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ABSTRACT

In this paper, the baroclinic-barotropic instability of the Gulf Stream is studied numerically. The quasigeo-
strophic potential vorticity equation is linearized around the mean flow, which is modeled using data from field
measurements in the Gulf Stream off Cape Hatteras. The perturbation around the mean flow is decomposed
into waves along the streamwise direction using a Fourier transformation in space and a Laplace transformation
in time. For each wave, an eigenvalue problem is obtained, which is solved numerically to yield the frequency
as a function of the wavenumber. The instability is of the convective type, in the sense that any localized
perturbation will propagate out of any fixed region in space in finite time. External noise can, however, drive
the instability creating spatially growing waves. The spatial growth rates of the waves are computed as a function
of their frequency using an iterative procedure and are found to be in good agreement with growth rates from
field measurements. Visualizations of the computed spatial instability modes show strong resemblance with the
meandering patterns observed in pictures of the Gulf Stream.

1. Introduction

Downstream of Cape Hatteras, the path of the Gulf
Stream is characterized by the presence of wavy per-
turbations known as Gulif Stream meanders, which are
due to large-scale instabilities of the mean flow in the
current. Linear instability théory can give a good de-
scription of the first stages of the formation of mean-
ders. The problem is approached with the aid of the
quasigeostrophic assumption (Pedlosky 1987). The
limitations of this approach to the Gulf Stream are
well known but are less important in this case because
the effect of the presence of the shore to the isopycnals
distribution across the stream is minimal downstream
of Cape Hatteras (for example, see Joyce et al. 1988).

The instability of the Gulf Stream has been exten-
sively studied in the past. Thus, Johns (1988 ) modeled
the dynamics of the Gulf Stream as a temporal baro-
clinic instability and Hogg (1976 ) as a spatial baroclinic
instability. Baroclinic instabilities are due to the vertical
shear of the current and the density gradient of the
fluid. Hart (1974) studied mixed (baroclinic-barotro-
pic) temporal instabilities of an idealized two-layer
model of ocean currents and revealed the importance
of the barotropic contribution, while Holland and
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Haidvogel ( 1980) studied mixed temporal instabilities
in an idealized two-layer model of the Gulf Stream and
report that up to 10% of eddy energy is derived from
barotropic contribution. Barotropic instabilities are
associated with the horizontal shear of the current.
Their predictions, though, about maximum temporal
growth rate and wavenumber range of unstable waves
underestimate field measurements (Watts and Johns
1982; Tracey and Watts 1986) by 50%, due to the sim-
plifying two-layer assumption about the mean flow.
Rossby (1987) studied the transfer of energy between
the mean and fluctuating fields in the Gulf Stream off
Cape Hatteras and found that although the baroclinic
conversion term was the largest, the barotropic term
is also important, especially close to the ocean surface.
Xue and Mellor (1993) studied mixed temporal insta-
bilities and Luther and Bane (1985) studied mixed
spatial instabilities of a realistic two-dimensional model
of the Gulf Stream upstream of Cape Hatteras over
the continental slope, where the influence of topogra-
phy on the instability is important, and they also report
significant barotropic contributions. Farrell and Moore
(1992) have recently modeled the instabilities of the
Gulf Stream as a transient growth problem.

In this paper, a two-dimensional model of the basic-
state zonal flow is considered by using field measure-
ments of the velocity and density distribution in the
Gulf Stream after it leaves the North American coast.
The instability of the current is thus two-dimensional,
and barotropic effects can significantly alter the char-
acter of the instability. Moreover, the instability anal-
ysis is done within the framework of absolute versus
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convective distinction [similar to the baroclinic insta-
bilities of two-layer models considered by Merkine
(1977) and Pierrehumbert (1984)], which is funda-
mental in the study of effectively unbounded media.
In this context, emphasis is given to the study of the
Gulf Stream dynamics as a spatial instability rather
than a temporal one.

2. Formulation

‘We consider the evolution of small perturbations
around the mean flow in an ocean current. The basic
equation is the quasigeostrophic potential vorticity
equation linearized about the basic-state zonal flow (see
Pedlosky 1987 for the derivation):
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In the above equations, U(y, z) is the velocity profile
of the mean zonal flow, ¥(x, y, z, ¢) the streamfunc-
tion, q(x, y, z, t) the potential vorticity of the pertur-
bation flow, Q(¥, z) the potential vorticity of the mean
zonal flow, fthe Coriolis parameter, § the northward
variation of the Coriolis parameter, and N(z) is the
Brunt-Viisili frequency. Equations (1)-(3) have been
nondimensionalized: lengths in the streamwise x di-
rection and spanwise y direction with respect to L,
which is the typical length scale of the basic state in
the y direction, and lengths in the vertical z direction
with respect to D, which is the total depth of the system,
and velocities with respect to U., which is the maxi-
mum velocity of the basic-state zonal flow.

