J. of Shanghai Teachers Univ. (Natural Sciences)

Graded Prime Ranks and Graded Antisimple Radicals of Rings Graded by Finite groups

Yu Yaoming

Abstract Let R be graded by a finite group G. Our main purpose is to see whether a graded ring with a certain property has a similar property when regarded as being without grading. First, we prove the incomparability: Let $P \subsetneq Q$ be ideals of $R \# G^*$ with P being prime, then $P \cap R \subsetneq Q \cap P$. As its application, we show that the graded prime rank of R is equal to the prime rank of R. Then, we prove that if $|G|^{-1} \in R$, then the graded antisimple radical of R is equal to the antisimple radical of R.

Key words (graded) essential modules; (graded) prime ranks; (graded) antisimple radicals

0 Introduction

Throughout the paper, all rings are associative rings with an identity, and all modules are right modules. R will denote a graded ring of type G, where G is a finite group.

For a G-graded ring R, there exists the extension ring $R \# G^*$ of R with the same identity 1, which is called the smash product. The ring is a free left and right R- module with basis $\{p_x:x\in G\}$ such that $\sum_{x\in G}p_x=1$ is a decomposition of 1 into orthogonal idempotent. Its multiplication is given by defining $(ap_y)(bp_h)=ab_{yh^{-1}}p_h$, where $a,b\in R$, $g,h\in G$. The group G acts as automorphisms on $R\# G^*$ by defining $(ap_x)^y=ap_{xy}$, where $a\in R$, x, $y\in G$. If Y is a $R\# G^*$ -module, it becomes a graded R- module by defining $Y_g=Y_g$ - Y_g

Received: 1995-08-18

Author Yu Yaoming, Male, Lecturer, Department of Mathematics, Shanghai Teachers' College, Shanghai, 200023

1 Graded prime ranks of graded rings

Recall that a (graded) submodule N of a (graded) module M is said to be (graded) essential in M if N intersects all nonzero (graded) submodules of M non-trivially. By [1, Lemma 2.3], it is easy to obtain that N is graded essential in M as graded R- modules if and only if N is essential in M as $R \# G^*$ - modules.

Theorem 1 Let $P \subseteq Q$ be ideals of $R \# G^*$ with P being prime. Then $P \cap R \subseteq Q \cap R$.

Proof It is easy to see that Q/P is essential in $R \# G^*/P$ as $R \# G^*$ —modules since P is a prime ideal of $R \# G^*$, and hence it is graded essential as graded R- modules.

Since R + P/P is a graded submodule of $R \# G^* / P$ as graded R-modules, it is easy to see that $0 \neq Q/P \cap R + P/P = Q \cap R + P/P \cong Q \cap R/P \cap R$. Therefore we obtain that $P \cap R \subseteq Q \cap R$.

Recall that for any ring S, the prime rank is the largest integer n such that S has a chain of prime ideals $P_0 \nsubseteq P_1 \subsetneq P_2 \cdots \subsetneq P_n$; if no such maximum exists, the prime rank of S is infinite. If R is a graded ring, the graded prime rank is defined analogously using graded prime ideals instead of prime ideals.

Theorem 2 Let R be a graded ring by a finite group G. Then the prime rank of $R \# G^*$ is equal to the graded prime rank of R.

Proof Assume that there exists a chain

$$Q_0 \subseteq Q_1 \subseteq Q_2 \subseteq \cdots \subseteq Q_n$$

of prime ideals of $R \# G^*$. By Theorem 1, we have that

$$Q_0 \cap R \subsetneq Q_1 \cap R \subsetneq Q_2 \cap R \subsetneq \cdots \subsetneq Q_n \cap R$$
.

By [1, Theorems 6.2 and 6.3], each $Q_i \cap R$ is a graded prime ideal of R where $i = 0, 1, \dots, n$. Hence we obtain that the prime rank of $R \# G^*$ is at most equal to the graded prime rank of R.

