposite of that ob-
served for the case of single frequency variability de-
scribed above.

In Fig. 4 we plot (®,5), and (P ,), for different fre-
quencies than those in Fig. 3, but with all other param-
eters unchanged. In comparing these two figures we
see that the finite-time average fluxes in the former case
are larger than the latter case. If we were to consider
the case of single frequency variability with the size of
the frequency roughly the size of one of the frequencies
for the case shown in Fig. 4, the flux would decrease

<®, >, o
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FI1G. 2. Finite-time flux between R; and R,; w, = 0.01, w, = (\E

— 1)/10, 6, = 6.25, 65 = m. The amplitudes satisfy y7 + y3 = 1 with
v, = 0.3.
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FIG. 3. Finite-time flux between R, and R;; w, = #/10, w, = 0.5,
8, = 6.25, 6, = m. The amplitudes satisfy ¥3 + y3 = 1 with v,
=0.3.

by at least a factor of 1/, in comparison with the max-
imal flux at w = 0.35 (cf. Samelson 1992, Fig. 7). The
point to be made here is that in the multifrequency case
the finite-time average flux may remain relatively large

" for choices of frequencies that, individually, would re-

sult in much smaller fluxes in the corresponding single
frequency case.

Note that generally (®3,), # (Py3), and (D),
% (®,,),, which would not be true for periodic vari-
ability.

Next we consider the infinite-time average flux. In
particular, we want to consider again two-frequency
variability and compare the infinite-time average flux
in this case with the *‘single frequency limits.”” This is
done by choosing the normalization y7 + y3 = 1 for
the amplitude of the variability, fixing w,;, and then
plotting the infinite-time average flux as a function of
v, and w,. Thus, y, = 0 corresponds to single fre-
quency variability with frequency w, and y, = 0 cor-
responds to single frequency variability with frequency
w;. For w, = 0.02 we plot ® = (®,,) = (P,,), and @
= (®,3) = (Ps,), respectively, as a function of v, in
Fig. 5. From these figures we see that for some nonzero
Y1, ¥2, and w,, the infinite-time average flux between
R, and R; can be larger than or comparable with the
infinite-time average flux between R, and R, for sizes
of frequencies for which, if taken individually, the op-
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FiG. 4. Finite-time flux between R, and Rs; w; = 0.12, w; = (‘5
~ 1)/2, 6, = 6.25, 65 = 7. The amplitudes satisfy y} + y3 = 1 with
v, = 0.3.

posite situation would occur in the corresponding sin-
gle-frequency case (cf. Samelson 1992, Fig. 7). Hence,
we conclude that the addition of more frequency com-
ponents in the variability may either enhance or sup-
press exchange as compared with the single frequency
case.

To check the global dependence of the infinite-time
flux on the two frequencies, we generate a three-di-
mensional plot of the flux with the other parameters
fixed; see Fig. 6. We note that the difference between
the maximal flux crossing the two boundaries is in-
creased (comparing with Fig. 7 in Samelson 1992). It
appears that the global impact of two-frequency inter-
ference is to increase the maximal efficiency of trans-
port across the boundary between R, and R; and to
decrease the maximal efficiency of transport across the
boundary between R, and R,.

b. A superimposed quasiperiodically time-varying
spatially uniform meridional flow

Following Samelson (1992), the nondimensional
streamfunction for the spatially uniform meridional
flow is of the form

{
L PEn =8 vicos(wr +6). ()
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1) PERIODIC VARIABILITY

Samelson (1992) found that for periodic variability
of this type exchange across the boundary between R,
and R; was always larger than exchange across the
boundary between R, and R, (cf. Fig. 4 from Samelson
1992). .

2) QUASIPERIODIC VARIABILITY AND THE
COMPARISON WITH PERIODIC VARIABILITY

For quasiperiodic variability with two frequencies,
the opposite situation can happen as compared with the
single-frequency case.