The boundary conditions at the ocean surface (z
=1) and at the bottom (z = 0) require that there is
no flow normal to the boundary. Consequently, the
boundary condition at both z=land z=0is -

(a+Up_)gg U Y _
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Because of the symmetry of U and Q, around y = 0,
we can separately consider perturbations with a
streamfunction that is symmetric or antisymmetric
around y = 0. The former corresponds to the so-called
sinuous mode and the latter to the varicose mode. For
a symmetric perturbation, the boundary condition at
y=0is

(4)
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whereas for an antisymmetric perturbation, the
boundary condition at y = 0 is

¥ =0. (6)

Finally, as y = 400, the condition is that the per-
turbation flow vanishes; in other words, we have that

¥ - 0. (7)

Assuming that the flow is homogeneous in the
streamwise direction, we can decompose the pertur-
bation into waves by taking the Fourier transform in
x and the Laplace transform in time. Equivalently, we
can substitute the following expression into (1):

Y(x,¥,z,t) = ¥y, z)e' e, (8)

where k is the Fourier transform variable, which is the
wavenumber in the x direction, w is the Laplace trans-
form variable, which is the frequency, and & is the
Fourier-Laplace transform of ¥. Then, Eq. (1) be-
comes

=8\ 2 _‘fg 9 [19%)\]
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The boundary conditions (4) at the lower (z = 0) -
and upper (z = 1) boundaries become

wYd® U
(U k)az'é? =0. (10)
The other boundary conditions become
0P
—= 11
Er (11)
for the symmetric mode at y = 0, and
=0 (12)

for the antisymmetric mode at y = 0, whileas y = +c0,
the condition is

® — 0. (13)

For the numerical solution of the above equations,
a centered three-point finite-difference scheme is used.
In the y direction, the domain is truncated at a point
y = B whete U and its derivatives dU/dy and 3°U/dy?
all become very small. Furthermore, assuming that at
this point d®/9z will also be very small, Eq. (9) be-
comes
3’®
2 — L
k*® 32 0
since 8 is much smaller than the typical k? considered
in this study.
In this form, the equation has an analytic solution,
which satisfies the boundary conditions in the other

(14)
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direction. Therefore, at y = B, we apply the truncation
condition:

$ ~ kv,

(15)

3. Modeling of the basic state

We consider the stability of the mean flow in the
Gulf Stream Extension off Cape Hatteras. The basic
state has been modeled using the data of Halkin and
Rossby (1985), Robinson et al. (1986), and Johns
(1988).

For the velocity field U(z, y) of the zonal flow, we
used the data shown in Figs. 3a, 3¢, and 8b of Halkin
and Rossby (1985) and Fig. 1a of Johns (1988). We
consider that the velocity can be written as

Uy, z) = UU’(») U*(2), (16)

where U, = 1.8 m s™! is the maximum velocity of the
basic state, U” is the function that describes the y vari-
ation of the velocity profile, and U? is the function that
describes the z variation of the velocity profile.

For the z variation, we use the expression:

U*(z) = 0.139z + 0.861 exp[—a(z — 1)*], (17)

where z = 0 corresponds to the lower boundary, z = 1
corresponds to the upper boundary, and a = 40 is a
fitting parameter. The dimensional depth of the system
is D =4 km.

For the y variation, we use the expression

U’(y) = exp(—y?), (18)

where the nondimensional point y = 1 corresponds to
a dimensional length L that characterizes the spanwise
scale of the Gulif Stream. Physically, 2L is the half-
width of the Gulf Stream Extension (see definition
sketch in Fig. 1). For the best possible fitting of our
velocity profile (16) to the data shown in Fig. 8b of
the paper by Halkin and Rossby (1985), L should take
values between 40 and 60 km. Velocity contour plots
of the profile (16) for L = 40 km, L = 50 km, and L
= 60 km are shown in Fig. 2. The best fitting is obtained
for L = 50 km.

