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ABSTRACT

A theory is presented for time-dependent two-layer hydraulic flows through straits. The theory is used to
study exchange flows forced by a periodic barotropic (tidal ) flow. For a given strait geometry the resulting flow
is a function of two nondimensional parameters, v = (g'H)"/*T/L and gyo = upo/(g'H)'/*. Here g’,H, L, T,
and u,o are, respectively, the reduced gravity, strait depth and length scales, the forcing period, and the barotropic
velocity amplitude; vy is a measure of the dynamic length of the strait and g,o a measure of the forcing strength.
Numerical solutions for both a pure contraction and an offset sill-narrows combination show that the exchange
flow, averaged over a tidal cycle, increases with gy, for a fixed y. For fixed g, the exchange increases with
increasing y. The maximum exchange is obtained in the quasi-steady limit ¥ — oo. The minimum exchange
is found for v —= 0 and is equal to the unforced steady exchange. The usual concept of hydraulic control occurs
only in these two limits of . In the time-dependent regime complete information on the strait geometry, not
just at a finite number of control points, is required to determine the exchange. The model results are compared
to laboratory experiments for the pure contraction case. Good agreement for both interface evolution and
average exchange is found if account is made for the role of mixing, which acts to reduce the average salt
(density) transport.

The relevance of these results to ocean straits is discussed. It is shown that many typical straits lie in the
region of parameter space where time dependence is important. Application to the Strait of Gibraltar helps
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explain the success of the unforced steady hydraulic theory.

1. Introduction

Analysis of two-layer exchange flows through straits
and over sills has traditionally relied on steady hy-
draulic theory. Recent advances in this area have been
made by Armi (1986 ), Armi and Farmer ( 1986, here-
after AF), and Farmer and Armi (1986, hereafter FA).
As in one-layer flow, control of the exchange between
two basins can be exerted by contractions and sills. At
the control locations the internal Froude number G,

2 2
Ui Uz
Gz=—,—+—,—, (1)
g'h  g'h

is critical, G = 1. Here u; is the velocity and A; is the
depth in the upper (i = 1) and lower (i = 2) layers, g’
= (pp = p1)/p2 is the reduced gravity, g is the accel-
eration due to gravity, and p; is the layer density. Both
AF and FA discuss the details of exchange flows for
several different geometries. For both a pure contrac-
tion and a laterally offset sill-narrows combination the

* Woods Hole Oceanographic Institution Contribution Number
8528.

Corresponding author address: Dr. Karl R. Helfrich, Department
of Physical Oceanography, Woods Hole Oceanographic Institution,
Woods Hole, MA 02543.

© 1995 American Meteorological Society

maximal exchange is achieved when there are two con-
trol points separated by a subcritical region (G < 1).
This interior is isolated from the basins by supercritical
(G > 1) exit regions. For a pure contraction with no
net barotropic flow the two control points coalesce at
the narrows. These maximal exchange solutions are
the only solutions that can be matched to infinite basins
where the depth of the layer exiting the strait goes to
Zero.

The application of the two-layer hydraulic theory to
oceanographic situations has been reasonably success-
ful. In the case of the Strait of Gibraltar dominant fea-
tures of the flow such as control points and transitions
from sub- to supercritical flow (hydraulic jumps) are
often well represented (Armi and Farmer 1988; Farmer
and Armi 1988). Bryden and Kinder (1990) showed
that the steady theory compared well with the observed
average transport through the strait.

There are, however, potential problems with the ap-
plication of steady hydraulics. The most obvious is that
it is often applied in situations that are time dependent.
Many straits, including Gibraltar, are subject to strong
barotropic tidal flows. At Gibraltar these flows are large
enough to periodically reverse the flow of the lower
layer over the sill (Camarinal Sill) from the direction
predicted by the steady theory (Armi and Farmer 1988;
Farmer and Armi 1988). Bryden et al. (1994) show
that the unsteady average layer transport, u;h; (the



360

primes signify departures from the time mean), con-
tributes about one-half of the total average transport
u;h; . Because the dynamics are fundamentally nonlin-
ear it seems surprising that the steady theory employing
average values works so well at Gibraltar.

The question then arises as to when time dependence
modifies the dynamics so that the unforced steady
model fails. Armi and Farmer (1986 ) proposed using
a quasi-steady approximation in which the steady so-
lutions, with G = 1 at the controls, apply at each point
of the tidal forcing cycle. Time (through the barotropic
flow) is simply a parameter of the problem. An average
exchange, now a function of the barotropic forcing
amplitude, can still be found. However, if either the
time for long internal waves to propagate through the
strait is the same order or longer than the timescale of
the barotropic flow or if the temporal accelerations (du/
dt) are not small compared to the convective acceler-
ations (udu/adx), then the quasi-steady approximation
is suspect. In these situations is the average exchange
increased or decreased when compared to the quasi-
steady result? How does the average exchange depend
on the geometric and forcing (strength and frequency)
parameters?

