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ABSTRACT

The dispersion of a tracer by a two-dimensional gyre circulation is studied using simple numerical models.
Two approaches are taken: a random walk model formulated in a streamline coordinate system and the numerical
solution of the advection—diffusion equation. A number of different gyres are considered. Attention is focused
on the characteristics of the gyre that determine the spreading and mixing time of the tracer. The authors find
that the dispersion by a given gyre can be characterized in terms of a bulk Péclet number and the three length
scales: L the horizontal width of the gyre, / the width of the boundary current, and L the length of the boundary
current. By taking into account the length of the boundary layer, gyre dispersion is found to conform moderately
well with previous analytic models, in particular the partitioning between weak and strong diffusive regimes,
even though the shear characteristics may be quite variable across the gyre. The analytic models become less
valid as the length of the boundary layer increases. Simple expressions are given for the cross-streamline diffusion
coefficient and mixing time in terms of the characteristics of the gyre. An important conclusion coming from
the present study is the importance of the structure of the recirculation region in determining the shape of the
tracer distribution. The results highlight the need for care in comparing model tracer fields with observed tracer
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distributions.

1. Introduction

Tracer fields in the ocean contain information about
the ocean circulation. How much useful information
and how best to extract this information are still ques-
tions with unknown answers. Two types of investiga-
tion exist. The direct approach is one in which a model
for the dispersion of a given tracer with a given cir-
culation pattern is integrated in time and the results
compared with observations. A best “fit” to observa-
tions of the tracer in the ocean is then made by “tuning”
the model circulation parameters [studies include the
“pipeline” model of Jenkins ( 1988) and the 2D mod-
eling of Sarmiento et al. (1990)]. In contrast inverse
techniques start from the observed tracer field and at-
tempt to provide the “best” flow field consistent with
the observations and dynamical constraints (e.g.,
Wunsch 1988).
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Although the inverse method is attractive it often
presupposes no prior knowledge of how a given cir-
culation field will disperse a given tracer and what
characteristics of the gyre circulation the tracer distri-
bution is sensitive to. To take an extreme example,
with no dynamical constraints there are an infinite
number of solutions involving varying ratios of advec-
tion and diffusion for any given tracer field. The ap-
proach taken here is a direct one and is aimed at de-
veloping an understanding of the factors that influence
tracer distributions and the rate at which they may be
spread over an ocean gyre. As we will find, the disper-
sion of a tracer is very dependent on the shape of the
gyre, suggesting that the horizontal shear in a given
system will place strong constraints on inverse solu-
tions.

A number of recent studies have used the direct ap-
proach to give estimates of the Péclet number of the
ocean (the ratio of diffusion to advection timescales)
and the effect of mixing on the apparent “age” of a
tracer. These include Sarmiento et al. (1990), Theile
and Sarmiento (1990), Musgrave (1990), and Warner
(1988). What these authors have failed to establish is
the effect of the assumed circulation on their conclu-



874

sions. The Stommel gyre has figured strongly in pre-
vious studies. We need to know the sensitivity of results
to the gyre shape.

As a starting point, in this paper we consider the
dispersion of a tracer cloud released in a two-dimen-
sional recirculating flow. We employ both random walk
models and the advection-diffusion equation to study
the dispersion of the cloud in a variety of gyre shapes.
Two works that have been influential in our under-
standing of tracer dispersion by gyres are Rhines and
Young (1983) and Young (1984 ) (referred to here as
RY and Y, respectively ). They give analytic results for
the rate of mixing both along and across streamlines.
In addition, Y shows how the western boundary current
of a gyre can reduce the mixing time of the gyre much
below the diffusive timescale by bringing streamlines
close together. He was led to distinguish two regimes
in terms of the width of the boundary layer, both valid
for asymptotically large Péclet number. In the weak
diffusive regime, with a relatively wide boundary layer,
the tracer is quickly mixed along streamlines with a
subsequent slower diffusion across streamlines to
achieve a uniformly mixed state. In the strong diffusive
regime, with a narrow boundary layer, the across
streamline diffusion is sufficiently great to mix tracer
across all streamlines in one or two passes through the
boundary current. The applicability of these asymptotic
regimes and the mixing rates need to be tested, partic-
ularly in a gyre in which the shear characteristics may
vary greatly across the gyre.

A significant part of the analysis reported here is
done in a streamline coordinate framework. Such a
framework helps in the interpretation of the results.
An important result coming from the present work is
the sensitivity of the gyral mixing on the shear in the
recirculation region of the gyre, different gyres giving
different mixing rates and tracer dispersion. We suggest
and test simple expressions for the cross-streamline dif-
- fusion coeflicient and mixing time in terms of the
characteristics of the gyre.

Although the present study is restricted to steady
gyres with a constant diffusion coefficient, this does
allow a thorough examination of the system. The anal-
ysis should be helpful in the interpretation of more
complex systems. A study of transient tracers with
source/sink distributions will be reported in a later
paper.