Since the velocity profile is modeled as a separable
function of y and z, the density field p(y, z) will also
be a separable function of y and z due to the thermal
wind balance between velocity and density field.
Therefore, the Brunt-Viisild frequency
gdp

N?=
p 0z

(19)
will be a function of z only, and as a model we use the
profile shown in Fig. 1a of the paper by Robinson et
al. (1986). We fit these data with the expression

4
N¥(z) = X a; exp[~b:(z — ¢;)?],

i=1

(20)
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F1G. 1. Definition sketch for the variation of the mean
velocity profile in the y direction.

where N?is given in 10™* s72, z is nondimensional (0
<z<1),anda, =0.9369, a, =0.1611, a; = —0.0242,
a, = 0.00456; b, = 544.2, b, = 50.8, by = 272.1, b,
=90.7;¢; = 1, ¢; = 0.825, c3 = 0.6955, ¢4 = 0.5485
are the fitting constants. The fitting of the density vari-
ation by the above analytic expression is quite good:
the rms error was less than one percent. The profile is
shown in Fig. 3.

Finally, since these data are obtained at a latitude
of 35°N, the Coriolis parameteris /2 = 0.7 X 108 s 72,
and the northward variation of the Coriolis parameter
is3=0.19 X 107'm~! s, Based on these numbers,
the potential vorticity gradient Q, of the mean flow
can be computed from Eq. (3), and its vertical distri-
bution at y = 0 is shown in Fig. 4.

4. Results
a. Temporal instability

Equation (9) subject to the boundary conditions de-
fines an eigenvalue problem for the frequency w once
the wavenumber £ is specified (and vice versa); in other
words, it constitutes the dispersion relation of the sys-
tem. We will denote this relation between w and k as
D(w, k) = 0. The eigenvalue problem for w is solved
numerically. More specifically, the computational do-
main is truncated in the y direction (a nondimensional
width B = 4 is used), and Eq. (9) is discretized using
a centered three-point finite-difference scheme to ap-
proximate the derivatives of ®. Typical size of the two-
dimensional grid is 40 points in the y direction and
100 points in the z direction. Then, a generalized al-
gebraic eigenvalue problem is obtained for w, which is
solved using a standard QZ algorithm.

A simpler approach, used in the past in several stud-
ies (for instance, see Johns 1988), is to reduce the par-
tial differential equation (9) to an ordinary differential
equation. To this purpose, the basic-state veloc-
ity profile is assumed to depend only on z, U(z)
= U,U?(z), and it is taken to be equal to the average
of the actual velocity distribution U(y, z) over some
length 2L, in the y direction, so that the total mass
transport does not change. Physically, 2 L, corresponds
roughly to the width of the Gulf Stream Extension (see
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Fig. 1), and typical values vary between L, = 75 km
and L, = 100 km (we note that L, is approximately
2L of our model). Therefore, the maximum velocity
U, is given by the equation:

Vx

2 s
where U”, U” are the same functions that describe the
velocity profile (16).

This approach assumes that the instability of the
flow is dominated by its baroclinic character, while the
barotropic effect is minimal. The perturbation field is
confined in a channel of width 2 L, and is given by the
expression

UL, = UCLL U(y)ydy = UL (21)

¥(x,y, z; t) = &(z) cos(%)ei‘k"‘“’). (22)
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This choice imposes the condition that ¥ = 0 at y
= +] (xL, in dimensional form). We will use this
simpler baroclinic instability model for comparison
purposes in order to assess the importance of the baro-
tropic effect. ,

For the two-dimensional velocity profile (16) with
L =40km, L = 50 km, and L = 60 km, the temporal
growth rate w; is shown as a function of the wavenum-
ber k, in Fig. 5. In Fig. 6, w; is plotted as a function of
the frequency w,. Figures 5 and 6 show that the baro-
clinic-barotropic instability is characterized by the
presence of two regions of unstable waves with over-
lapping wavenumber and frequency ranges. The results
from the corresponding baroclinic instability analysis
with L, = 75 km and L, = 100 km are also shown for
comparison, together with measurements by Tracey
and Watts (1986) and Watts and Johns (1982). In

FI1G. 2. Velocity contour plot of the basic-state zonal flow: (a) is the fitting with L = 40 km, (b) is the fitting with L = 50 km, (c) is the
fitting with L = 60 km, and (d) is the measured profile (reproduction of Fig. 8b of Halkin and Rossby 1985). The velocity contour levels

are given in cm s,
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F1G. 5. The temporal growth rate variation with respect to the
wavenumber for different values of L. The solid line represents the
baroclinic-barotropic instability, the dashed line represents the baro-
clinic instability (B corresponds to L; = 75 km, C corresponds to L,
= 100 km), and the circles represent the measurements.

