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ABSTRACT

A two-dimensional numerical model of the shallow-water equations, with a modified Orlanski-type radiation
boundary condition, is applied to study storm surges and tides on the North Queensland coast. The numerical
simulations show that with the tides included in the storm surge model the sea level elevation is generally lower
than if we simply add the astronomical tides to the surge. This has been previously observed and has been
comimnonly explaincd as a nonlincar interaction between the storm surge and the tides. The authors demonstrate
that this cffect is due to the quadratic bottom friction law. Analysis of the important dynamical processes yields
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a simple rule to estimate the total sea level due to the combined effects of a storm surge and tide.

1. Introduction

Numerical modeling of the circulation in the coastal
ocean is now well developed and has been applied to
the study of tides, currents, and wind-driven events,
such as storm surges, in shallow coastal seas (Prandle
and Wolf 1978; Fandry 1981; Heaps 1983; Johns et al.
1985; Proctor and Wolf 1990; O’Connor 1991; Davies
and Jones 1992; Verboom et al. 1992; Flather 1994;
Das 1994). Most attention has been paid to the mod-
eling of individual processes, such as tides alone, or the
storm surge generated by a tropical cyclone, and com-
paratively little is known about the dynamical interac-
tions when two, or more, processes can occur together.
Further, usually those studies that do simulate storm
surges in the presence of tides do not attempt a detailed
analysig of these dynamical interactions (notable ex-
ceptions are Prandle and Wolf 1978; Heaps 1983;
Johns et al. 1985; Proctor and Wolf 1990; Das 1994),
Here we are concerned with thc numerical simulation
of storm surges and tides simultaneously and an ex-
amination of the dynamical causes of the interaction
between them. Our study is motivated by the situation
in the Mackay region of the North Queensland coast
(NQC), which while being prone to storm surges gen-
crated by tropical cyclones (Whittingham 1958) is also
a region of high tides (Middleton et al. 1984; Andrews
and Bode 1988).

A simple approach to predicting the total coastal sea
level might be to numerically calculate the storm surge
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alone, due to a specified tropical cyclone forcing, and
then to linearly superpose on this the astronomical tide,
as obtained from tide tables or predicted from a sepa-
rate numerical calculation. It is widely known, how-
ever, that such a linear superposition is not strictly cor-
rect due to nonlinear interactions between the storm
surge and tide and tends to usually overestimate the
total coastal sea level elevation (e.g., Prandle and Wolf
1978; Heaps 1983; Johns et al. 1985; Proctor and Wolf
1990; Das 1994). We are not aware of any studies
(other than those noted below ) that probe the cause of
this nonlinear interaction and the consequences. Hence,
it is our purpose here to provide such a study by nu-
merical simulations of storm surges and tides in the
Mackay region of NQC. We will demonstrate that the
nonlinear interaction between a typical storm surge and
the tide is predominantly due to the quadratic bottom
friction law and is not due to the nonlinear advection
terms in the momentum equations or to the nonlinear
terms in the equation for the conservation of mass. Fur-
ther, this interaction generally tends to reduce the sea
level below that due to the superposition of the astro-
nomical tide on the storm surge. The dynamical reasons
for the above reduction are investigated, culminating
in a simple dimensional argument that gives a nonlinear
rule for adding the astronomical tide to the storm surge.
We note that Prandle and Wolf (1978) (see also Heaps
1983) in a one-dimensional numerical model of the
storm surge and tide interaction in the Thames estuary
identified the quadratic bottom friction as the principal
interaction mechanism, but their analysis method dif-
fers from ours and they did not obtain the simple di-
mensional explanation that we will provide. Also, Proc-
tor and Wolf (1990) carried out an energy budget anal-
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ysis in a hindcast of a North Sea storm surge and also
identified quadratic bottom friction as the principle in-
teraction mechanism, but again they did not obtain our
explanation.