For some values of parameters, the fluxes crossing
the boundary between R, and R; are smaller than those
crossing the boundary between R, and R,. For example,
in Figs. 7 and 8 we plot the finite-time average flux for
w =03, w,=m, v +vy5=1withy, =05,8 =3.5,
by = m. The values of (P, ), are smaller than those
of (@3,),.

The global impact of two-frequency interference is
evident or strong only for small frequencies. As a func-
tion of the two frequencies w, and w,, the infinite-time

0.04
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[
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Fic. 5. Infinite-time flux between R, and R, and between R, and
R, respectively; w; = 0.02, v + v = L.
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FiG. 6. Infinite-time flux as a function of w, and w; between R, and
R, and between R, and R, respectively; &; = by = 0. The amplitudes

satisfy y2 + y2 = 1 with y, = 2/3.

average flux roughly gets smaller as both w, and w, are
increased; see Fig. 9. One interesting phenomenon oc-
curs for the transport across the boundary between R,
and Rs, that is, the infinite-time average flux has a drop
for w; and w, around 0.1. In the one-frequency case the
flux is a strictly decreasing function of frequency (see
Fig. 4 in Samelson 1992).

In Fig. 10 we plot the infinite-time averaged flux as
a function of y, and y, with y? + y3 = 1 and w, fixed.
We also see that the impact of two-frequency interfer-
ence is complicated. The maximal flux across the
boundary between R, and R is much larger than that
across the boundary between R, and R,, while in the
one-frequency case the maximal flux across both
boundaries are almost the same (see Fig. 4 in Samelson
1992).

c. A superimposed propagating wave train

Following Samelson (1992), the nondimensional
streamfunction for a superimposed propagating wave
train is taken to be of the form
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FiG. 7. Finite-time flux between R, and R,; w; = 0.3, w, = 7,
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FIG. 9. Infinite-time flux as a function of w, and w, between R, and
R, and between R, and Rs, respectively; 6; = 6 = 0. The amplitudes

satisfy ¥3 + v = 1 with y, = V312,

1
(& m 1)Y= vi—cos[pi(€§—c,T)+ &1 (8)

i=1 i
1) PERIODIC VARIABILITY

For periodic variability of this type Samelson (1992)
found that maximal values of exchange across the
boundary between R, and R; were always larger than
exchange across the boundary between R, and R,.
Moreover, he found that the exchange was greater if
the propagating wave train phase speed was between
the maximum and minimum (unperturbed) zonal ve-
locities along the corresponding streamlines. For the
boundary between R, and R, the nondimensional max-
imum and minimum basic flow zonal velocities are 0.0
and —0.1, respectively, and for the boundary between
R, and R; they are 0.54 and 0.0, respectively (cf. Fig.
9 in Samelson 1992).

2) QUASIPERIODIC VARIABILITY AND THE
COMPARISON WITH PERIODIC VARIABILITY

For two wave speed quasiperiodic variability of this
type we show that the exchange process can be differ-
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ent from that observed by Samelson for periodic vari-
ability. :

By arbitrarily fixing c,, and vary c,,, we compute
infinite-time average fluxes across the boundaries be-

- tween R; and R, and between R, and R;. We compare

the infinite-time average flux for two wave-speed case
(cy, * c,,) and single-wave-speed case (¢, = ¢,,). We
find that, for both boundaries, the infinite-time average
flux for the two wave-speed case can either larger of
smaller than for corresponding single wave-speed case.

We consider quasiperiodic variability with p, = 2,
p=m, 61 = O, 62() = O, and ’)/% + ’)/% = 1 with Y= 0.3,
while ¢,,, ¢, are selected below.

For the boundary between R, and R,, for example,
we (arbitrarily) fix ¢,, = —0.05. The infinite-time av-
erage flux with wave speeds

(Cplv sz) = (—0-05, _0.05),
(—0.05, 0.2), (—0.05, —0.08)
are 0.59, 0.45, 1.47, respectively.