those figures, the results for the sinuous mode (sym-
metric streamfunction mode) are shown, which was
always found to be more unstable than the varicose
mode. In comparison with the temporal instability re-
sults upstream of Cape Hatteras in the Charleston
Bump region (Xue and Mellor 1993), we get larger
wavelengths and smaller growth rates for the most un-
stable waves. More specifically, our wavelengths are
250-300 km and our growth rates are 0.25-0.35 day ',
while Xue and Mellor (1993) get wavelengths of 185-
225 km and growth rates of 0.30-0.55 day™'. These
differences are consistent with the observations of the
Gulf Stream, which show an increase of the wavelength
of the instability downstream of Cape Hatteras.
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For the baroclinic-barotropic instability with L
= 50 km, the variation of the temporal growth rate
with respect to the wavenumber and the frequency of
the unstable waves is in reasonably good agreement
with the measurements, considering the fact that the
measurements have an uncertainty level between 25%
and 50%, but the wavenumber range of the measure-
ments is overpredicted by 35%, whereas the corre-
sponding frequency range is overpredicted by a factor
of 2. For L = 60 km, the maximum baroclinic—-
barotropic instability growth rate is within 10% of the
measurement, while the model overpredicts the wave-
number range by 20%, and the frequency range by a
factor of 2. For L = 40 km, the model overpredicts the
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FI1G. 6. The temporal growth rate variation with respect to the
frequency for different values of L. The solid line represents the baro-
clinic-barotropic instability, the dashed line represents the baroclinic
instability (B corresponds to L, = 75 km, C corresponds to L, = 100
km), and the circles represent the measurements.
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FIG. 7. The phase velocity variation with respect to the wavenumber
for different values of L. The solid line represents the baroclinic—
barotropic instability, the dashed line represents the baroclinic insta-
bility (B corresponds to L, = 75 km, C corresponds to L, = 100 km),
and the circles represent the measurements.

maximum growth rate by about 30%, the wavenumber
range by 50%, and the frequency range by a factor of
2.5. Therefore, the predictions for the growth rates of
the baroclinic-barotropic instability decrease as L in-
creases from 40 to 60 km, and the best agreement with
the measurements is achieved for L between 50 and
60 km. The decrease of the growth rates is attributed
to the decrease of the barotropic effect as the shear of
the mean flow in the y direction becomes weaker with
the increase of L.

The growth rates predicted by the baroclinic insta-
bility model, on the other hand, exhibit the opposite
trend as L increases than those of the baroclinic-baro-
tropic model due to the absence of the barotropic effect.
The growth rates of the baroclinic instability increase
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TABLE 1. Barotropic and baroclinic contribution in percent to the
growth of the energy of the instability for different values of L.

Contribution
L (km) Barotropic Baroclinic
40 43 57
50 26 74
60 10 . 90

as L increases from 40 to 60 km, and decrease as L,
increases from 75 to 100 km. It is worth noting, how-
ever, that even in the best case (L = 40 km and L,
=100 km), where the baroclinic analysis gives a good
prediction for the maximum growth rate, both the
wavenumber and frequency ranges are overpredicted
by a factor of 3. Results for the phase velocity as a
function of the wavenumber are shown in Fig. 7. Again,
the baroclinic-barotropic results are in better agree-
ment with the measurements than the baroclinic ones.

The barotropic effect is therefore more important at
smaller values of L, as it can be anticipated intuitively
(see also Holland and Haidvogel 1980). The barotropic
effect on the instability can also be assessed by com-
puting the rate of change of the energy of the pertur-
bation flow and by partitioning it into barotropic and
baroclinic effects. The equation for the rate of change
the energy of the perturbation is (Pedlosky 1987)

D teo v av 9 v av 1
[ [ R T L0
0 —

Ox dy dy 9x 9z S dz
(23)
where
_IJ‘D f"“’ av\? av\? 1 /0¥)\?
E=2) =), dy((ax) +(6y +S<az)
(24)

is the energy of the perturbation flow and the overbars
indicate averaging in the x direction. The right-hand
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F1G. 8. The mapping of lines parallel to the k-real axis through the
dispersion relation into the complex w plane for the baroclinic-baro-
tropic instability with L = 50 km.
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side of Eq. (23) indicates that there are two terms that
contribute to the growth of the perturbation energy.
The first one depends on the horizontal shear of the
mean flow and therefore is associated with barotropic
effects, while the second one depends on the vertical
shear of the mean flow as well as the density gradient
and therefore it is associated with baroclinic effects.

For the baroclinic-barotropic instability with the
maximum temporal growth rate, the contribution of
the barotropic term to the right-hand side of Eq. (23)
and the contribution of the baroclinic term are sum-
marized in Table 1 for different values of L.