There have been relatively few studies of two-layer
exchange flows with time-dependent forcing. Stige-
brandt (1977) formulated a simple quasi-steady theory
similar to AF’s for exchange through a contraction and
compared it with laboratory experiments. These results
are rather limited since they were performed for an
effectively zero length strait where the quasi-steady
theory is expected to be valid. Wang (1989 ) conducted
a numerical study of tidal flow on the exchange in the
Strait of Gibraltar. He used a three-dimensional hy-
drostatic primitive equation model. His results were
consistent with the observations and conclusions of
Bryden and Kinder (1990) and Bryden et al. (1994).
However, because of the model complexity and that
only the Gibraltar case was studied, no conclusions
about the general applicability of steady and quasi-
steady hydraulic theory could be drawn. Geyer ( 1990)
solved the time-dependent two-layer hydraulic equa-
tions for flow over a sill. His calculations clearly showed
that with a strong oscillatory barotropic current the
quasi-steady theory was invalid in all but a very short
portion of the tidal cycle. However, since he imposed

" the magnitude of the exchange flow, the effect of the
barotropic forcing on the exchange could not be in-
vestigated.

In this paper, the time-dependent dynamics of two-
layer exchange flows with an imposed barotropic tidal
flow is examined. The goal is to determine how the
average exchange is modified by the forcing character-
istics and the strait geometry and the parametric regions
of validity of the unforced steady and forced quasi-
steady hydraulic theories. In section 2, a time-depen-
dent two-layer hydraulic model is developed, which
shows that for a given strait geometry the exchange
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flow depends on just two nondimensional parameters.
One is a measure of the importance of time dependence
and the second is a measure of the forcing strength. In
section 3, the model is solved for the a pure contraction
and for a laterally offset sill and contraction. In both
situations the exchange flow is not specified but is a
result of the calculation. Section 4 discusses the results
of laboratory experiments for the pure contraction. The
experiments support the model but highlight the role
of mixing. A discussion of the results and applications
to oceanic straits is given in section 5.

2. The model

The model is based on two-layer hydrostatic flow
through a strait separating two infinite basins. Rotation
is not considered; therefore, the model is limited to
straits that are much narrower than the internal Rossby
radius of deformation. A sketch of the model geometry
is given in Fig. 1. The assumption of slow variations
in both strait width b(x) and depth result in the fol-
lowing nondimensional momentum

du; o Tu? . 1 _
E gc 7+(1 l)h1+a(hl+h2 hs)]—O
(2a,b)
and continuity
aai 0 _
a—[+ax(a,-u,-)—0 (3a,b)
equations for each layer (i = 1, 2). Here u;, 4;, and
a; = b(x)h 4)
Top
b(x) —_—
X
Side

F1G. 1. Definition sketch.
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are the velocity, depth, and area, respectively, of the
upper ({ = 1) and lower (i = 2) layers. The depth of
the bottom below the sill crest is #,(x), 6 = (p> — p1)/
p> 1s the layer density difference, x is the alongstrait
dimension, and ¢ is time. Equations (2a,b) and (3a,b)
have been normalized with (g’'H)'/? for u;, H for h;
and x, (H/g’)!/? for t, and A, = boH for a;. Here g’
= ga, by is the strait width at the sill (at the narrows
if no sill is present), and H is the total undisturbed
depth over the sill. In (2a,b) it is assumed that the
pressure on the free surface is zero. This term can be
retained, but in what follows it would eventually be
eliminated.

In the Boussinesq limit, o < 1, the rigid-lid approx-
imation is valid and

hy+hy=1+ h, (5)

The barotropic transport g, is then a function of time
only,
qp(1) = ma, + wa,,

(6)

and must be specified. Equations (2a,b) and (3a,b)
can then be reduced to two equations in two unknowns,
a; and the shear

U=u2—u1.

The resulting equations are

da, 9 [aiqy, + Uad?
ot ax[ A Uay| =0 (1)
and
oU a8 [Ugy, + U%a;, a U?
—t+ |- —-=|=0.
ot ax[ A b 2 0. (®
The total area is
A(x) =a,+ a, = b(1 — hy). 9)
The layer velocities can be recovered from
g, — Ua
ul:_LjI_ﬁ (10)
and
q, + Ua
u, = %. (11)

Equations (7) and (8) are hyperbolic and have the
characteristics
o = gy +2Ua, — UA
* A

2
L[5 2] oo

These are left and right traveling long interfacial waves
relative to the convective velocity given by the first
term on the right. Riemann invariants can also be ob-
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tained. However, for U*b/A = U*/(h, + hy,) > 1, the
characteristics are complex and (7) and (8) change
from hyperbolic to elliptic. This instability is the long-
wave limit of the Kelvin~Helmholtz instability. Law-
rence (1990) has shown that the stability criterion is
violated over some regions for steady exchange flow
through a contraction with |g,| > 0, though the cri-
terion is never exceeded at the control points (AF).
The growth rate found from (12) is Im(¢_k) ~ k, where
k is the horizontal wavenumber. High wavenumbers
will grow fastest. This behavior is somewhat spurious
since the dynamics of high wavenumbers is beyond the
model’s region of validity (k — 0). Relaxation of the
hydrostatic assumption shows that for any shear U
there is always an unstable wavenumber k (Turner
1973). In practice this instability will lead to mixing
on small scales. Thus, to control this instability in the
present study some dissipation must be added to the
model. This is discussed below.