Numerical models for storm surges, and/or tides,
have included both two- and three-dimensional models.
Both two-dimensional and three-dimensional models
use the shallow-water equations with wind stress driv-
ing terms and tidal forcing at the open ocean bound-
aries. Two-dimensional models often parametrize bot-
tom friction as a quadratic function of the vertically
averaged current, although there are various techniques
available to modify this and provide a closer relation
with the frictional parametrization of three-dimensional
models (e.g., Davies and Jones 1993). Three-dimen-
sional models usually consider homogeneous fluids but
allow for frictionally induced vertically sheared cur-
rents that have the potential to enable a more sophis-
ticated estimation of bottom stress ( Blumberg and Mel-
lor 1987). Here, however, we use a conventional two-
dimensional mode] since our main concern is with the
prediction of the coastal sea level, and it is well known
that two-dimensional models are adequate for the cal-
culation of the sea level elevation and the depth-aver-
aged currents (Proctor and Flather 1989; O’Connor
1991; Das 1994). Further, although it is possible that
more sophisticated frictional parametrizations than the
one we use [see (2.8)] could lead to some difference
in detail to our results, we contend that the simplicity
of our dimensional argument points to the robust nature
of our general conclusions.

In section 2 we describe the formulation of the gov-
erning equations and our numerical scheme. The trop-
ical cyclone wind stress forcing and the tidal forcing at
the models open boundaries are described in section 3.
In section 4 we present numerical results. A discussion
of the dynamics underlying our numerical results and
a simple dimensional argument follow in section 5.

2. Governing equations and numerical scheme

In standard notation, the two-dimensional barotropic
shallow water equations are

Tw T8 Py
+ uu, + —fu+ =—— - (2.1
u, + uu, +vu, — fo + gg, oH oH (2.1)
) )
T T P
v,+uvx+vvy+fu+gCy=p—;_VI—p—;I-——-Al (2.2)
& + (Hu), + (Hv), = 0, (2.3)

where H = h + {, h(x, y) is the undisturbed water
depth, { is the surface elevation, (u, v) are the velocity
components in the alongshelf (x) and cross-shelf (y)
directions, fis the Coriolis parameter, g is gravitational
acceleration, p is water density, T(vf,’y > are the wind stress
components, 75 are the bottom stress components,
and P, is the atmospheric pressure. The wind stress

7% is specified in section 3.
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The tidal forcing is specified at the open boundaries.
Let {; be the tidal component at the boundaries, which
is the sum of the four major tidal constituents (M,, S,,
K,, O,) and is discussed further in section 3. Denote
{ as the difference between the sea level { and the tidal
component, so that { = { — {;. At the open boundaries
we apply a suitable radiation condition to {. Here we
use a modified Orlanski radiation condition (Tang and
Grimshaw 1996a) suitable for storm surge simulations.
Thus, if {3 is the value of { at the nth time step and
the boundary point B, then

5= G + (85— T, (24)
where the value of s in (2.4) is given by
§, if 0<s§<1
s=1{1, if |§] =1 (2.5)
0, if -1<§=<0
and § is determined implicitly by
“n n—1
e L

The second and third conditions in (2.5) are imposed
to satisfy stability.

If the coastal boundary is treated as a rigid wall, then
the boundary condition is

hu, = 0, (2.7)

where u, is the velocity component normal to the
boundary. An alternative, which is used here, is to im-
pose sufficiently large friction over the land region to
reduce the velocity field there to zero. This has the ad-
vantage of allowing us to use a rectangular grid and
perhaps allowing some water to cross the initial land -
sea boundary. It is a particularly useful device here,
when the coastline is very irregular, as the representa-
tion of an irregular coastline by a rectangular grid can
cause numerical difficulties (Das 1994). The inunda-
tion aspect of our land—sea boundary condition is cur-
rently under investigation. But since this is not of im-
mediate concern here, we shall not discuss it further.
The usual quadratic law is used for bottom friction,

757 = Cpg(u, v), (2.8)

where ¢ = yu? + v?, and we choose Cp = 2.0 X 1073,
For purposes of comparison, we also consider the linear
bottom friction law