Therefore, the barotropic contribution is larger for
smaller values of L, but as can be seen in Figs. 5 and
6, it seems to be always important for the frequencies
and wavenumbers of the unstable waves.

b. Spatial growth

As the current is effectively infinite along the
streamwise direction, the question arises as to whether
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the instability is of the absolute or the convective type.
The instability is absolute when an initially localized
excitation grows and spreads upstream and down-
stream leading to a motion growing in time at any
location in space. The instability is, on the other hand,
convective if any localized excitation propagates away
from its initial position leading to motions decaying
in time at any fixed location. To distinguish between
the two, one has to determine the pinching double roots
of the dispersion relation (Bers 1983). If any such dou-
ble root has a complex frequency with a positive imag-
inary part, the instability is absolute; otherwise, the
instability is convective. To see whether any such dou-
ble root exists, the procedure suggested in Triantafyllou
et al. (1986) was followed: lines parallel to the k-real
axis are mapped through the dispersion relation into
the complex w plane. A pinching double root with a
positive imaginary part will appear in the w plane as a
cusp singularity lying below the map of the k-real axis.
This mapping, for the baroclinic-barotropic instability
with L = 50 km, was constructed in Fig. 8, where it
can be seen that there is no such singularity, and we
conclude that the instability is convective.
Convective instabilities are very sensitive to any
background noise in the system. In fact, a wideband
noise drives a convective instability creating a spatially
growing response. Asymptotically for large x, the fastest
growing wave in space dominates. Consequently, a
better way to model the Gulf Stream dynamics is as a
spatial instability of the mean flow. To this purpose,
the dispersion relation has to be solved to yield solu-
tions with real frequencies and complex wavenumbers.
This has been done using an iterative procedure. The
imaginary part of the complex wavenumber is the
growth rate in space. Spatial growth rates —k; as a
function of the wavenumber are shown in Fig. 9 both
for the baroclinic-barotropic and the baroclinic insta-

200

150

100 £,

50 EN

y (Km) o
-50

-100

-150

= =
#7777/

=
=
e
/

—-200

F1G. 10. Contour plot of the vorticity of the perturbation flow at the ocean surface. Solid lines
indicate negative (counterclockwise) vorticity and dashed lines indicate positive (clockwise) vorticity.
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FI1G. 11. Contour plot of the vorticity of the total flow at the ocean surface. Solid lines indicate
negative (counterclockwise) vorticity and dashed lines indicate positive (clockwise) vorticity.

bilities. As was the case with the temporal growth rates,
the baroclinic model overpredicts the wavenumber
range of unstable waves by a factor of 3, while the
predictions of the baroclinic-barotropic model are very
close to the measurements of Tracey and Watts (1986).
The predictions of the spatial growth rates are also quite
good for the baroclinic-barotropic instability.

Finally, from the computation with L = 50 km, the
vorticity of the spatial eigenmode of the instability with
the maximum spatial growth rate is shown in Fig. 10.
The amplitude of the mode cannot be determined
within linear theory. To obtain a visual picture of the
growing mode, an amplitude of 1% of the mean flow
was assumed at x = 0, and the vorticity of the mean
flow was added (Fig. 11). The visualization is indeed
reminiscent of satellite pictures of the Gulf Stream,
although a direct comparison is not possible, since sat-
ellites do not measure vorticity.

5. Conclusions

The stability of the Gulf Stream has been analyzed
numerically by including baroclinic and barotropic ef-
fects, and the computed growth rates, frequencies, and
wavenumbers were found to be in good agreement with
the measurements of Watts and Johns (1982) and
Tracey and Watts (1986). It has also been shown
through comparison with measurements and numer-
ical flow visualizations that the spatial instability model
is the appropriate one for the Gulf Stream instability
(which is of the convective type).

Significant differences were found between the results
obtained from the baroclinic-barotropic model and
those obtained from the simpler baroclinic model. The
differences were found to be largest for narrow do-
mains, where barotropic effects become dominant.
Even for wide domains, however, for which the baro-~

clinic model predicts the growth rates of the instability
with reasonable accuracy, barotropic effects are essen-
tial in determining the frequency and wavenumber
range of unstable waves. More specifically, for widths
typical of the Gulf Stream, the wavenumber range of
unstable waves predicted by the baroclinic-barotropic
analysis differs by a factor of as much as 3, compared
to the one obtained from a purely baroclinic analysis,
and agrees much better with measurements obtained
from field experiments.

The amplitude of the instability waves cannot be
predicted from linear theory only. It is clear, however,
from the results of the linear analysis that the waves
grow and saturate in space. It will be interesting to
investigate whether the saturation can be modeled using
an amplitude equation (like the Stuart-Landau equa-
tion in space).
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