FiG. 10. Infinite-time flux as a function of vy, and w,, between R,
and R, and between R, and R;, respectively; w, = 0.1, v} + y3 = 1,
51 = (520 =0
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FIG. 11. Infinite-time flux as a function of ¢, and c,, between R,
and R, and between R, and R, respectively; yi + y3 = 1 with v,
= 03,8, = 6 =0,p, =27/5, p, = 7.

For the boundary between R, and R;, for example,
we (arbitrarily) fix ¢, = 0.25. The infinite-time aver-
age flux with wave speeds

(Cop» Cpy) = (025, 0.25), (0.25, ~0.15), (0.25, 0.19)

are 0.25, 0.09, 1.04, respectively.

In the one wave-speed case, relatively strong
exchange is found to be confined in some interval of
phase speed. However, in the two wave-speed case, the
fluid exchange can be active outside such intervals (see
Fig. 11). Moreover, the two wave speed perturbations
tend to bring closer the maximal fluxes across the two
boundaries as the difference between the maximal flux
crossing the two boundaries are much smaller than that
in the one wave-speed case (see Fig. 9 in Samelson
1992). This means that the two wave-speed interfer-
ences tend to balance the transport crossing the two
boundaries. We note that this is very different from the
case of the two previously considered two-frequency
perturbations.
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APPENDIX A

Transport in Quasiperiodically
Time-Dependent Flows

The transport theory for quasiperiodically time vary-
ing vector fields is much more technical (as well as
unfamiliar) than the case for time-periodic. Conse-
quently, we will not present the theory in full mathe-
matical generality but only develop the concepts nec-
essary for the computations of fluxes and exchange
rates in the meandering jet model. All of the theory in
this appendix is developed and proved in Beigie et al.
(1991, 1992) and Wiggins (1992).

We begin by considering a weakly quasiperiodically
time-varying streamfunction of the following form

(&t €)= d(&n)

+ed' (&, n,wit, -, wit; p,€e), (Al)
with the equations for fluid parcel trajectories given by
o¢ 9¢’

5=‘a_n<5’”)‘fa"n(f’”’“’"’ T Wil s €,

. _0¢ o9’ e
n= ag(E,nHe o (&mwt, -, wits pye), (A2)

where each argument of ¢’ of the form w;? is periodic
in ¢ with period 27/w;; p € R? denotes the possible
parameters; and 0 < € < 1 is a small dimensionless
parameter. As an example, one could think of ¢’ as
being composed of a finite sum of plane waves with
different frequencies and relative phase differences, but
we will see explicit examples shortly. If the frequencies
are incommensurate, then the time dependence is not
periodic, and therefore the Poincaré map formalism of
dynamical systems theory and all of its attendant ana-
lytical tools cannot be applied.

We will handle this situation in a way that may ap-
pear rather strange at first, but we hope to remove this
impression as we go along. We enlarge the phase space
by introducing the phases of the different frequency
components as new dependent variables to obtain the
following equations for the parcel trajectories
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;. _ 00 _ % b
f— 8"7 (59 ?7) € 877 (57 7 515 ’515 H, 6)
3

- 99’ 6
n= 8& (g’ 7])+6 (ga n, 615 »619 /J.,,E)

3
51 = W
& = w. (A3)

Clearly, the £ — 1 components of (A3) are the same
as (A2) since §; = wit + 6.

The system is now an [ + 2 dimensional fime-inde-
pendent set of equations. We can study the dynamics
of this system via an / + 1 dimensional Poincaré map
that is constructed in much the same spirit as in the
case of time-periodic variability. Namely, rather than
consider the evolution of continuous parcel trajectories
in the full / + 2 dimensional phase space of this dy-
namical system, we plot their evolution at discrete in-
tervals of time, where the interval of time is equal to
the period of one of the frequency components of the
variability (in the following we will assume that this
distinguished frequency component is the Ith, but any
component can be taken into account in this manner
just be relabeling the indices). We make this procedure
more mathematically precise.