75" = a(u,v),

(2.9)

where @ = 1.2 X 107! cm s™! (e.g., Csanady 1984).
The numerical model for the discretized equations is
described in Tang et al. (1990a,b) and Tang (1994).
Here, for convenience, we give a brief outline of the
scheme. The discretized variables are evaluated on an
Arakawa B-grid where { is evaluated at the grid points
and u, v are evaluated at the center of each grid. To
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step forward in time the momentum equations are first
rewritten in the form

o, +ifQ=F, (2.10)

where Q = H(u + iv) is the complex depth-integrated
transport variable, and F is a combination of the non-
linear terms, the pressure gradient, and the forcing
term. Integration of (2.10) from ¢ — At to ¢t and use of
the trapezoidal rule of integration gives

O(r) = O(t — Ar)e ™™
+ % (F(1) + F(t — An)e ™). (2.11)

The nonlinear terms in F are put in conservation form
and are then discretized by applying Green’s integral
formula to each grid. We then use the ‘‘splitting cur-
rent”” method of Tang et al. (1990a,b; see also Tang
1994) to rearrange (2.11) into the form

0=-AL +il) - (S+il), (2.12)

where at the time step #, the real variables A, S, and T
are known in terms of Q at time ¢ — Ar and other terms,
including the nonlinear terms and the tropical cyclone
forcing terms. Substitution of (2.12) in (2.3) then gives

€ = (AL): + (AL), + S, + T,. (2.13)

After incorporating the boundary conditions, (2.13) is
integrated forward in time using a Crank—Nicholson
scheme.

3. Atmospheric and tidal forcing
a. Atmospheric forcing

The expressions given by Holland (1980) are used
to model the wind and atmospheric pressure profile for
a tropical cyclone. The atmospheric pressure P, at ra-
dius r from the cyclone center is

Py=P.+ (P, — P)expl—(r./r)’1, (3.1)

where P, is the cyclone center pressure, P, is the en-
vironmental pressure, r,, is the radius of the maximum
winds, and b is defined by

b=15+ (980 — P,)/120, (3.2)

which provides a scaling on the profile shape.
The symmetric, gradient-level azimuthal wind com-
ponent at radius r is

v = {b(r,/r)*(P, — P.) exp[—(r./1)"1/ pa

+ P2 f24)'2 — r|f1/2, (3.3)

where p, is the air density. A first-order asymmetry of
the wind field is formed by adding the cyclone trans-
lation speed to the symmetric wind field and rotating
the resulting velocity field so that the maximum wind
is 70° to the left of the direction of the cyclone motion.
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Tropical cyclones have a radial inflow that is con-
structed by rotating the symmetric wind to a constant
inflow angle of 25° outside the radius of the maximum
wind. The surface wind is then derived using a constant
reduction factor of 0.7 (Hubbert et al. 1991).

The wind stresses are obtained from the wind veloc-
ity (U, V) by using the quadratic drag law_

(x.y)

Tw = CdpaW(U, V)s (34)
where W = yU? + V? is wind speed and ¢, is the drag
coefficient. Following Smith and Banke (1975), the
drag coefficient is

cqs = (0.63 + 0.066W) x 1073 (3.5)
if the wind speed W is less than 25 m s ™' and
c;=[2.28 + 0.033(W—25)] X107 (3.6)

if the wind speed W is above 25 m s ™' (Frank 1984).

b. Tidal forcing

The tides of NQC have attracted much attention
lately (e.g., Andrews and Bode 1988), but the lack of
good quality offshore tidal data has made it difficult to
construct good cotidal charts. Nevertheless, the overall
structure of the tides in this region is clear. In general
there seems to be a dominant semidiurnal tide at the
coast, with constituent M, . Here we use the four major
tidal constituents (M,, S,, K;, O,), which cover 80%
of the tidal amplitude in NQC. Each tidal constituent
L. (n =1, 2, 3, 4) at a given boundary point is ex-
pressed as a time series,

L, = {ycos(ot — @). (3.7)

Here §, and ¢ are the amplitude and the phase lag of
the corresponding tidal constituent, provided by Aus-
tralian National Tidal Facility on a grid with a spacing
of 0.25°, and interpolated onto our grid with a spacing
of 0.1°.