2. Random walk models

The technique of studying dispersion processes
using random walk models is a well-tried technique
[see Allen (1982) for a geophysical example]. A
large, but finite, number of particles is released into
a known mean flow field. Diffusion is modeled by
making the particles undergo a displacement of given
length but random orientation at discrete time in-
tervals. Usually the advection of particles by the
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mean velocity field is done by a simple forward ex-
trapolation in time on a Cartesian grid. For a recir-
culating gyre this has a fundamental drawback. The
extrapolation is continually pushing particles off the
curved streamlines and causing an outward migra-
tion of particles. To achieve moderate accuracy re-
quires very small time steps and undermines the oth-
erwise efficient random walk model. }

To overcome the problem of particles not tracking
the mean streamline in the absence of diffusion we
choose to use a streamline coordinate system (Fig. 1).
In terms of polar coordinates (7, 8) the streamline can
be defined as

v =g(r,0) (1)
with the associated inverse function
r=f,0). (2)

Equating ¥ with the streamfunction, the particle po-
sition is given by the value of the streamfunction (which
for a given particle is constant for a flow with no dif-
fusion) and its position on the streamline given here
by 6. The rate of change of position along the streamline
is given by

8

=1
o r

o
ar (3)

For a gyre specified by ¢ = g(r, 6) particles can be
advected around the gyre using a finite-difference ver-
sion of (3) with the particles remaining on a streamline
regardless of the size of the time step. Note that using
this system the streamline cannot be so convoluted that
S becomes a multivalued function. A more general
measure of position along the streamline is introduced
in section 2b.

At time intervals of At the particle undergoes a
random walk. To ensure uniform diffusion this is
done in (r, 8) space. The step has a given displace-
ment length Ar in a random direction §’. The equiv-

FIG. 1. Streamline coordinate system (y, 8) defined in terms of the
polar coordinates (r, 8). The random jump from the streamline is
defined by (Ar, §). ’
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alent diffusion coefficient, summing over many par-
ticles, is then

3 Ar?
“T oA

Advecting by the mean flow in (¢, #) space and dif-
fusing in (7, 6) space requires the position of particles
to be mapped between the two spaces. We therefore
need to specify both mappings (1) and (2).

We have chosen to work in polar coordinates because
useful model gyres can be constructed (section 2a).
The model can be equally well formulated using a
streamfunction that is specified in Cartesian coordi-
nates (x, y) such as the Stommel gyre considered in
section 2b. However, as is the case for the Stommel
gyre, the inverse mapping (x, y) = (¥, #) will in general
have to be constructed numerically.

a. Model gyres

A useful start is to consider the streamfunction
erh(ﬂ) -1

¢=~W,

(4)
which has the inverse

1
¥y = W ln(l - \Ph(ﬂ))

The velocity component along the streamline u, is
then

(5)

Uy = —e™?, (6)

The function h(8) controls the non-axisymmetric
nature of the gyre. For A(8) = 0, the gyre is axisym-
metric with ¢y = r and 4, = 1. We choose

h(8) = A cos®" g .
We shall denote this gyre, specified by (4) and (7), as
Gyre 1. Note that the velocity and length scales have
been normalized such that |u,| = 1 at(r, 8) = (1, 7).
The Péclet number is then simply the inverse of the
diffusion coefficient; namely, Pe = 2A¢/ Ar?.

The gyre with 4 = 6 and n = 8 is shown in Fig. 2.
The gyre has a characteristic shape not unlike that of
a wind-driven anticyclonic ocean gyre. The flow to the
right (east) of center (§ = =) is uniform (southward)
with distance from the center. The flow to the left (west)
(6 = 0) is concentrated in a narrow current, equivalent
to a western boundary current. The advantage of the
model gyre is that the strength of the return flow (in-
creasing A narrows and strengthens the flow) and the
extent of the intense flow (decreasing 7 increases the
proportion of the flow which is intensified ) can be var-
ied independently. (Using the analogy with an ocean
gyre, increasing 4 narrows the boundary current while

(7)
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FI1G. 2. Dispersion of a cloud of particles in Gyre 1 (4 =6, n = 8)
released at (1, 7) at time increments of =/2; Pe = 500 (only 200
particles shown). The coordinate system is such that r = 0 is at the
center of the gyre and 0 = 0 is a line starting at the center of the gyre
and directed to the left (west).

decreasing n increases the length of the boundary cur-
rent). To relate the results of this simple gyre to those
of more physical gyres we shall refer to the intense
region of flow as the “boundary current,” although
there is no physical boundary in the model, with the
rest of the gyre referred to as the “recirculation region.”
Since there is no boundary in the model we shall restrict
the study to flows with high Péclet number to avoid
an excessive spread of the particle cloud across many
streamlines. The effect of a boundary and low Péclet
numbers will be considered with later gyres.

The circulation time of the gyre, T, is a function of
Y. With 4 = 0 the circulation time increases linearly
with¢. On ¢ = 1, T, = 2x. Increasing 4 decreases the
circulation time for a given streamline. With 4 = 6
and n = 8, T.isreduced to 3.5 on ¢ = 1. The variation
of T, with ¥, however, remains approximately linear.

Figure 2 shows the dispersion of a group of particles
released at (7, #) = (1, w) with the Péclet number Pe
= 500. After the first passage through the boundary
current (Fig. 2b) the particles have been dispersed
across a number of streamlines but with little spread
along streamlines. During the subsequent recirculation,
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where d6/9t ~ 1/r, (Fig. 2¢) the particle cloud becomes
highly sheared. On the second passage through the
boundary current the cloud takes on a characteristic
spiral shape with particles on inner streamlines circu-
lating faster than those farther out (Fig. 2d).