We construct the following / + 1 dimensional cross

section, or Poincaré section, to the enlarged vector field

(A3):
25105{(§,n,61,"',51)|5z=510}~ (A4)

The [ + 1 dimensional Poincaré map of this cross sec-
tion into itself is given by

P.: Too — ¥ b0
2T 27
(5(0)5 ?7(0)’ 615 sy 6[—-1) = (5(_—> ) T’(_) ’
Wy wy
&+%ﬂwwm+%ﬁﬂ.mﬁ
Wy wy

At this point, defining some new notation will make it
much easier to write down subsequent formulas. The
passage to the Poincaré map fixes the phase of one of
the frequency components. We will lump the remaining
[ — 1 frequencies and phases into frequency and phase
vectors defined respectively as follows:

(61, ey 61_1) = §.

The symbol p represented external parameters in the
problem. We can view the [ frequencies as additional
parameters and thus define a new parameter vector as
follows:

((4]1, ey wl—l) = w,

VE(/J/"*)["-"WI)'
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Now we describe the advantages of recasting the
original quasiperiodically time-dependent velocity field
(A2) as a time-independent velocity field (A3) in a
higher dimensional space. First of all, it provides a
framework where we can study trajectories of this
higher dimensional system via a Poincaré map, much
as in the case for time periodic velocity fields. But more
importantly, it provides a setting where we can under-
stand the invariant manifold structure relevant for the
problem of exchange across a meandering jet with
quasiperiodic variability. Note that in the case where
the variability only has a single frequency, the con-
struction reduces to the standard two-dimensional
Poincaré map.

We next consider the issues of ‘‘invariant manifold
structure’” in the context of this higher dimensional
Poincaré map more carefully, and we motivate them
from the point of view of perturbation of the steady
flow. For € = 0 the 6 components of (A3) decouple
from the £ — 1 components (this is just a manifestation
that the velocity field is steady for € = 0). Nevertheless,
we can still view the invariant manifold structure of the
steady velocity field (in particular, the stagnation points
and the separatrices connecting them) in the enlarged
& — n — 6 space of the Poincaré section defined in
(A4). In this case for each 6 we have a ‘‘copy’’ of the
steady two-dimensional stagnation point and stream-
line structure. Or, more mathematically, in the Poincaré
section (A4) the stagnation points of the steady flow
are manifested as the Cartesian product of the stagna-
tion point in £ — 7 space with the [ — 1 torus, 7"
parametrized by the [ — 1 angles denoted by 4. Simi-
larly, the Cartesian product of the one-dimensional se-
paratrices in the £ — 7 phase space with the [ — 1 torus
are manifested as /-dimensional surfaces in the [ + 1
dimensional Poincaré section (A4); therefore, dimen-
sionally they still act as separatrices in this higher di-
mensional space. To summarize in more mathematical
terminology, in the higher dimensional Poincaré sec-
tion obtained by including the phases of all the fre-
quency components of the variability, for € = O the
saddle-type stagnation point of the steady two-dimen-
sional flow is manifested as a saddle-type I — 1
dimensional torus, which has /-dimensional stable and
unstable manifolds that act as separating ‘‘tubes.”” We
illustrate the geometry of this situation in Fig. Al.

For € small, but nonzero, it can be shown that this
saddle-type invariant torus along with its stable and
unstable manifolds persists. However, now the [-di-
mensional stable and unstable manifolds of the sad-
dle-type invariant torus need not coincide as in the
steady case (i.e., for ¢ = 0), but they may intersect
in a very complicated geometrical fashion as illus-
trated in Fig. A2. .

For fluid transport issues we are really only inter-
ested in the kinematics of the £—n component of the
Poincaré map, that is, in motion in the physical space
of the fluid flow. We reconnect with this by considering
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Fic. Al. The separatrix structure of the steady flow in the enlarged
& — n — 6 space (cut-away, one-half view).

the manifestation of these separating surfaces in appro-
priately defined two-dimensional phase slices. A two-
dimensional phase slice of the / + 1 dimensional Poin-
caré section is defined as

x(8) = {(&,m., 6, 6,6 =6}. (A6)

Note that points on a phase slice are described by the
coordinates £— 7, which are the coordinates of the phys-
ical space of the fluid flow. Moreover, from (A5) we
have

P6<X(5 + Zﬂmf-)) = X<6 + 27(m + l)£> s
93] wy

(AT)

or, in other words, phase slices map to phase slices, but
with the defining phase of the original phase slice ad-
vanced by the phase vector 27 (w/w;). The I — 1 di-
mensional saddle-type tori, along with their / dimen-
sional stable and unstable manifolds, intersect each
phase slices in points and curves, respectively. How-
ever, their location with respect to the coordinates on
the phase slice (i.e., the physical space of the flow)
may vary from phase slice to phase slice.