4. Numerical results

First, we consider a simulation using only tidal forc-
ing at the open boundaries with quadratic bottom fric-
tion (2.8). The results (not shown here in full) are
considered only after sufficient time for the tides to
equilibrate to a periodic solution. In Fig. 2a we show
the contours of surface elevations at ¢ = 24 h. The time
series of the surface elevation at some selected loca-
tions (Fig. 3a) show that the tides in NQC are mainly
semidiurnal. Around Mackay the tidal range reaches 5
m, but in Townsville it is only 3 m. There is a 2-4 h
phase difference between Mackay and Townsville.
This agrees with the data published in the Australian
National Tide Tables (1994). The tidal current is
mainly in the cross-shelf direction in the top and center
part of the domain, with some flow across the lower
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Rwnsville

FIG. 1. The computational domain for the north Queensland coast.
The region shown is 600 km X 1000 km, and depth contours are in
meters.

boundary. The maximum current is offshore from the
Mackay region. :

The parameter settings for the tropical cyclone
model are P, = 1005 hPa, P, = 850 hPa, and r,, = 50
km; these are typical values for this region (Lourensz
1981). The cyclone travels southward parallel to the
coast with a speed of 20 km h™' and is centered near
the shallow water. The cyclone starts in the north and
its intensity is ramped up over a 3-h period and sub-
sequently ramped down before it crosses the southern
boundary of the model domain. Figure 2b shows the
cyclone wind stress field at ¢ = 24 h. Forcing the model
with only the cyclone wind stress and pressure results
in a storm surge with surface elevations at ¢t = 24 h
plotted in Fig. 2c. But a simulation with both cyclone
and tidal forcing combined gives the sea surface ele-
vations, again at ¢ = 24 h, plotted in Fig. 2d. Note that
in this latter simulation we first establish the tide before
introducing the tropical cyclone forcing. As in the pure
tidal simulation, we use quadratic bottom friction (2.8)
for both the surge and surge plus tide simulations.

To compare these results from the three simulations
above we plot time series of the sea level elevation at
four locations in Fig. 3. Three of these locations are
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near Mackay and one near Townsville, as plotted in
Fig. 1. In Figs. 3a and 3b we show the sea level ele-
vations for the tides and the storm surge alone respec-
tively. The sea levels are much lower (up to 40% dif-
ference in the peak elevations) when the model is
forced by the cyclone and the tide combined (Fig. 3¢)
than if we simply add the sea levels obtained from two
simulations forced independently by cyclone and tide
(Fig. 3d). The residual difference between the sea level
elevations in Figs. 3c and 3d is shown in Fig. 3e.

This phenomenon, demonstrated by the residuals
plotted in Fig. 3e, has been observed by many research-
ers (e.g., Prandle and Wolf 1978; Johns et al. 1985;
Das 1994) and has been explained as a nonlinear in-

(®)

(d)

FiG. 2. Numerical results at r = 24 h. (a) Contour plots of sea level
elevation produced by tidal forcing alone with contour intervals of
50 cm, (b) tropical cyclone forcing with maximum wind stress forc-
ing of 380 dyn cm™2, (c) contour plots of sea level elevation produced
by tropical cyclone forcing alone with contour intervais of 50 cm,
and (d) contour plots of sea level elevation produced by tropical
cyclone forcing and tidal forcing combined with contour intervals of
50 cm.
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Fi1G. 3. (a) Sea level elevation (in ¢cm) in three locations near Mackay and Townsville (as shown
in Fig. 1) produced by tidal forcing alone, with quadratic bottom friction law. (b) As in (a) but
produced by tropical cyclone forcing alone.
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FiG. 3. (Continued) (e) As in (a) but the residual of (d) and (c).