The dispersion across and along streamlines can be
measured by the second moments of displacement
about the mean position of the group of particles; that
is,

1 -
Ry =— Z (v, - ‘Il)z
N all particles
and '
| _
Ro == E (Gn - 6)2:
N all particles

where (¥, 0,) is the position in (¥, 8) space of indi-
vidual particles with the mean position of the cloud
being (¥, ©); N is the number of particles. To obtain
stable statistics it was found necessary for N to be
around 5000. Because 0, is modulo(2) the value of
® can be dependent on the position of the cloud on
the gyre if ©, is measured relative to a fixed value of
6. To overcome this the mean is computed by mea-
suring 0, relative to the position of the maximum in
the distribution of particles.

The evolution with time of the rms spread of the
particles R}/?>and R}’?is shown in Fig. 3 for a number
of values of 4 and #n. The Péclet number is set at 500.
The numerical experiments are divided into two
groups: 1) fixed n with varying A corresponding to a
fixed boundary length but varying width and 2) fixed
A with varying n, fixed boundary width but varying
length. The axisymmetric gyre (no boundary current)
corresponds to 4 = 0 and n — oo in the two groups,
respectively, The characteristics of each gyre referred
to the streamline ¢ = 1 are given in Table 1, namely
the circulation time 7, the length of the boundary
layer L, and the fraction of circulation time spent
within the boundary layer 7,. Here we have defined
the boundary layer as being the region of a streamline
for which the velocity is within 50% of the maximum
velocity Upax. For ¢ = 1 then for Gyre 1, Uyax = 1
+ A. The fractional time spent by particles within the
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boundary layer is relatively small. Even for the longest
boundary layer considered (# = 2) a particle will spend
only 6% of its time within the boundary layer.

The effect of the boundary layer is clearly seen in
both R, and R, (Fig. 3). Each passage through the
boundary layer, as the streamlines are brought closer
together, produces a sharp increase in Ry and a marked
increase in the overall spreading rate across streamlines.
There is a corresponding increase in Ry as the particle
cloud enters the boundary layer. This is, however, fol-
lowed by a sharp decrease as the particle cloud exits
the boundary layer. Interestingly, for the relatively short
boundary layer with n = 8 the net effect on the along-
streamline spread is minimal with the rate of increase
in R, being little changed from that of the axisymmetric

“gyre (A = 0). Although the boundary layer produces
large changes in R,, it is the shear in the recirculation
region that plays the major part in the net along-
streamline spreading.

To illustrate the point further a second gyre, Gyre
2, is considered such that

2,
e’ h(8)/2 _ 1

== 7(8) (8)
2 1/2
r= [Z(_Gjln(l -—t//h(ﬂ))] 9)
with
Uy = —re” MO, (10)

We will use the same shape function 4(#) as in Gyre
1, namely, expression (7). With 4 = 0, Gyre 2 is in
solid body rotation, which implies no shear-induced
dispersion. The along streamline spread, R}/, is shown
in Fig. 4 for A = 0 and 6. With no shear in the recir-
culation region, the along-streamline spreading is much
reduced from that of Gyre 1 (even when 4 = 0). It
now takes several passages through the boundary layer
before along-streamline mixing is complete.

Rhines and Young estimate the time to mix along
streamlines, 7, to be given by

e

T,=

TABLE 1. Characteristics of the model Gyre 1 [defined by Eq. (4)]. Here 4 and »n are gyre parameters, ‘TC is the circulation time, . is the
length of the boundary layer, 7, is the fraction of circulation time spent within the boundary layer, T, is the along-streamline mixing time
given by RY, K, the across-streamline diffusion coefficient and - the parameter in (12).

A n T. £ t T, (RY) K,/ U « ¥
0 — 6.3 0.0 0.0 14.4 1 —_
2 8 5.8 0.53 0.044 13.8 1.7 2.1
4 8 4.6 0.40 0.024 13.0 2.0 1.9
6 8 3.5 0.37 0.017 11.8 26 2.1
6 4 4.6 0.46 0.032 12.8 3.9 2.4
6 2 1.7 0.60 0.063 10.6 72 22
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F1G. 3. Standard deviation of the particle cloud across, R}, and along, R}, streamlines in Gyre 1
as a function of time for varying boundary-layer strength 4 and length n; Pe = 500.

where angle brackets signify an along-streamline av-
erage. Their estimate for Gyre 1 is given in Table 1.
When compared to Figs. 3b,d, the RY estimate is found
to be reasonable, although the variation of mixing time
with boundary-layer strength using RY is less than the
numerical results. (Obtaining a precise value of mixing
time from Figs. 3b,d is complicated by the large vari-
ations in R, during passage through the boundary
layer.) The mixing time is somewhat overestimated for
the longer and more intense boundary layers. This dis-
crepancy should be expected as the value of {d/dr(1/
rdy/dr)) is a function of r, and even with Pe = 500
there is considerable spreading across streamlines be-
fore the along-streamline mixing is complete.

The across streamline spread R}/? (Figs. 3a,c) is
found to follow a 7 law to a good approximation. We
can then define an effective across-streamline diffusion
coeflicient K, such that

R,},/z = bK‘pt.