In this way the theory accounts for the spatial vari-
ation of the saddle-points along with their stable and
unstable manifolds, as a result of the nonperiodic vari-
ability of the flow.

Now the strategy is much the same as it was in the
case for the standard two-dimensional Poincaré map.
On each phase slice we construct boundaries using seg-
ments of the stable and unstable manifolds of the tori.
Associated with each boundary we construct turnstiles
similar to the way that we did for the standard two-
dimensional Poincaré map. For the case of weak vari-
ability there is a generalization of Melnikov’s method
to the quasiperiodic situation, and this tool enables us
to carry out this program explicitly, as well as derive
approximate analytical formulas for fluxes and
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exchange rates. In the following we will not carry out
the geometrical construction of the ‘‘phase dependent’”
turnstiles explicitly. Instead, we will concentrate on de-
riving the approximate analytical formulas for fluxes
and exchange rates. The quasiperiodic Melnikov func-
tion is given by

+w

M(1y, 6, v, bi0) = f {&, 0"} (D). n"(D),

wt + wty + 6, wit + wity + b, v, 0)dt, (A8)

where (£"(¢), n"(¢)) is a trajectory of the unperturbed
problem connecting to saddle-type stagnation points,
{ ¢, @'} is the Poisson bracket of ¢ with ¢’ defined by

0p 0p'  O¢ 0¢'
an ot "’

and t, can be thought of as an arclength parameter
along the unperturbed separatrix. On a fixed phase slice
(i.e., for fixed ), the quasiperiodic Melnikov function
is a measure of the distance between the stable and
unstable manifolds measured along a line perpendicu-
lar to the unperturbed separatrix at the point parame-
terized by ¢, on the phase slice x(6) (&0 is the phase
that is fixed in defining the Poincaré section).

We now discuss transport due to quasiperiodic vari-
ability across the upper boundary of the jet between the
northern recirculation cell (R;) and the northern ret-
rograde regime (R,). Suppose at t = O the phases of
all the frequency components of the variability are
given by (4, 6,0), and consider a phase slice

X((‘i + 27m ﬂ) .
Wy

Let t(6 + 2mm(w/w;)) denote a simple zero of the
quasiperiodic Melnikov function restricted to this phase
slice that is the parameter value corresponding to our
chosen boundary intersection point on this phase slice.
Then the segments of the stable and unstable manifolds

(A9)

FiG. A2. The separatrix structure of the unsteady flow in the
enlarged £ — n — & space (cut-away, one-half view).
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‘‘beginning’’ on the intersection of the saddle points
and ending at this boundary intersection point form a
boundary. We label the regions on each sides of the
boundary by R, (6 + 2rm(w/w;)) and R, (8 + 2mm(w/
wy)), as shown in Fig.' A3 and Fig. A4.

This construction can be carried out on any phase
slice. So consider the phase slice

{

x(6 +2n(m + 1) 3)
‘ w
with the point

to(5 +2n(m + 1) ﬂ)
Wy

analogously defined. Then let 15 (8 + 2mm(w/w;)) de-

note the parameter corresponding to the preimage un-

der the Poincaré map P, of the point on

X(a +27(m + 1) -°i>

wy

parameterized by

to(5 +.27r(m + 1) E) .

Wy

From (A7), this point is on the phase slice x(§
+ 2mm(w/w;)). The lobes between the points parame-
terized by t5(6 + 2mm(w/w;)) and t5°(6 + 2mm(w/
wy)) form the turnstile lobes; see Fig. A2. Between
adjacent zeros the sign of the quasiperiodic Melnikov
function will be constant. Using this, combined with
the geometrical meaning of the Melnikov function as a

n
L
!