teraction between the storm surge and the tide. To de-
termine the origin of this nonlinear interaction, we next
simulated the response when we omit all the nonlinear
terms on the left-hand side in the equations of motion
(2.1) to (2.3) and replace the total depth H by the un-
disturbed depth % on the right-hand side, but (signifi-
cantly) retain the quadratic bottom friction law. The
result is shown in Fig. 4, which shows the residual,
being the counterpart of Fig. 3e. There is no substantial
meaningful difference between these figures. Hence the
nonlinear interaction between the storm surge and the
tides is due to the quadratic bottom friction law. To
reinforce this interpretation, we note that the response
to either tidal forcing alone or to tropical cyclone forc-
ing alone, with the nonlinear terms on the left-hand side
in the equations of motion again omitted (these results
are not shown here), is the same as those shown in
Figs. 3a and 3b respectively, thus confirming that these
nonlinear terms are not significant for either forcing
component or for the combined forcing.

Next, with the nonlinear terms on the left-hand side
of the equations of motion again omitted and the total
depth H replaced by the undisturbed depth /# on the
right-hand side, we replaced the quadratic bottom fric-
tion (2.8) with the linear friction law (2.9) and re-
peated the above sequence of simulations. The results
(see Fig. 5, for the residual) now show that, as ex-
pected, the response to a combination of tidal and trop-

4

ical cyclone forcing is just the linear sum of the re-
sponse to each forcing component separately.

The conclusion from this sequence of simulations is
clear: the nonlinear interaction between the storm surge
and the tide is due to the quadratic bottom friction law.
The nonlinear advection terms in the momentum equa-
tions and the nonlinear terms in the equation for con-
servation of mass play an insignificant role, consistent
with the scaling analysis of Welander (1961). More-
over, the effect of this nonlinear interaction is to reduce
the coastal sea level below that obtained by linearly
adding the astronomical tide to the storm surge simu-
lation alone. Of course, we have here presented just a
single parameter setting, and hence the sequence of
simulations was repeated for different parameter set-
tings, as well as for different tropical cyclone strengths
and paths. The results (not shown here) are generally
very similar with respect to the effect of the quadratic
bottom friction to the single case study we have shown
here. Further, we have chosen to discuss our results in
terms of coastal sea level response, but as our dynam-
ical scaling argument in section 5 suggests, the same
conclusions can be drawn from other fields such as the
currents.

5. Discussion

From our numerical simulations, we conclude that
the left-hand side of the equations of motion (2.1) to
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(2.3) can be reduced to a linear system, subjected to a
forcing provided here by the tides and tropical cy-
clones, and controled by quadratic bottom friction. If
we schematically represent the forcing by F and the
friction by 7, then in a quasi-steady state there will be
a balance between these two. Further, for a quadratic
bottom friction law we can suppose, again schemati-
cally, that 7 is proportional to ¢*, where ¢ represents
an appropriate scaling magnitude for the physical vari-
ables of the system. Then the balance between F and
T implies that

¢ = VF. (5.1)

We have considered three different forcing systems
here. These are tidal forcing Fr alone, tropical cyclone
forcing Fg alone, and the combination of both tidal
forcing and tropical cyclone forcing Fr + Fs. The cor-
responding system response can then be represented by
dr, ¢s, and ¢ys, respectively. Since the system is es-
sentially linear, we then have the following relation-
ships:

or = ‘/FTa s = ‘/F,
and
d)TS: VFT+FS (52)
But since
VF; + Fs < {Fr + Fs, (5.3)
which is just an elementary inequality, it follows that
brs < 1 + bs. (5.4)

This simple argument, we believe, serves to demon-
strate the robustness of the result that we have obtained
here; that is, the nonlinear interaction between the
storm surge and tide generally results in a smaller re-
sponse than would be obtained by simply adding the
response when the system is forced by either compo-
nent alone. .