The value of K, relative to the background diffusion
coeflicient « is given in Table 1. With 4 = 6, » = 2 the
effect of the boundary layer is to increase the effective
diffusion coefficient sevenfold.

After the tracer has been mixed along streamlines,
Y shows that the evolution of a tracer field, C(¢), will
follow

Y

ac_ o
o 9A

GC}

where A is the area enclosed by a streamline and the
diffusion coeflicient K, is given by

Kam§ lgmaptanf 9

|grady | - (b
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F1G. 4. Along-streamline standard deviation of the particle cloud,
R}, in Gyre 2 as a function of time for 4 = 0, 6; n = 8, Pe = 500.

If ¢ ~ r, then the two diffusion coefficients K, and
K, are related by

2
K‘p ~ ZZEKJQ

Note that with ¢ ~ r, then K4 ~ r?, whereas K,, re-
mains approximately constant with » making K, a bet-
ter measure of cross-streamline diffusion.

Since the spacing between streamlines is inversely
proportional to the speed of the flow we can use the
following as a crude model for the effective cross-
streamline diffusion coefficient:

2
Umax) tb]’ (12)

Uo

K\b ~ U(Z)K[(l — 1) + ‘Y(

where Uy is a reference velocity in the recirculation
region, {, the fraction of the c¢irculation time spent
within the boundary layer, and v a parameter.

Here we have split the flow into two regions: 1) the
boundary layer where the spacing between streamlines
~1/Umax and 2) the recirculation region where the
spacing ~1/U,. The parameter v is determined by
fitting ( 12) with the numerical results.

Expression (11) is related to (12), since

L
grady Uy

and f gradyd! ~ LUy,

and

Uns L gy

Up l
where the horizontal scale of the gyre is denoted by L
and the boundary-layer width by /.

LU,
Umax L ’

ty ~
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Fitting (12) to the Gyre 1 results we find that v is
approximately a constant of value 2 (see Table 1), in-
dicating that indeed expression ( 12) is a useful model
for the effective diffusion coefficient of the gyre. Noting
that the second term in the square brackets on the rhs
of (12) dominates for gyres with narrow boundary lay-
ers, we can express (12) in terms of the time for the
tracer to become well mixed across the gyre, Ti,ix. Thus,
as Trmix ~ ¥§/K,, where yo (~U,L) is the stream-
function on the boundary, we expect

w
Li’
or (13)

Trnix ~
LU,

Tmix -~

Pe.

The mixing time is therefore dependent on three
length scales; the gyre scale L, the boundary-layer width
{, and the boundary length £. This is a simple extension
of Y’s result, who implicitly assumes .L ~ L. We will
test the validity of (13) in section 3.

b. More general gyres

The above model gyres have been useful in eluci-
dating the effects of gyre shape on the dispersion of a
tracer. Often, however, we are interested in the dis-
persion characteristics of a particular gyre that may be
the consequence of a given forcing field, such as the
wind-driven Stommel gyre considered below. In ad-
dition, in order to study the final stages of mixing and,
in particular, low Péclet number flows the gyre needs
to be placed in a closed domain with boundaries. We
will assume we have a specified streamfunction field,
here given in Cartesian coordinates,

¥ = G(x, ).

We will generalize the position on a given streamline
6 by relating it to the distance d along the streamline
from some fixed point. We therefore define 6 by

(14)

2nd
0 D
where D is the total length of the streamline. Then 0
< 0 < 2x. As before we require mappings between the
two spaces (x, ¥) and (¢, 0). In general, these have to
be constructed numerically on grids in both spaces.
We also require the rate of change of position along a
streamline 80/0dt. Details of the numerical procedure
are given in appendix A.

Figure 5 shows thelines of constant streamfunction
and 6 in (x, y) space for the Stommel gyre:

¥ =A(l + CieM* + Cre™*)sin(wy)  (15)
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FIG. 5. Numerically generated streamline coordinate grid v, 8
for a Stommel gyre with ¢ = 0.03.

defined on
O0<x<l1, O=<yx<],
where
\ = -1+ (1 + 47r262)‘/2’
2¢
A = —1—(1+ 41r262)1/2’
2¢
and
— oM - M

(Stommel 1948). This corresponds to an ocean in a
square basin driven by a sinusoidal wind stress with
bottom friction acting as the dissipative mechanism.
The maximum absolute value of the streamfunction
is set to one. The horizontal length scale L is taken to
be the width of the square box. The parameter ¢ rep-
resents the width of the boundary layer. In Fig. 5 it is
set to 0.03. With a narrow boundary current, the non-
dimensional velocity in the recirculation region U,
the Sverdrup velocity, is then approximately Uy ~ Ymax
= 1. With ¢ = 0.03, the maximum velocity in the
boundary layer is 37.3, which occurs on ¢ = 0 on the
western boundary.

As before we will present the results of the random
walk model in terms of R, and R,. Figure 6 shows the
same for two different Péclet numbers, Pe = 40 and
400. These Péclet numbers, for this gyre, correspond
to the strong and weak diffusion regimes of Y, respec-
tively. We will be rather more precise about differen-
tiating between the two regimes in the next section.
The release point for the particles was (x, y) = (0.125,
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0.25) (¢ = 0.70). This is in the entrance region to the
boundary current (Fig. 5). To compare with the model
Gyre 1, the maximum velocity on ¢ = 0.70 is 12.6
and the fraction of time spent in the boundary layer,
ty, 18 0.07.