For the cases considered in this paper, the imposed
barotropic transport is periodic with zero time mean
and given by

. t
(1) = Gro sm(21r ;) ,

where g0 is the barotropic transport amplitude and T
is the period. The barotropic velocity at any point in
the channel is g,(1)/A(x). Rescaling (7) and (8) with

T=t/T, £€=x/L

(13)

gives
(')a, 0 aqu(‘r) - UalA + Ua%
— + v — = 14
ar Vag( A 0 (4
and
U 3 (Ugy(r)+ U%a;, ay U?
— (I DL )0, (1
ar 7ag( A p2)” % U9

Here v = T/L and L is the lengthscale of the strait. In
this study L is taken to be twice the distance from the
narrows (b = 1) to the point where b = 2 for a pure
symmetric contraction, and for an offset sill-narrows
combination L is the sill to narrows separation distance.

Once the strait geometry is specified, solutions to
(13), (14), and (15) depend on just the two nondi-
mensional parameters vy and gpo. In dimensional vari-
ables,

s 1/2T
_(eH) T fg (16)
and
U
ro = ﬁ (17)

Here u;, is the dimensional barotropic velocity where
A=1.
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The parameter v is a measure of the length of the
strait relative to the distance an internal signal [speed
~ (g’H)"/*] will travel in a forcing period. Or y may
be thought of as the distance a particle will travel due
to the buoyancy-driven flow alone in a tidal period
relative to the strait length. For v — oo (a dynamically
short strait), the time-dependent terms in (14) and
(15) are insignificant and the quasi-steady limit is re-
covered. When v —> 0, the temporal vanations are zero
and the unforced steady solution (i.e., the initial con-
dition) is unaltered by the forcing. The second param-
eter g, is a measure of the strength of the barotropic
forcing compared to the buoyancy-driven exchange
velocity [ ~ (g’H)'/?]. Armi and Farmer and FA rec-
ognized that for their quasi-steady solutions to be valid
v > 1. The objective here is to quantify this assertion
and explore solutions to (14) and (15) with g, given
by (13) as a function of strait geometry, g0, and 7.

Numerical methods

Since (14) and (15) typically have complex char-
acteristics for the flows considered here, they are most
easily solved numerically. The solutions are obtained
using the two-step Lax—Wendroft method (Press et al.
1986). This method is second-order accurate in both
£ and 7. It also has the advantage of correctly following
the development and propagation of shocks, which may
naturally arise in such flows. These equations were
solved with a dissipation term » Uy, with v a constant,
added to the right-hand side of (15). This form of dis-
sipation follows from assuming a horizontal Laplacian
friction (=vu;,,) in each of the layers. This term was
included primarily to control growth of the high wave-
numbers in regions of unstable shear where the com-
putational grid mode is the most unstable wave. With-
out dissipation these high wavenumber disturbances
grow without saturation and overwhelm the solution.
The dissipation effectively models small-scale mixing
that would occur throughout the strait and is enhanced
in regions of unstable flow. It also reduces the small-
scale grid oscillations near shocks, which arise due to
the numerical technique. In addition to damping, in
the linear limit this term introduces a high wavenumber
cutoff of the shear instability. Other, more sophisticated
dissipation terms could have been employed; however,
they are not any more physically realistic than that
used. The objective was just to control the instability
without significantly altering the solutions and the av-
erage transport.

Evaluation of a set of runs in which only v varied
showed that the dissipation could be maintained small
enough to not significantly affect the calculated flow
within the strait and the average exchange flow. As will
be shown in the next section, this was possible since
the instability typically occurred in outflow regions and
was quickly swept out of the model domain by the
supercritical flow. An estimate of the significance of
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this dissipation term is the Peclet number yUL/v.
Typicallyy = 1, U~ 1,L ~ l,andv = 10"3to 10!
giving yUL/v ~ 10 to 103, Even in the most viscous
cases on the scales of interest here (L ~ 1) the non-
linear terms are an order of magnitude larger than the
dissipation, and for most situations are two to three
orders of magnitude larger.

For a typical run, variation of » above the minimum
required to obtain a stable solution showed that the
calculated average transport changed by less than one-
half percent for a factor of two change in ». Increasing
v or g, tended to require an increased », although for
v increasing this is consistent with the dimensional
value of v held nearly constant. As will be seen in the
next section, the unforced steady and forced quasi-
steady results could be recovered, suggesting that the
role of this dissipation was minor.

A principal objective of this study is to impose baro-
tropic forcing and solve for the resulting time-depen-
dent and average (over one forcing period) exchange
flow. This was accomplished using Sommerfeld radia-
tion boundary conditions

¢T——C¢f=0

at each end of the strait. Here ¢ = g, and U. The phase
speed ¢ near the boundaries was calculated according

‘to Orlanski ( 1976). Supercritical flow in the exit regions

helps to ensure that information propagates out of the
domain. The boundary conditions did not prevent
flushing of one layer from the central region of the
strait for large values of g,,. Use of these boundary
conditions implies that once fluid from one basin exits
at the opposite end of the strait it does not reenter the
domain. Thus, the exiting layer tends to a depth given
by the steady maximal exchange solution. The bound-
aries were well removed from the central region of the
strait. Runs were repeated with varying domain lengths
to guarantee that the boundary locations did not affect
the interior region.