To reinforce this view, suppose we now replace the
quadratic bottom friction law with a linear law so that
we now have 7 proportional to ¢. Repeating the above
steps, we get instead

“¢r=Fr, ¢s=Fs
and
¢rs = Fr + Fs, (5.5)
SO .
brs = dr + bs. (5.6)

As expected, the combined response is just the linear
sum of the separate responses.
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Since the above argument is only schematic, we now
look in more detail at how it relates to the governing
equations and boundary conditions described in section
2. For wind stress driven systems the frictional adjust-
ment timescale is (Csanady 1984 )

h
2VTwey ’

where 7y is the wind stress magnitude and c, is the
drag coefficient [see (3.4)]. In shallow water, say &
< 100 m, this frictional timescale is about 1 h. But, the
timescale for the wind forcing is much larger than this,
say about 10 h. Further, the inertial period is also about
10 h. Consequently the primary balance in the momen-
tum equation is between the hydrostatic pressure gra-
dient, the wind stress, and bottom friction so that (2.1)
and (2.2) reduce to

f= (5.7)

w TB Py,
gl=— -2 & (5.8)
ph ph p
[62] )
Tw Tpg PAy
" ph ph p

where we have omitted the local time acceleration
terms, the advective acceleration terms, and the Cori-
olis terms on the left-hand side and replaced the total
depth H by the undisturbed depth % on the right-hand
side. The equation for conservation of mass (2.3) is
also linearized and becomes

G + (hu), + (), = 0, (5.10)

where we have retained the small term {, to avoid de-
generacy (Sanderson et al. 1995). Essentially, (5.10)
establishes that  is linearly related to u and v. Note
that these reduced equations constitute the quasi-steady
hypothesis.

Next, in a conventional manner, we can obtain the
corresponding reduced energy equation from (5.8),
(5.9), and (5.10). That is,

(x) )

pg(hun), + pg(hvn), = (urw + vrw’) — pCoq’,

(5.11)

where n = { + P,/g, and we recall that g

= yu? + v2. Thus, the hydrostatic pressure terms only
play a role in the advective flux of energy. Otherwise
energy is put into the system by wind stress and taken
out by bottom stress. Note that inclusion of the Coriolis
terms in (5.8) and (5.9) would not effect the result
(5.11) since they do no work.

The response of the ocean to tropical cyclone wind
stress is highly rotational, and the kinetic energy ex-
ceeds the potential energy by several orders of mag-
nitude (e.g., Tang and Grimshaw 1995). Hence this
energy does not propagate very quickly and can be con-
sidered trapped within the domain for the timescale on
which we make the quasi-steady hypothesis. Thus, the
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FIG. 6. Plot of total energy E: (a) Es produced by tropical cyclone forcing alone, (b) Er produced
by tidal forcing alone, (c) Eys produced by tropical cyclone forcing and tidal forcing combined,
and (d) solid line is the sum of the results E5 + Er in (a) and (b) and dashed line is the result Ezg

in (c).

amplitude response is essentially just a balance be-
tween the wind stress and the bottom stress, and this
can _be represented by a scaling in which (u, v, )
o« 7y . This is just the schematic result ¢s = VFs ob-
tained above in (5.2). We note that Proctor and Wolf
(1990) carried out an energy budget analysis in a hind-
cast of a North Sea storm surge, and their results con-
firm that the primary balance for the storm surge is the
terms on the right-hand side of (5.11). But, they did
not obtain the dimensional result (5.13) below.

For the case of tidal forcing, there is clearly a flux
of energy, Ejp, through the boundary of our computa-
tional domain that is balanced by bottom stress. This
leads to the scaling relationship (u, v, {) « VEg, where
now Ej is just the left-hand side of (5.11) evaluated at
a representative boundary point. This is the analogue
of the schematic result ¢, = VF;in (5.2).

Then, for the case of combined tropical cyclone and
tidal forcing we obtain the result (5.4) above, which
we now see is a global energy balance between forcing
and bottom friction. Indeed, this argument can now be
carried further since we note that (5.2) can be rewritten
in the form

s = 7 + b3 (5.12)

But, since ¢ is in fact composed of three quantities, ,
u and v, the expression (5.12) can be interpreted to
imply that

Ers = Er + Ej, (5.13)

where E is the energy density {3h(u? + v?) + 3 8(?}
evaluated at each instant of time and then integrated
over the whole domain. We plot E in Fig. 6 for the
simulation shown in Fig. 3, and the validity of (5.13)
is striking.