With Pe = 400 the initial stage of mixing is similar
to that of the model gyre with a similar Péclet number;
that is, the particles are mixed along the streamline
after a small number of passes through the boundary
current. Subsequent mixing occurs across streamlines
with R, varying linearly with time. The effective dif-
fusion coefficient K/ Ujx is 9.2. Fitting expression (12)
to this value we find v =~ 0.68. Varying the width of
the boundary layer for the Stommel gyre does not sig-
nificantly change the value of y. With ¢ = 0.1 and 0.01,
then in the weak diffusive regime v was found to be
0.89 and 0.71, respectively. When comparing the
Stommel gyre results with those of the model gyre pre-

0.3

R/

1 /2 0.3
Ry
025~
021 RN S ————
i
0.15- of
',7"!'
o/ | &
0.1+ (]
I
1 @
0.05-{1/ Q. N
0.0 1 T 1 ! 1 \
0.0 05 1.0 15 20 25 30

FIG. 6. Variance of particle positions (a) across R, and (b) along
R, streamlines in a Stommel gyre against time with Pe = 40 and Pe
= 400.
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sented in Table 1 we need to take note that the effective
Péclet number, K,/ U3L, is scaled with the width of
the box for the Stommel gyre and the maximum dis-
tance from the streamline on which the tracer is re-
leased to the center of the gyre for the model gyre (in
this case a third of the total width of the box). Thus,
v in Table 1 should be divided by a factor of approx-
imately 3. The two gyres then give very similar results.
The very close agreement is perhaps somewhat fortui-
tous but it does show the relevance of the model gyre
results.

At later times the rate of increase of R, decreases
and the value of R, tends to a constant as the particles
become uniformly spread across the basin.

The lower Péclet number case (Pe = 40) behaves
somewhat differently. Now it takes only one to two
passes through the boundary layer before mixing is ac-
complished along streamlines. After one pass through
the boundary layer there has been a significant spread
across streamlines and Ry is within 10% of its final
value. There is now no intermediate state in which R,
goes as f. The time to reach a mixed state has been
much reduced.

In order to delineate the various mixing regimes we
need to define a mixing time. We choose to do this in
terms of the uniformness of the tracer concentration.
To convert particle density to tracer concentration re-
quires a much larger number of particles than we have
been using. This is because the particle density reduces
as the particles are spread over the gyre and it is some-
time before some regions of the outer recirculation re-
ceive a sufficient number to obtain stable statistics. To
continue, in the next section we consider a continuous
model. )

Another reason for changing to a continuous model
is that the routine for generating the numerical (y, 6)
grid was found to breakdown for very nonlinear gyres,
such as that considered in section 3. The reason for
this breakdown is that the grid in x, y space becomes
very distorted and numerical inaccuracies dominate.
The solution is either a change in the numerical tech-
nique for the grid generation or a change in the defi-
nition of 6. To date no satisfactory way forward has
been found.

3. Continuous model

The horizontal distribution of a continuous tracer
C(x, y), advected by a steady velocity field with
streamfunction ¥(x, y) and diffused by a constant eddy
diffusivity « satisfies the advection—diffusion equation

aC dyaC dopoC 1 _,
— — - ——=—VC,
6t+6y6x dx dy Pe

(16)

where, as before, we normalize the streamfunction such
as to have a maximum absolute value of 1 and non-
dimensionalize length with the basin width L. Then
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the Péclet number is given by Pe = U,L/x, where U,
= |y¥. /L (the asterisk denoting dimensional
streamfunction).

We will impose a zero normal gradient, dC/dn, on
the boundaries x = 0, L and y = 0, L which is equiv-
alent to imposing a no-flux condition.

Equation (16) is solved numerically with a given
streamfunction field. The horizontal variation of the
tracer, C, and the streamfunction ¢ are treated spec-
trally in terms of Chebyshev polynomials ( see appendix
B). The Chebyshev spectral method was found to per-
form well in resolving the tracer field in flows with
narrow boundary layers. Typically the number of Che-
byshev.modes (in any spatial dimension) required by
the spectral model to adequately resolve the tracer field
was less than half the number required by a finite dif-
ference model (e.g., see Musgrave 1985).

Numerical experiments were performed with a
Stommel gyre [Eq. (15)] with varying width; ¢ = 0.1,
0.03, and 0.01. The initial tracer field in all experiments
was taken to be a Gaussian “blob” with an e-folding
radius of 0.035 centered at (x, y) = (0.125, 0.25); the
same location as in the random walk experiments. The
finite width of the initial tracer field has consequences

-for the dispersion during the first pass through the

boundary layer. The dispersion rates being higher than
for a point release. Apart from this the results are es-
sentially the same as the random walk model.

We present the results from two experiments in
terms of the second-order moments in (x, y) space;
namely,

{E=x3C) = y)C)
(cy cy

where (x,, y.)is the location of the center of mass of
the tracer.