3. Model results
a. Pure contraction

The first strait geometry considered is a pure con-
traction with no depth variations (4; = 0). Figure 2
shows the unforced (no barotropic flow) steady max-
imal exchange hydraulic solution for a symmetric con-
traction given by

b(E) =1+ 4(1 — e, (18)

The origin is at the narrows and « = 1.073, b =2 at §
= =*1/5. This choice of strait gecometry is representative
of this class of flows. The time-dependent solutions
change quantitatively, but not qualitatively as the strait
geometry is modified. In the discussion we consider
the consequences of this result. In Fig. 2a the interface
position is shown. The upper layer flows from left to
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F1G. 2. Unforced steady maximal exchange solution for flow
through the contraction given by (18). (a) The interface in the strait.
(b) The Froude number G (solid) and the shear stability parameter
U?/(hy + h,) (dashed).

right. The Froude number G = 1 at the narrows and
is supercritical everywhere else (Fig. 2b). Also shown
in Fig. 2b is the shear parameter U?/(k, + h,), which
is marginally stable throughout the strait. The unforced
steady solution gives u; = *1/> at the narrows and an
exchange transport q;; = u;a; = *1/4. The subscript s
denotes a unforced steady (g, = 0) layer transport. For
the geometry of Fig. 2, u, and ¢, are positive and u,
and g, are negative. With a steady barotropic flow the
layer opposing the barotropic flow will be arrested for
lgs] = 0.544 and expelled from the narrows for |g;|
= 1 (AF). In the quasi-steady theory with a barotropic
forcing given by (13), the exchange transport calculated
at the narrows and averaged over a tidal period {g; )
increases above the unforced transport for g,o = 0.5,
when the barotropic flow is strong enough to arrest the
opposing layer (see Fig. 3 below). Note that since the
barotropic forcing has zero mean, (g;) = —{q,).
The effect of the time dependence on average trans-
port the geometry of Fig. 2 is shown in Fig. 3, where
{4: Y/ q;s is plotted versus gpo for several values of v.
The solid line is the quasi-steady theory from AF. These
results were obtained by integrating (14) and (15) with
g»(7) given by (13) and the unforced steady solution
as the initial condition. The calculations were run until
a periodic solution developed. Although the system is
highly nonlinear, periodic solutions always developed
after just two or three forcing periods. Initial conditions
different from the unforced steady solution adjusted to
the steady solution with no forcing and to the same
periodic solutions when forcing is applied. For fixed
v, {g; ) increases as gy increases. For fixed gpo, {¢; >
increases as +v increases until the quasi-steady result is
approached. These calculations show that the quasi-
steady theory (v — o0) gives an upper bound on the
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FIG. 3. The average exchange transport {g;, normalized by the
unforced steady transport g, versus the amplitude of the barotropic
flow g, for several values of vy, for the contraction given by (18).
The solid curve is the quasi-steady theory.

average exchange and the unforced steady exchange
(v — 0) gives a lower bound. Only when v 2 30 does
the quasi-steady theory become a good approximation.
Thus the strait must be dynamically very short in the

Interface

0.0
-1.5

-1.0 -05

F1G. 4. Solution of (14) and (15) for the pure contraction for vy
= 4 and g = 0.5 at four points through the forcing period after the
periodic solution is obtained. Time increases from (a) to (d). The
arrow indicates the phase and direction of the barotropic flow.
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FIG. 5. (a) The Froude number G at the narrows for the run in
Fig. 4. (b) The layer transports g, (dashed) and ¢, (dotted) and the
barotropic transport g, (solid) versus 7.

sense implied by (16) for the quasi-steady theory to be
an acceptable approximation.

In Fig. 4 the interface evolution over a forcing cycle,
after the periodic solution is obtained, is shown for the
case v = 4 and g0 = 0.5. The rotating arrow indicates
the phase of the barotropic flow (measured clockwise
from the vertical). For these parameters the forcing is
relatively weak, and there is little effect on the average
transport (see Fig. 3). The interface moves back and
forth with the barotropic flow but is still similar in
shape to the steady solution. The interface height at
the narrows lags slightly behind the barotropic flow. In
Figs. 4b (4d), there is a small amplitude surge of upper
(b) [lower (d)] layer fluid, which moves out of the
strait as the barotropic forcing relaxes.

In Fig. 5a, G at the narrows is shown as a function
of time for the run in Fig. 4. The periodic solution is
obtained almost immediately. Here G oscillates nearly
sinusoidally around G = 1 with a frequency twice that
of the forcing. In Fig. 5b, the layer transports g; at the
narrows and the barotropic flow g; are shown. For low
gpo the layer transports never reverse and the response
is nearly sinusoidal.

The effect on the evolution of increasing the forcing
strength is shown in Fig. 6, where v = 4 and g0 = 1.
Again the solution has reached the periodic state. For
this barotropic amplitude the steady theory predicts
that the opposing layer will just be pushed from the
narrows. As the tidal flow increases from left to right
(Figs. 6a,b,c) the lower layer is nearly expelled from
the narrows. Reversal of the barotropic flow (Figs.
6c,d,a) releases the lower layer. It then forms a bore,
or density current, reminiscent of the head of a density
current formed from the sudden removal of a barrier,
that propagates through the strait. By symmetry the
process repeats for the upper layer on the opposite
phase of the forcing. It is just behind the head of the
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FIG. 6. Solution for the pure contraction with vy = 4 and
qso = 1.0 at four points through the forcing cycle.

0.0
-1.5

surge that the shear instability develops most rapidly.
The damping term becomes significant locally and is
necessary to control the growth of the high wavenum-
bers (remnants of which are visible near the bound-
aries). This localized damping is not unreasonable
since it is known that the heads of density intrusions
are regions of intense mixing and dissipation (Simpson
1982).