For the converse, assume that there exists a chain

$$P_0 \subsetneq P_1 \subsetneq P_2 \subsetneq \cdots \subsetneq P_n$$

of graded prime ideals of R. Then it is obvious that

$$P_0 \# G^* \subseteq P_1 \# G^* \subseteq P_2 \# G^* \subseteq \cdots \subseteq P_n \# G^*$$

is a chain of ideals of $R \# G^*$. By [1, Theorem 6.2], $P_i \# G^* = \bigcap_{g \in G} Q_i^g$, where $i = 0, 1, \dots, n$; and each Q_i^g is a prime ideal of $R \# G^*$.

Now fix $i(i \neq 0)$. If Q_i is given, then, since $Q_i \supseteq \bigcap_{g \in G} Q_i^g = P_i \# G^* \supseteq P_{i-1} \# G^* = \bigcap_{g \in G} Q_{i-1}^g$, there exists some $g \in G$ such that $Q_i \supseteq Q_{i-1}^g$ by the primeness of Q_i . Thus $Q_i \supseteq Q_{i-1}^g$ since $P_i \neq P_{i-1}$. For convenience, use Q_{i-1} instead of Q_{i-1}^g . Thus by successively choosing $Q_s, Q_{s-1}, \cdots, Q_1, Q_0$, we obtain the chain of prime ideals of $R \# G^*$:

$$Q_0 \subseteq Q_1 \subseteq Q_2 \subseteq \cdots \subseteq Q_n$$
.

Hence we have that the graded prime rank of R is at most equal to the prime rank of $R \# G^*$.

Therefore the two ranks must be equal.

Corollary 1 Let R be graded by a finite group G. Then the graded prime rank of R is equal to the prime rank of R and is at most equal to the prime rank of R_c .

Proof Obviously, the prime rank of $M_*(R)$ is equal to the prime rank of R.

By [1, Theorem 3.5], that is, $(R \# G^*) * G \cong M_n(R)$, and [2, Theorem 4.7], we obtain that the prime rank of R is equal to the prime rank of $R \# G^*$. Thus we have that the graded prime rank of R is equal to the prime rank of R by Theorem 2.

We know that $p_e R \# G^* p_e \cong R_e$, Thus, by [2, Theorem 4.7], there exists a ono-to-one correspondence between $\operatorname{Spec}_{p_e}(R \# G^*)$ and $\operatorname{Spec}(R_e)$, preserving inclusions. Hence the prime rank of $R \# G^*$ is at most equal to the prime rank of R_e . By Theorem 2, the graded prime rank of R_e is at most equal to the prime rank of R_e .

2 Graded antisimple radicals of graded rings

For any ring A, $H(A) = \bigcap \{I : I \text{ is a nonzero ideal of } A\}$ is the heart of A. If R is a graded ring, $H_G(R) = \bigcap \{I : I \text{ is a nonzero graded ideal of } R\}$ is the graded heart of R:

Let C be the class of prime rings with a nnzero heart. Obviously, if $A \in C$, then A satisfies the minimum condition for ideals. Let $\bigcap \{I:I \text{ is an ideal of } A \text{ such that } A/I \in C\}$ be denoted by S(A). If A has no image in C, then we write S(A) = A. The radical S decided by C is called antisimple^[7]. Analogously we define a graded antisimple radical S_a , that is, for a graded ring R, $S_a(R) = \bigcap \{I: I \text{ is a graded ideal of } R \text{ such that } R/I \in C_a\}$ where C_a is the class of graded prime rings with a nonzero graded heart.

Lemma If $R \# G^*/P \in C$, then $R \# G^*/P^g \in C$, for all $g \in G$.

Proof Obviously P is a prime ideal of $R \# G^*$. So it is easy to see that each P^g is a prime ideal of $R \# G^*$, where $g \in G$.