The results for the Stommel gyre with the boundary-
layer width set at the same value as the random walk
model in section 2b € = 0.03 and Pe = 40 and 400 are

Rix

‘'shown in Fig. 7. The form of the curves of the statistics

in (x, y) space should be compared to that in (¢, 0)
space, (Fig. 6). (A direct comparison between the con-
tinuous and random walk models, taking into account
the different initial distributions, gives a good agree-
ment between the two model results). As before, the
low Péclet number regime rapidly mixes the tracer
across the basin. The equilibrium value of R, and R,,
corresponding to a uniform tracer distribution is 5.
The rapid rise of R, corresponds to the tracer being
pulled out by the high shear on its first passage through
the boundary current. The subsequent rise in R,, is
associated with the alignment of the tracer field as it
circulates around the gyre. In contrast, the high Péclet
number case shows much less spreading on the first
pass through the boundary layer due to the reduced
dispersion across streamlines before entering the
boundary layer. On its second passage the tracer is
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FIG. 7. Evolution of the second-order moments R, (solid line)
and Ry, (dashed line) for a Stommel gyre with ¢ = 0.03: (a) Pe = 40,
(b) Pe = 400.

pulled out first in x and then y. The effective diffusivity
during these periods of rapid increase in Ry, and R,,
is some 10 times the explicit diffusivity. However, nei-
ther R, nor R,, are monotonic. Both show periods of
rapid decrease or an effective “negative” diffusion. Es-
timating an overall effective diffusivity is somewhat
meaningless and misleading, highlighting the desir-
ability of working in (¢, 8) space. After approximately
t = 1.5 (see Fig. 6) the tracer has become well mixed
along streamlines and evolves slowly to a well-mixed
state.

Although statistics in (x, ») space have some un-
desirable characteristics during the early evolution of
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the tracer field, they are useful in indicating how uni-
formly spread the tracer is across the basin [unlike sta-
tistics in (y, ), which are dependent on the gyre
shape]. One way to characterise the effectiveness of a
gyre to mix a tracer is to define a mixing time. We will
define the mixing time of the gyre, Trix, as the time at
which the variation of the tracer distribution across the
basin is less than 10%. The mixing time as a function
of Péclet number is shown in Fig. 8 for the three Stom-
mel gyres. The two gyres with the narrower boundary
current (e = 0.03 and 0.01) exhibit three distinct mixing
regimes. At very low Péclet number the system is dom-
inated by diffusion alone. At high Péclet number the
mixing time increases linearly with Pe. This corre-
sponds to the “weak” diffusive regime of Y (rapid mix-
ing along streamlines, slow mixing across). At inter-
mediate values of Pe, Ty, is independent of Pe, the
“strong” diffusive limit (rapid mixing across stream-
lines). For the wide boundary-layer case (¢ = 0.1) the
intermediate regime is not distinct.

The value of the streamfunction passing through the
release point of the tracer is ¥ = (0.60, 0.70, 0.66) for
the three gyres with e or //L = (0.1, 0.03, 0.01). The
corresponding length of the boundary layer .L = (0.53,
0.46,0.46), where L is defined, as before, as the length
of the streamline for which the velocity is within 50%
of its maximum value. Using ( 13) we therefore expect
the slope of the linear part of the T,y versus Pe curve
(the weak regime) for the three gyres to be in the ratio
(2.9:1.0:0.33). [Here we have normalized the slope
with the value for ¢ = 0.03 since (13) gives us how the
slope is expected to vary with gyre geometry not the
absolute slope.] The slopes from the numerical exper-
iments are in the ratio (1.2:1.0:0.35). The variation in
mixing time with // L is therefore in accord with (13)
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F1G. 8. Mixing time plotted as a function of Pe
for the Stommel gyre for varying boundary-layer widths.
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for the two narrower boundary-layer cases. The mixing
time for the wide boundary-layer case is smaller than
the value given by (13); not unexpected as (13) as-
sumes cross-streamline mixing occurs only in the
boundary layer.

The transition between the strong and weak diffusive
regimes occurs at a similar value of (//L) Pe for the
gyres with ¢ = 0.03 and 0.01, the transition occuring
at approximately 1.8 and 2.4, respectively. Y puts the
condition for the strong regime as Pe > 1 » (//L) Pe.
The numerical experiments show that the strong regime
extends to somewhat greater values of the Péclet num-
ber than suggested by the strict limits of the analysis
of Y.

The final gyre we will consider we will call the non-
linear gyre and is shown in Fig. 9. It is in fact the mean
surface streamfunction from an eddy-resolving quasi-
geostrophic model developed by Rogers and Richards
(1988). (The gg model again uses Chebyshev poly-
nomials in the horizontal with normal modes in the
vertical.) The gyre has an extended boundary layer, a
tight inertial recirculation region, and a slower, more
linear, recirculation over the rest of the basin. The
characteristics of the gyre are typical of this type of
ocean model. To compare with the Stommel gyre, the
boundary layer width // L is approximately 0.03 and,
for ¢y = 0.35, the streamline passing through the release
point (x, y) = (0.125, 0.25), the boundary length .L
is 1.23.- The gyre therefore has a boundary layer of
width comparable to the second of the Stommel gyres
but is some 2.5 times longer in length.