2 T T T T
S AVAVAVAVAVA'
0 | I U |
0 1 2 3
T
b

FIG. 7. (a) G at the narrows for the run in Fig. 6; (b) g, (dashed)
and g, (dotted) and g, (solid) at the narrows.
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Interface

F1G. 8. Unforced steady maximal exchange solution for the sill-
narrows combination given by (19) and (20). (a) The sill and interface;
(b) G (solid) and U?/(h, + h,) (dashed).

Figure 7a shows the Froude number at the narrows
as a function time. The flow is never controlled in the
sense implied by the steady or quasi-steady theories
since G = | only instantaneously. The amplitude of
the variations in G are increased, and the response de-
parts from the near-sinusoidal behavior found for g,o
= 0.5. The layer transports g; at the narrows and g,
are shown in Fig. 7b. The transports (i.e., layer veloc-
ities) are reversed during a significant portion of each
tidal cycle. The instantaneous transport becomes very
pulsed in nature. A further increase of g, leads to zero
transport in each layer during a portion of the tidal
cycle as the layer depths are temporarily reduced to
zero on the upstream side and at the narrows. Increas-
ing v tends to stiffen the interface response and leads
to larger vertical excursion of the interface. Examples
of this effect are shown in the next section.

b. Offset sill and narrows

The combination of an offset sill and narrows is
slightly more complicated than a pure contraction. It
is also more realistic since most straits also have one
or more sills. Figure 8 shows the steady maximal ex-
change solution for a strait with

bE) =3 +3(1—e ) (19)

and
hy(£) = 1 — sech?B¢. (20)

Here £ = 0 at the sill crest where » = 1 and £ = 1 at
the narrows where b = 1/5. Also o = 0.637 for £ < 1,
a = 1273 for £ = 1, and 8 = 3.75. The ratio of the
width at the narrows to the width at the sill B = 1/
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and the maximum depth is 2. Again, particular choice
of parameters is not significant; they are just represen-
tative of this type of geometry. The solutions discussed
below change quantitatively, but not qualitatively, as
the strait geometry is modified.

Figure 8a shows the unforced steady solution inter-
face position throughout the strait. The sill is also
shown. The upper layer is again flowing from left to
right. The Froude number G and the stability param-
eter U?/(h, + h,) are plotted in Fig. 6b. The Froude
number is critical at the sill crest and the narrows with
subcritical flow between; G > 1 outside of this central
region. The shear is supercritical only where the lower
layer descends down the sill. The unforced steady
transport g;; = 0.137. Over the sill #, = —0.271 and u,
= (.646 at the narrows. For steady barotropic flows g,
= 0.27 will arrest the lower layer and g, < 0.65 will
arrest the upper layer. Farmer and Armi (1986) discuss
these steady solutions in detail.

As in the previous section, time-dependent solutions
with g,(7) given by (13) were calculated for the ge-
ometry given by (19) and (20), with the unforced
steady solution as the initial condition. In Fig. 9 the
average exchange transport {g; »/g; is again plotted
versus ¢ for several values of v. The quasi-steady re-
sult from FA for B = 1/5 is also shown. The results are
qualitatively the same as the pure contraction case.
Increasing v for fixed g;¢ increases the average ex-
change. The limits 4 — oo and vy = 0 give the max-
imum and minimum exchanges, respectively. For the
quasi-steady approximation to be valid, ¥ must again
be greater than about 30. There are greater variations
in {g; ) for gxo < 0.5 than in the pure contraction case.
This result is due to the geometrical asymmetry and
magnitudes of the unforced steady solution layer ve-
locities at the two control points.

4

3
.2
o
~
&

S

1

0.0 0.5 1.0 1.5
dp0

FIG. 9. Normalized average exchange transport {g; »/g;s Versus gyo
for several values of y for the sill-narrows combination given by (19)
and (20). The solid curve is the quasi-steady theory.
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Interface

FIG. 10. Solution for the sill-narrows case with v = 1 and
gro = | at four times throughout the forcing cycle.

An example of the evolution of the flow within the
strait is shown in Fig. 10 for vy = 1 and ¢;o = 1. The
figures are from after the development of the periodic
solution. The interface descends nearly to the sill crest
and upper layer between the sill and the narrows is
deepened as the barotropic tide is converted to an in-
ternal signal. On the opposite phase of the tide (Figs.
10c,d,a), the interface is pushed back up and the lower-
layer flow over the sill is increased. This correlation of
layer velocity with layer depth agrees with the Candela
et al. (1990) observations at Gibraltar.

The evolution of G at the sill and the narrows is
plotted in Fig. 11a for the run in Fig. 10. At the sill G
remains near one when the barotropic flow is into the
strait. Reversal of the barotropic flow causes G to
greatly increase. A similar pattern occurs at the narrows
with G nearer to one on the incoming tide than on the
outgoing phase. This pattern is due to internal waves
generated within the strait that are swept through the
narrows or over the sill on the respective outgoing phase
of the forcing. Figures 10b and 10c show the layer
transports at the sill and narrows. At the sill the upper
layer displays the largest variations, while at the narrows
the lower-layer transport is more variable. At both the
sill and the narrows, both layers are reversed during
portions of the forcing cycle. The reversal is most pro-
nounced for the upper layer over the sill and the lower
layer at the narrows.
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The result of increasing « is shown in Fig. 12 where
v = 4 and g = 1. The left to right phase of the baro-
tropic flow forces the interface to drop down onto the
sill upstream and over the crest (Figs. 12a,b,c). The
upper layer between the sill and narrows becomes
thicker than the corresponding time in Fig. 10. As the
tide reverses (Figs. 12¢,d,a) the interface over the sill
rises sharply, forming a buldge of upper-layer fluid be-
tween the sill and narrows that begins to develop into
a shock. As the tide begins to flow from left to right,
the pulse decays and propagates out of the strait.