Given that many different functional forms have
been used for bottom friction [ for example, Snyder et
al. (1979) use a combination of a linear and a quadratic
bottom friction law, while Signell et al. (1990) and
Davies and Lawrence (1994) use a parameterization
that includes the effects of wind wave turbulence], it
is convenient to generalize the results (5.6) and (5.12)
in the following way. If we assume that the friction
depends on the variable ¢ through the functional form
7 = f(¢), then the following relationship will hold in
place of (5.12):

f(ers) = f(dr) + f(ds). (5.14)

The arguments described above do not account for
the relative phase difference at any specific location
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between the peak sea level due to the storm surge and
that associated with the tide. In practice, there will exist
such phase differences imposed a priori by the different
phase of the tropical cyclone forcing vis-a-vis the tide,
and these could well prevent a strict quantitative ap-
plication of formulas such as (5.4) or (5.12) at any
specific location. Further, the local energy fluxes that
occur in the domain and are represented by the left-
hand side of (5.11) may prevent the quasi-steady scal-
ing implied by the right-hand side of (5.11), and hence
again we cannot generally expect results such as (5.4)
or (5.12) to hold universally in space and time. How-
ever, such local phase differences are likely to be
smoothed out and are relatively unimportant in com-
puting the total energy in formula (5.13). Indeed, this
is what we find and the verification of (5.13) shown in
Fig. 6 is confirmed when the formula is tested for other
parameter settings. Thus, we can infer that the result
(5.12) is very robust on average, even if there is some
variability due to local phase differences between the
storm surge and the tide. '

Further, we note that although the quadratic bottom
friction does cause a strong interaction between the am-
plitudes of the storm surge and the tides, there is very
little observed phase shift due to this interaction (com-
pare Figs. 3a and 3b with 3c for instance). This can be
attributed to the great disparity between the speed of
long gravity waves, through which the tides might be
expected to adjust to an interaction with the storm
surge, and the speed of the tropical cyclone forcing.
Also, we note that although the quadratic bottom stress
law (2.8) is quadratic in the velocity amplitudes, it is
linear in their phases. '

Next we note that the present results rely on the use
of the quadratic bottom friction law (2.8). In practice
this law is sometimes modified to take more account of
bottom boundary-layer dynamics. For instance, this
law needs to be altered in the nearshore region due to
the enhanced friction caused by increased turbulence
due to wind-generated surface waves (Grant and Mad-
sen 1979, 1986; Signell et al. 1990; Davies and
Lawrence 1994; Tang and Grimshaw 1996b). The in-
corporation of this effect into the present numerical
model is currently under investigation, but in the pres-
ent context the net outcome of this, or other modifica-
tions, can be regarded as replacing the quadratic de-
pendence of 7 on ¢ by a more general function form 7
= f(¢). But then the relation (5.14) replaces (5.12).
Further, if, as is likely, f(¢) is a convex function of ¢
just as ¢? is, then we will again obtain the same basic
result (5.4). Hence we argue that this result (5.4) has
wide applicability and is largely independent of model
parameterizations.

Finally, we point out that our results suggest that a
safe and reliable, although overly conservative, method
of predicting coastal sea levels due to storm surges in
the presence of high tides is to simulate the storm surge
alone and then add the astronomical tide, since, on av-
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erage, this will give an overestimate of sea level. Al-
ternatively, the quantitative dynamical scaling relation
(5.12) could be used as a basis for evaluating the
amount of overestimate. Of course, it would be pref-
erable to simulate the storm surge and tide together.
While this is obviously feasible in hindcast studies or
process studies such as the present, in operational fore-
cast simulations it requires an accurate prediction of
the location of the wind stress field, and also its relative
phase vis-a-vis the tidal forcing, for the duration of the
simulation. For storm surges generated by tropical cy-
clones, the required level of accuracy for these cyclone
parameters is presently not usually available.
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