 The evolution of the tracer field is shown in Fig. 10
for the release of the tracer cloud at two positions. The
Péclet number is 400. The figure shows the tracer fields
after approximately one, two, and four passages
through the boundary layer. The first release point is
the same as that used for the Stommel gyres, namely,
(x, y) =(0.125, 0.25), which places the tracer on a
streamline (Y = 0.35) that passes through the linear
part of the gyre. The second is at (x, y) = (0.125,0.75),
which is in the inertial part of the gyre (on ¢ = 0.72).
The mixing times for the two releases are 2.93 and
8.32, respectively. The mixing time for the Stommel
gyre with //L = 0.03 at the same Péclet number is
12.27. The reduction in mixing time for the nonlinear
gyre is consistent with the increase in boundary-layer
length (Eq. 13). The boundary-layer lengths L are 0.46
for the Stommel gyre and 0.8 and 1.25 for the nonlinear
gyre for the streamlines passing through the inner, (x,
y) = (0.125, 0.75), and outer, (x, y) = (0.125, 0.25),
release points, respectively. The product TpmiL is then
5.6, 6.6, and 3.6 for the three cases, respectively. The
first two values are approximately constant, which is
consistent with the scaling suggested by (13). Case 3,
the release on the outer streamline of the nonlinear
gyre, gives a reduced value for the product Ty, L. Be-
cause of the increase length of the boundary layer for
this release point the system is not in the weak regime
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F1G. 9. Streamfunction field for the nonlinear gyre
used in the numerical experiments.

with Pe = 400 (additional experiments showed that
for this release point Tp;, is approximately constant
with Pe for values of Pe up to at least 400).

The evolution of the tracer fields for the two releases
in the nonlinear gyre is very different. The tracer placed
in the inertial part of the gyre, as with the linear gyres,
mixes quickly along streamlines such that after four
passes through the boundary layer the tracer distri-
bution reflects the streamfunction (see Fig. 11). The
tracer placed in the linear part of the gyre looks very
different. Now the maximum in the tracer concentra-
tion is toward the southern boundary of the gyre and
there are a series of ridges and valleys in the tracer field.
The tracer field toward the center of the gyre is uniform.
The ridges are formed by successive passes of the tracer
cloud through the boundary layer. As before with the
linear gyre the reduction in circulation time toward
the center of the gyre causes the tracer distribution to
take on a spiral shape. Here, because the streamlines
separate sharply after exiting the boundary layer and
the flow on the outer streamlines is relatively slow the
arms of the spiral are quite distinct. The presence of
the boundary is also having an effect on the distribu-
tion. This once again highlights the importance of the
shape of the recirculation region of the gyre in the evo-
lution of a tracer field. (A similar effect, but not so
marked, is also found with the Stommel gyre if the
tracer is released very close to the boundary.)

4. Conclusions

We have presented a number of simple models to
study the dispersion of a tracer by a two-dimensional
gyre circulation. We have found that the dispersion by
a given gyre can be characterized in terms of a bulk
Péclet number and the three length scales, L the hor-
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F1G. 10. Evolution of the tracer field in the nonlinear gyre for different initial positions:
(a) outside and (b) inside the inertial recirculation region for times ¢ = 0.2, 1.0, and 2.4.
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FIG. 11. Perspective plot of the tracer concentration at ¢ = 2.4 for
the two cases shown in Fig. 10 viewed from the northwest corner of
the basin.

izontal width of the gyre, / the width of the boundary
current, and .L the length of the boundary current. By
taking into account the length of the boundary layer,
gyre dispersion is found to conform moderately well
with the analytic models of RY and Y, in particular
the partitioning between weak and strong diffusive re-
gimes suggested by Y, even though the shear charac-
teristics may be quite variable across the gyre. The an-
alytic models become less valid as the length of the
boundary layer increases.

The expressions (12) and (13) for the cross-
streamline diffusion coefficient and mixing time, re-
spectively, have been found to be useful estimates in
gyres of varying shape at high Péclet number (the weak
regime of Y).

Young’s strong regime is found to extend to higher
Péclet numbers than suggested by the limits of the an-
alytic model. Recent estimates of ocean Péclet numbers
put Pe at around 10 for the midthermocline (see, €.g.,
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Musgrave 1990). For the North Atlantic subtropical
gyre [/L =~ 0.03. The value for / Pe/L is then 0.3
putting the gyre in the strong, rapid mixing regime.
Qcean gyres appear to be efficient mixers. The reader
is cautioned, however, as the estimates of Péclet in the
ocean are very crude and so much depends on gyre
geometry and source location.