The Froude number at the sill and narrows is plotted
in Fig. 13a. Again there is significant variability in G,
but there are extended periods when G ~ 1 both at
the sill and the crest. The transports are shown in Fig.
13b and 13c. At the sill g, is zero over much of the
forcing period. Outflow over the sill occurs as periodic
pulses. The transport in the upper layer at the narrows
drops sharply as the shock moves through the narrows.

4, Laboratory experiments
a. Method

Laboratory experiments were conducted and com-
pared with the time-dependent theory for the pure
contraction geometry. The experimental setup follows
the methods employed by Stigebrandt (1977), except

F1G. 11. (a) G at the sill (solid) and the narrows (dash) for the run
in Fig. 10. The barotropic ¢, (solid) and layer transports g, (dash)
and g, (dotted) at (b) the sill and (c) the narrows.
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Interface

FI1G. 12. Solution for the sill-narrows case
with ¥ = 4 and g = 1.

here the strait is of finite length rather than zero length
(¥ = o0). This permits the role of the time-dependent
parameter v to be examined.

A sketch of the experimental setup is given in Fig.
14. A small tank (50 cm X 50 cm X 25 cm deep) was
suspended in a larger (200-cm diameter) tank. A sym-
metric contraction attached to the small tank connected
the two “basins.” The strait was given by (in dimen-
sional variables)

2
b(x)=b0[1 +4(%) ], [ x| <%,

where x = 0 is at the narrows. Straits with lengths L
= 10, 20, 30, and 40 and b, = 5 cm were used.

Saltwater with density p, in the small tank and den-
sity p2(> p,) in the large basin was separated by a gate.
Removal of the gate initiated an exchange flow. A
barotropic oscillation was superimposed on the buoy-
ancy-driven exchange by vertically oscillating the small
tank and strait with a displacement z = ag, sin(2wt/
T). After eight or more forcing periods the gate was
replaced and the fluid in the small basin was completely
mixed. The average exchange flow ( g; ) was calculated
from the salt (density) flux into the small tank,

<q,->=—]—’f§(f‘—f;"—‘), (21)

P2 — P
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FI1G. 13. () G at the sill (solid) and the narrows (dashed) for the
run in Fig. 12. The transports g, (solid), g, {dashed), and ¢, (dotted)
at (b) the sill and (c) the narrows.

where V3 is the total volume of fluid within the small
tank, 7 is the time the gate was removed, and p,/is
the density in the small tank after mixing. The depth
of the small tank and the size of the exterior tank min-

ao sin wt

=T
T

L

FiG. 14. Experimental setup.
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imized reentry of fluid into the strait once it had tra-
versed the strait.

Large barotropic flows were achieved by forcing at
frequencies near the Helmholtz frequency of the sys-
tem. This allowed barotropic velocities at the narrows
upo of up to 25 cm s™! for oscillation amplitudes a,
< 0.3 cm. Foragiven L, T, and ay, 1,y was measured
for a homogeneous flow (p; = p,) using an impellor
current meter (Nixon Streamflo Model 401 ) positioned
in the narrows at middepth. This device consists of a
l-cm diameter impellor suspended in the flow by a
0.3-cm diameter shaft. The impellor spin frequency
was measured and converted to velocity via a calibra-
tion chart. Although g, (i.e., u0) was found for ho-
mogenous flow, the barotropic forcing will not be sig-
nificantly different with a superimposed buoyancy-
driven flow because of the very small density differences
used.

The parameter values investigated were L = 10, 20,
30, and 40 cm; by = 5 cm; H = 9 cm; (p; — p1)/p>
< 0.01; T=10-15s; and 3o < 25 cm s~'. Thus, the
experiment investigated the ranges | <~y < 11 and 0
< gpo < 2.5. Errors in measured (g; ) were due pri-
marily to the resolution of the density measurements.
A precision electronic densiometer that measures den-
sity to 10™* g cm™ was used. Typically, in (21) (p,s
—p) = 0.0020 gm cm™ and (p, — p;) = 0.0100
gm cm™3, giving a maximum uncertainty of +10% in
(q,— > The measurements of 1, were accurate to *1
cm s™!, leading to an uncertainty in g, of about +=10%.