X(8+2nm%},)

S
—
IREALEN
N

Po(X(s+25m))=X (3+20(men)8)

FiG. A3. Boundaries and turnstiles in the enlarged £ — n — 6 space
(cut-away, one-half view).
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X(8+2um{%’)

R,(5+25(m+1)%')

R (8 42¢(men) §)

PE(X(8+2nm§%I))=X(8+21r(m+l)%,)

FiG. A4. Boundaries and turnstiles on subsequent phase slices.
Hatched lobes map to hatched lobes.

R,(8+Zumg-:)

la(& +2am

-] g
~

lo(a‘llm&)

4

\

signed distance measurement (see Wiggins 1992), we
can determine whether or not a lobe is in R,(é
+ 2mm(w/w;)) or Ry(6 + 2wm(w/w;)) on the phase
slice x(6 + 2rm(w/w;)). For V¢ having the direction
shown in Fig. 1 we have

M(t(), 6+ 2mm "Ui s 61())

wy

>0 = lobe in R1<5 + 27m i‘)—‘)

wy

<0 = lobe in R2<6 + 27m —“i> .

Wy

The instantaneous flux from R, (6 + 2rm(w/w;)) into
Ri(6 + 2m(m + 1)w/w,) is given by

Wi
- @, (m) = —
J( ) 27!'
g .
the area in R.»(é + 2mm -—-) that moves into
X w
w
Rj(tS + 2n(m + 1) ——) in one iterate
W

(A10)

Note that in general ®,,(m) # ®,,;(m) and that ®; ;,(m)
depends on 6. The instantaneous flux can be calculated
approximately from the quasiperiodic Melnikov func-
tion. Defining the positive and negative parts of the
Melnikov function as follows:

M* = max(M, 0)
M~ = —min(M, 0),
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we have

(1)1,2(m)

10( 8+ 2mm(w/wr)) w
f Mt (t0,6+271'm"_;610>dt0
t w

a(l§+27rm(w/w,)) 1

=€

+ 0(e?). (All)

Here ®,,(m) can be calculated from (A11) by replac-
ing M™ with M~ in the expression. Finite-time average
flux is defined as

Z @i,j(m),

m=0

1
(ijdn = ==

= Al2
n+1 ( )

where, also, in general, (®,,), # ($,,), and (P, ;), de-
pend on 6. Finally, the infinite-time average flux is
given by

i ®12(m).  (A13)

m=0

(12) = (D) = }Ll_l:g 7+ 1
Thus, for a given boundary there are five different
fluxes associated with the boundary.

Flux formulas for transport between any two adja-
cent regions are computed in exactly the same way. The
only difference is that the quasiperiodic Melnikov func-
tion used in the formulas is computed along the unper-
turbed separatrix that is the boundary between the
regions.

For the case of time-periodic variability 6 = 0, that
is, there are no phase slices on the Poincaré section (or,
alternatively, the Poincaré section is the phase slice,
and it is mapped back into itself by the Poincaré map).
In this situation it is easy to show that ®,,(m)
= &, ,(n) for all n, m from which it follows that

‘1’1,2(") = ‘1)2,1(71) = (‘I)m)n = <q)2,l>n = (q)l,z) = <‘1)2,1>-

This is another indication that transport and exchange
for quasiperiodic variability may be very different than
for the case of periodic variability.