Assume that $R \# G^*/P$ has a nonzero heart H/P. Thus H^g/P^g is a nonzero ideal of $R \# G^*/P^g$. If W is an ideal of $R \# G^*$ such that $P^g \subset W \subsetneq H^g$, then $P \subset W^{g^{-1}} \subsetneq H$. Thus $W^{g^{-1}} \subset P$ and so $W \subset P^g$. Hence H^g/P^g is a nonzero heart of $R \# G^*/P^g$. Consequently, $R \# G^*/P^g \in C$.

Theorem 3 Let R be graded by a finite group G. Then

$$S_{q}(R) \# G^{*} = S(R \# G^{*}).$$

Proof Let P be a prime ideal of $R \# G^*$. Thus $P \cap R$ is a graded prime ideal of R. Suppose that $P \cap R = 0$, that is, R is graded prime.

Assume that $R \# G^*/P \in C$. Then $R \# G^*/P^g \in C$, for all $g \in G$ by the Lemma. So $R \# G^*/P^g$ satisfies the minimum condition for ideals, where $g \in G$. Since $P \cap R = 0$, $\bigcap_{g \in G} P^g = 0$. By [8], we obtain that $R \# G^*$ satisfies the minimum condition for ideals. Hence R satisfies the minimum condition for graded ideals.

Since R is graded prime, it has a uniquely minimal graded ideal. So $R \in C_a$. Therefore $S_a(R) \# G^* \subset S(R \# G^*)$. On the other hand, let Q be a graded prime ideal of R such that $H_G(R/Q) = H/Q \neq 0$, where H is a graded ideal of R. By [1, Theorem 6.2], there exists a prime ideal P of $R \# G^*$ such that $P \cap R = Q$. We will show that $H \# G^* + P/P$ is the heart of $R \# G^*/P$ non-trivially.

Obviously, $H \# G^* + P/P$ is a nonzero ideal of $R \# G^*/P$. If L is an ideal of $R \# G^*$ such that $P \subsetneq L$, then $Q = P \cap R \subsetneq L \cap R$ by Theorem 1. Thus $L \cap R \supset H$ and so $L/P \supset H \# G^* + P/P$. Hence $R \# G^*/P \in C$ and so $R \# G^*/P^g \in C$, for all $g \in G$. Since $Q \# G^* = \bigcap_{g \in G} P^g \supset S(R \# G^*)$, we obtain that $S_G(R) \# G^* \supset S(R \# G^*)$.

Corollary 2 Let R be graded by a finite group G. Then

- (1) $S_a(R) \subset S(R)$, and furthermore, $S_a(R) \subset S(R)_a$;
- (2) $S_G(R) \cap R_e = S(R_e)$;
- (3) if the grading is strong, then $S_G(R) = RS(R_*) = S(R_*)R_*$.

Proof (1) Since the skew group ring A * G is a normalizing extension of the ring A, we have that $S(R \# G^*) * G \subset S((R \# G^*) * G)$ by [3, Proposition 3. 3 and examples 3. 6].

We see that $M_n(S_G(R)) \cong (S_G(R) \# G^*) * G = S(R \# G^*) * G \subset S((R \# G^*) * G) \cong S(M_n(R)) = M_n(S(R))$. Therefore $S_G(R) \subset S(R)$.

Since $S(R)_G$ is the largest graded ideal of R contained in S(R), we obtain that $S_G(R) \subset S(R)_G$.

(2) By [1, Corollary 1.5] and [4, Proposition 4 and Theorem 5], $S(R_e)p_e = S(R_ep_e) = p_eS(R \# G^*)p_e = p_e(S_G(R) \# G^*)p_e = S_G(R)p_e = (S_G(R) \cap R_e)p_e$. Thus $S(R_e) = S_G(R) \cap R_e$.

(3) Since R is strongly graded, the result follows by (2) and [6, Corollary I. 3. 8].

Theorem 4 Let R be graded by a finite group G. Then $S_G(R) = S(R)_G$.