The Reynolds number u; H/v ~ 4000 for typical
values w; ~ 4 cms~', H = 9 cm, and kinematic vis-
cosity » = 0.01 cm? s~!. This is large enough so that
viscous effects do not dominate the flow. Viscous
sidewall and bottom boundary layers in the straits have
a maximum thickness (vL/1;)/? ~ 0.3 cm foru; = 4
cm s™! and L = 40 cm. The boundary layers occupy
only a small fraction (<5%) of the layer depths. The
interfacial boundary layer is turbulent and, as discussed
below, this is important in interpreting the results. De-
partures from the hydrostatic assumption (H/L < 1)
are significant since H/L = 1/4 — 1. However, steady
hydraulic theory is known to work well even when the
hydrostatic approximation is violated (Henderson
1966).

b. Results

A direct comparison of the expertment and theory
for interface position throughout the strait as a function
of forcing phase is shown in Fig. 15 for a run with vy
= 7.8 and g, = 1. Time dependence is important and
the forcing is strong. The figure shows side view pho-
tographs of the strait. The dyed upper-layer fluid is
flowing, on average, from left to right. This run used
the 20-cm long strait. Shown to the left of each pho-
tograph are the interface shapes calculated with the
model using the experimental parameters. The agree-
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ment throughout the forcing cycle is quite good. The
largest differences occur when the model predicts layer
depths approaching zero. This disagreement is probably
due to viscous boundary layers and to the reentry of
some fluid back into the strait that could not be entirely
avoided for large g0 in the experiments. The experi-
ments show clear indications of interfacial mixing oc-
curring throughout the strait over the entire forcing
cycle. This mixing is important in assessing the mea-
sured transports and is discussed below. The generally
good agreement in the figure also supports the use of
a hydrostatic model, even for these time-dependent
flows with relatively large aspect ratios. In this exper-
imental run H/L = 0.45.

Figure 16 shows the measured exchange (¢, ), nor-
malized by the theoretical unforced steady exchange
gis, plotted versus g0. Each symbol type corresponds
to a specific L, though v varies among runs with L
fixed. The dashed lines are the experimentally derived
contours of constant . The contours were drawn by
inspection but are not significantly different from con-
tours obtained by more sophisticated techniques. They
are consistent with the experimental uncertainty. The
solid circles are the data from Stigebrandt’s (1977) ex-
periments, which correspond to v = co. The experi-
ments and model results (cf. Fig. 3) agree qualitatively.
The most obvious quantitative difference between ex-
periment and theory is the lower measured transports
for all ¥ and g, than predicted by the model. Also, for
agiven v, {g; y does not increase as rapidly at the model
predictions. Stigebradt’s (1977) data give the largest
transports, but they are also below the quasi-steady
theory (the solid line).

This overall reduction in measured transport, when
compared to the model, may be primarily due to in-
terfacial mixing, which was observed to occur in all
experimental runs. Formation of a finite thickness in-
terface by mixing between the two uniform layers will
reduce the salt transport from the theoretical predic-
tion. An estimate of the magnitude of this effect for
steady flow with no barotropic flow can be made fol-
lowing Anati et al. (1977). It is assumed that an in-
terface of thickness 6 develops in which velocity and
density vary linearly between their theoretical uniform
values #; and p; (i = 1, 2). Koop and Broward (1979)
showed that the bulk Richardson number for fully de-
veloped stratified shear layersis g'6/(u, — u;)? ~ 0.3,
or & ~ 0.3(u, — u)*/g’. For a pure contraction u
— u; = (g’ H)'’? throughout the strait, giving § ~ 0.3 H.

The density (or salt) transport through the strait is
(in dimensional variables)

H
F,= bfo o(2)u(z)dz,

where p(z) and u(z) and density are velocity with depth
z. Evaluating (22 ), assuming linear variations of # and
p between u; and #, and p, and p,, across the interface
of thickness 6 gives

(22)
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FIG. 15. Comparison of model and experimental interface positions in the strait over a forcing period for a run
with ¥ = 7.8 and g0 = 1.0. Time increases from (a) to (h). The arrow indicates the phase of the forcing.
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FIG. 16. Exchange transports {g;), normalized by g;, Vs gso from the laboratory experiments. The dashed lines are
contours of ¥ = 2, 3, 5, and 10 derived from the experiments. Each symbol corresponds to a run with a strait of
L = 10 cm (+), 20 cm (O), 30 cm (A), 40 ¢cm (O); v varies among runs with a constant L. The solid circles are the data

from Stigebrandt (1977) and correspond to ¥y = oo.

26
F,=(p,— P\)(Iis(l - ‘gﬁ) ~ 0.8(p2 — p1)ais

for 6 ~ 0.3 H and g;, = 1 bog''?H3"%.

The estimate of volume transport used in the ex-
periment (21) is F,/(p2 — p1). Thus, salt transport after
accounting for mixing should be approximately 0.8¢;,,
in good agreement with the experimental results for
qpo = 0. A mixing layer model with a hyperbolic tangent
profile for u(z) and p(z) and a Richardson number of
1/4 gives a salt transport of 0.75(p; — p1)g;. These
estimates of the magnitude of the mixing effect show
that volume transport estimates obtained from salt ex-
change should be below the steady theoretical predic-
tion. For runs with time-dependent barotropic forcing
the mixing is modulated both spatially and temporally,
but the average effect is still to reduce the average salt
transport. If, as a first-order estimate, all the measured
transports are renormalized with 0.8¢;, instead of g;;,
then better quantitative agreement with the theory is
obtained.

5. Discussion

The steady theory of two-layer hydraulic exchange
flows has been extended to include time dependence
and forcing by a barotropic tidal flow. The model dem-
onstrates the significance of two parameters, v (16),
which measures the importance of time-dependence,
and g (17), which measures the strength of the baro-
tropic forcing. For both a pure contraction and an offset
sill-narrows combination the average exchange in-
creases with increasing g, for a given 4. For a fixed
gro the transport increases with increasing . The min-
imum exchange for any g, is given by the unforced
steady maximal exchange and obtained when y — 0.
For ¥ = oo the exchange approaches a maximum
equal to the quasi-steady result of AF and FA.