APPENDIX B

The Form of the Quasiperiodic Melnikov Functions
for the Three Different Types of Variability

In this appendix we derive the form of the quasiperi-
odic Melnikov functions for the three different types of
variability discussed earlier.

a. Quasiperiodically time-varying meander amplitude

For this streamfunction the guasiperiodic Melnikov
functions can now be computed. Using (A8), (A9),
and some trigonometric identities we obtain
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-1

M(7q, 8, b0) = Z v:iAi(w:) cos(w;To + ;)

i=1

-1
+ 3 ¥iAs(w;) sin(w;To + 6;)

i=1
-1
+ Z ')/,‘BI(UJ,') COS(L‘),‘T() + (S,)
i=1
I~1
+ X YiBay(w;) sin(wito + &) + vA (W)
i=]1

X COS((A)ITQ + 610) + 'y,Az(wl) Sin(w,’ro -+ 610)
+ yiB(wr) cos(wiTg + b10)

+ v By(w;) sin(w;mo + 80), (B1)
where
A(w;) = f (g—? 8(33B> cosw;tdT
Ay(w) = —f (%23 BigB) sinw; TdT
Bi(w) = -f (g% 8?(?3) cosw;TdT

_ [ (9¢ 0¢
Bolwi) = f_w (an 9€0B

The form of the quasiperiodic Melnikov function can
be simplified as follows:

) sinw; rdT. (B2)

-1
M(7g, 6, 6:0) = X, viMo(w;) cos(w;Tg + 6 — a;)

i=1

+ viMo(w)) cos(w;o + 6o — @), (B3)
where
Mo(w;)
= V(A (w;) + Bi(w))? + (Ax(w;) + By(wi))?
(B4)
and
_ -1 Ay(wi) + By(wi)
o = o (Alw,-) T Bl(w) (B3)

For studying exchange between the northern recircu-
lation cell (R,) and the northern retrograde region (R, ),
the integrands in (B2) are evaluated along the unper-
turbed separatrix that is the boundary between these
regions, and in studying exchange between the jet core
(R3) and the northern recirculation cell (R,) the inte-
grands in (B2) are evaluated along the unperturbed
separatrix that is the boundary between these regions.
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We do not believe that (B2) can be computed analyt-
ically for this problem; however, they can be computed
very easily via numerical integration. With the Melni-
kov function in hand, the approximate exchange rates
can be calculated using the flux formulas given in
(Al1), (Al12), and (A13).

b. A superimposed quasiperiodically time-varying
spatially uniform meridional flow

From the same calculations as above, the quasiperi-
odic Melnikov function for this variability has the form

-1

M(7o, 6, 6i0) = 3, viMo(w;) cos(w;To + 6 — a;)
i=1 .

+ yiMo(w;) cos{wiTo + 60 — ay), (B6)

where

My(w;) = VCi(w;)? + Colw;)?
—1 CZ(wi)
fan (Cl(wi)>

J‘ *> O¢
- — cosw;TdT
- 07

+00

Il

Qa;
Ci(w;) =

G(w;) = —f ?9_7; sinw; 7dT.

The coefficients C;(w; ) and C,(w; ) are evaluated along
the unperturbed separatrices that are appropriate for the
exchange problem being considered. As in the previous
case, the amplitudes of the Melnikov functions can eas-
ily be computed numerically, and the resulting Melni-
kov functions can then be used to compute the approx-
imate exchange rates using the flux formulas given in
(A11), (Al2), and (A13).

¢. A superimposed propagating wave train

From the same calculations as in the previous two
cases, the quasiperiodic Melnikov function for this
variability has the form
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-1

M(Tg, 6, 60) = Z viMo(w;) cos(pic,To — 6 — ay)
i=1
+ yiMo(w) cos(p,c, T — o — @), (B7)
where
Mo(w;) = VD, (w;)? + Dy(w;)?
1 D> (w;)
a; = tan~! ——==
Dy (w;)
“+® a .
Di(w;) = f—w %Sln(Pi(g - Cpﬁ))
0
Dy(w;) = ——f —agzcos(p,»(g = CpT)).
~0 OT]

As before, the coefficients D, (w; ) and D,(w;) are eval-
uated along the unperturbed separatrices that are ap-
propriate for the exchange problem being considered.
As in the previous cases, the amplitudes of the Melni-
kov functions can easily be computed numerically, and
the resulting Melnikov functions can then be used to
compute the approximate exchange rates using the flux
formulas given in (A11), (A12), and (A13).
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