Proof Assume that Q is a graded prime ideal of R such that $H_c(R/Q) = H/Q \neq 0$, where H is a graded ideal of R. By [1, the proof of Lemma 5.1], there exists a prime ideal P of R which is maximal with respect to the property $P_c = Q$.

Obviously, II + P/P is a nonzero ideal of R/P. If J is an ideal of R such that $R \subsetneq J$, then $Q = P_a \subsetneq J_a$ by the maximum of P with respect to the property $P_a = Q$. Thus $J_a \supset H$ and so $J/P \supset II + P/P$. Hence $R/P \in C$. So $P \supset S(R)$, and $Q = P_a \supset S(R)_a$. Consequently, $S_a(R) \supset S(R)_a$.

On the other hand, by Corollary 2(1), $S_a(R) \subset S(R)_a$.

Therefore $S_a(R) = S(R)_a$.

Theorem 5 Let R be graded by a finite group G and $|G|^{-1} \in R$. Then $S_G(R) = S(R)$.

Proof Assume that $R \in C_a$. By [1, Theorem 6.3], we have that $0 = P_1 \cap P_2 \cap \cdots \cap P_k$, $k \leq |G|$ and that each P_i is a minimal prime ideal of R over the graded prime $0, i = 1, 2, \cdots, k$, when $|G|^{-1} \in R$. We will show that $R/P_i \in C$ for all i.

Let H be the nonzero graded heart of R. Then $H + P_i/P_i$ is a nonzero ideal of R/P_i . If I is an ideal of R such that $I \supseteq P_i$, then $I_a \neq 0$ by [3, Corollary 6.6]. Thus $I_a \supset H$ and so $I/P_i \supset H + P_i/P_i$. Hence $H + P_i/P_i$ is the nonzero heart of R/P_i . Consequently, $R/P_i \in C$.

Therefore $P_i \supset S(R)$, for all i. We see that $S(R) \subset \bigcap_{i=1}^k P_i = 0$.

Consequently we obtain that $S_G(R) \supset S(R)$. Hence the result follows by Corollary 2(1). Corollary 3 Let A be a ring and $|G|^{-1} \in A$. Then S(A) * G = S(A * G).

Proof Since the skew group ring A * G is a graded ring of type G by defining $(A * G)_g = Ag$, we have that $S(A) * G = S_G(A * G)$ by Corollary 2(3). Therefore the result follows by Theorem 5.

References

- 1 Cohen M, Montgomery S. Group graded rings, smash products and group actions. Trans Amer Math Soc, 1984, 282; 237~258
- 2 Lorenz M, Passman D S. Prime ideals in crossed products of finite groups. Israel J Math, 1978, 33: 105~
- 3 Nastasescu C. Group rings of graded ring: Applications. J Pure Appl Alg., 1984, 33: 313~335
- 4 Nicholson W K, Watters J F. Normal radicals and normal classes of rings. J Alg, 1979, 59: 5~15
- 5 Stewart P N. Properties of normalizing extensions and fixed rings. Comm Alg, 1984, 12: 1067~1098
- 6 Nastasescu C, Oystaeyen F V. Graded ring theory. North-Holland Amsterdam, 1982
- 7 Szasz F A. Radicals of rings. Chichester New York Brisbane Toronto, 1981; 74
- 8 谢邦杰.抽象代数学.上海:上海科学技术出版社,1982:469

分次环的分次素秩和分次反单根

俞 耀 明 (上海师范高等专科学校)

提 要 研究对于具有某种性质的 G- 分次环 R(G 是有限群),当不考虑分次时,是否具有类似的性质.为此,首先证明了不相容性,即若 $P \subsetneq Q$ 是 R + G* 的两个理想且 P 是素的,则 $P \cap R \subsetneq Q \cap P$. 作为它的应用,证得分次环的分次素秩与素秩是相等的,其次,得到当 $|G|^{-1} \in R$ 时, R 的分次反单根与反单根是一致的.

关键词 (分次)本质模;(分次)素秩;(分次)反单根 中**图法分类**号 O153.3