This qualitative behavior is independent of the de-
tails of the geometry of the strait. However, with the
addition of time dependence and periodic forcing the
geometric details of the complete strait, not just geo-
metric conditions at the steady control points, are nec-
essary to determine the exchange. To illustrate this
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FiG. 17. The normalized average transport for three straits given
by Eq. (18), solid; (23), dashed; and (24), dotted. All three curves
were calculated for v = 4.

point the average transport for three pure contractions
as functions of gz with ¥ = 4 was computed. One
strait is given by (18), and the other two are given by

b(g) =1+ 4¢? (23)
and
b(¢) =1+ 8|&%. (24)

All three have the same minimum width and L and
therefore the same g;,. Also the average layer velocity
from the steady solutions between £ = —1/ and 15 is
the same in all three cases. Figure 17 shows that each
strait gives a different average transport for a given go.
From this, it can be inferred that one could reduce the
minimum width of a strait yet retain the same transport
by altering the other details of the geometry of the strait.
This argues against the usual concept of hydraulic con-
trol based on a few critical geometric parameters as
occurs in the steady and quasi-steady theory. The steady
control points only provide a weak control on the
transport in that they give the minimum and maximum
bounds.

The laboratory experiments support the model re-
sults but also highlight the significance of mixing in
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real fluids. Since salt, or heat, transport is often the
quantity of oceanographic interest the issue of mixing
is critical. The simple, steady mixing layer model pre-
sented here indicates that the salt flux is reduced about
20% below the steady two-layer model predictions. The
spatial and temporal dependence of mixing is unre-
solved. Geyer and Cannon (1982) have observed large
temporal variations in mixing associated with tidal
forcing of flow at the entrance sill to Puget Sound. This
is an issue that needs further work because of the effect
on salt transport and also because the formation of a
mixed layer throughout the strait moves the dynamics
away from the assumption of two uniform layers.

A potentially significant deficiency of this and all
hydraulic models is that they are hydrostatic. Important
features, such as internal solitary waves and resonant
wave generation by flow over topography (Grimshaw
and Smyth 1986; Melville and Helfrich 1987), are not
captured. Kinder (1984) has shown that as much as
40% of the transport of Atlantic water through the Strait
of Gibraltar occurs as large amplitude internal undular
bores periodically formed by the release of the hydraulic
jump downstream of Camirinal Sill. The hydraulic
models do admit shocks, which are the nondispersive
limits of the undular bores and solitary waves. The
initial evolution of these dispersive waves should be
well modeled by a hydrostatic theory. At longer times
dispersion will become important. While some aspects
of wave evolution may be inadequately modeled, the
overall effect on the average transport should be small.

The time-dependent model demonstrated that there
is a broad region of parameter space, ¥ = O(1), where
time dependence must be considered when estimating
the average exchange through a strait. A survey of some
oceanic straits shows that many fall into this parameter
range. Table 1 lists some straits and estimated values
of v and g;0. These straits are all relatively narrow so
that rotational effects should be small. Values of v
= O(1) are common. No attempt has been made to
calculate a transport for each strait, but what is clear
is that many will be incorrectly modeled with an un-
forced steady or quasi-steady hydraulic theory.

As a specific example consider the Strait of Gibraltar.
Assuming that Camirinal Sill and Tarifa Narrows are
the steady control points H = 280 m, L = 20 km,

TABLE 1. Values of iy and gy for some straits.

g H L

Strait (ms72) (m) (km) v w0 Source
Gibraltar 0.02 280 20 5.3 0.6 Armi and Farmer (1988)
Messina 0.01 80 10 4.0 2 Bignami and Salusti (1990)
Bosphorous 0.12 35 30 3.1 0.25 Unliiata et al. (1990)
Oslofjord 0.02 15 10 2.5 1 Stigebrandt (1977)
Lombok 0.05 350 40 4.7 0.5 Murray et al. (1990)
Tiran 0.0035 270 3 15 0.25 Murray et al. (1984)
Bab-el-Mandeb 0.015 185 130 0.5 0.3 - Defant (1961)
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g =0.02ms2 and T = 4.5 X 10%, giving y = 5.
The barotropic velocity over the sill u,o ~ 1.25 — 1.5
m s~!, depending on the phases of the tidal compo-
nents (Candela et al. 1990), giving g,o ~ 0.6. The
width ratio B = /5. For these values the quasi-steady
theory shown in Fig. 8 gives (g, »/q;; = 1.6. The ge-
ometry used to compute the time-dependent transports
Fig. 8 is not the precise Gibraltar geometry but is similar
enough to give a reasonable estimate. With v = 5, Fig.
8 gives (g; »/qis = 1.2 for the gyo range above. This
transport is still larger than the observations ({g; )/ ;s
< 1), but is better than the quasi-steady result. If a
first-order estimate for the effects of mixing is to reduce
the transport by 20%, then {¢; »/g;; ~ 0.95, in good
agreement with the observations. Garrett et al. (1990)
have argued that Gibraltar is in a submaximal state
(i.e., the control at Tarifa narrows is flooded, G < 1).
This would also reduce the transport. However, this
effect has not been considered here. The open boundary
conditions used in this model lead to maximal ex-
change. Other effects such as friction, departure from
hydrostatics, and rotation may be important, but the
simple estimates of the role of time dependence and
mixing help to explain the Gibraltar observations.
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