A major conclusion to come out of this study is the
importance of the shape of the recirculation region.
The initial mixing along streamlines is very dependent
on the shear in this region. Indeed in most cases the
boundary layer was found to have a minor role in the
spreading of tracer along streamlines. Even at large
times the shear in the recirculation can be important
(see Fig. 11). This puts into question conclusions
drawn from using simple Stommel gyres in compari-
sons with observed tracer distributions. A given ocean
gyre will have an effective Péclet number that varies
not only from streamline to streamline but also along
individual streamlines (provided of course that the
concept of eddy diffusion is valid). The distribution
of a tracer will depend on where it is input in relation
to the distribution of shear. If the tracer is injected
through the upper mixed layer the tracer distribution
on a given density surface will therefore be very de-
pendent on the shape of the outcrop line of that surface
and the isopycnic shear of the circulation. The effect
of the form of injection of the tracer and an extension
to a 3D circulation model of the flow in the North

Atlantic with transient tracers will be examined in a

future paper.
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APPENDIX A

Transformation between (x, ) and (¥, )
Coordinates: Numerical Grid Generation

Here we describe the method used in generating a
(¢, 0) grid for a general gyre shape and the transfor-
mations between (x, y) and (, 8) spaces. It is assumed
that the gyre circulation is closed and is in an enclosed
domain. ,

The streamfunction ¥(x, y) for the flow field is as-
sumed to be a known analytic function or defined on
a given (X, y) grid. The maximum value of the stream-
function at the center of the gyre will be set to one,
and to zero along the boundaries.

The coordinate § represents the position on a given
streamline and is defined as

) 2md

D
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where D is the total length of the streamline and 4 is
the distance along the streamline from a fixed starting
point. Thus, 4 ranges from zero to 2. In general, for
a given streamline the function d(x, y) will not be
known analytically.

a. Generation of a (Y, 0) grid from Y(x, y)

We define the streamfunction Y(x;, y;) on a grid (x;,
yi)(i=1,1;j=1, J)in (x, y) space. The contour ¥,
(n =1, N)is then defined as the piecewise linear curve
determined by the intersection of the isoline of  with
the (x;, y;) grid. Dividing the contour ¥, into M equal
length segments, we can construct the grid (¢,, 0,,),
(n=1,N; m = 1, M), with known corresponding
points in (x, y) space, (x(¥n, 0m), Y(¥n, 0,n)). For
a sufficiently fine grid in (x, y) space linear inter-
polation is found to suffice. An example of a coarse
(¥, 0,,) grid in (x, y) space for a Stommel gyre is
given in Fig. 5.

b. Transforming from (¥, 8) space to (x, y) space

The simplest way of finding (x, y) from any given
(¥, 8) is by bilinear interpolation from the distribution
(x(¥n> 0m), Y(¥n, 0)). Thus, for a value of (¢, 6)
located within a grid box bounded by ¥, , ¥,,- and 8,,,,
0,2, such that

‘pnl = ‘p > ¢/n2a oml
(see Fig. A1) then (x, y)is given by

<60<8b,,,

x=(1=p)(1 =q)x;+ (1 —p)gxa

+p(1 — @)x; + pgx; (Al)
y=00-p)1 =)y, +(1 —p)gys

+p(1 — @)y + pays,  (A2)

where

(\P - lﬁnz)
(Yn1 — ¥n2)’

(0= b))
(Bmz - Bml) '

p:

¢. Transforming from (x, y) space to (Y, 8) space

Care needs to be exercised when transforming back
to (¢, #) space. Because the streamlines are curved the
point P, = (x, y) calculated from (A1), (A2) will, in
general, be different from the true position P, (see Fig.
Al). Repeated transforms between the two spaces can
therefore cause an unacceptable displacement of a par-
ticle (for example, for the Stommel gyre, 1000 trans-
forms produced a displacement across 10% of the basin
width).

The solution is to perform all interpolations in the
same space. Thus, for a glven point (x, y), the (¥, 6)
grid box in which the point is located is determined:
the grid box in (x, y) space is defined as the quadri-
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F1G. Al. Schematic presentation of bilinear interpolation
transformations between (¥, 8) and (x, ») spaces.

lateral ABCD (Fig. Al). The value of (¢, #) is then
determined by inverting (A1), (A2). In general, this
inversion requires an iterative method and can be very
time consuming,

The compromise adopted here was to generate a new
set of values ¥*(x;, y;) and 6¥(x;, ;) at the grid points
of the (x, y) grid. Equations (A1) and (A2) were in-
verted using a Newton-Raphson method at each of
the grid points (x;, 3;). Transforms back to (¥, 8) were
then performed on the (x, y) grid using the new values
(¥*, 6%). Thus, for any given (x, y), where

Xi S X< Xix1, ViSY<Yj+1»
then
Y=(1=r)(1=r)W5 + (1 —rondl
+ (1 = Wi+ rns  (A3)
0=(1—r)(l—r)85+ (1 —r)rdf
+ r (1 = 1,)0% + 185, (A4)
where
_ x—x) _ -y
* (X1 — X))’ (Yie1 — V) )
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This method was found to drastically reduce the er-
ror in repeated transforms. For the Stommel gyre with
(x,y), (Y, 0) grids with I, J, N, M ~ 100, the dis-
placement after 1000 repeated transforms was less than
one grid interval (less than a random jump). The stan-
dard deviation between y and ¢* at the (x;, J;) points
was 3 X 1074

APPENDIX B
Spectral Model for a Continuous Tracer Field

In solving (16) numerically we represent the hori-
zontal variation of both the tracer field C and the
streamfunction ¥ by spectral methods. In an enclosed
ocean domain the Chebyshev polynomials, T,(cosf)
= cosnd, are an attractive set of orthonormal spectral
functions (Gottlieb and Orszag 1977). Furthermore,
for the application of mixing in narrow boundary cur-
rents the nonuniform resolution associated with the
Chebyshev polynomials can be expected to offer sig-
nificant advantages. Consequently, we represent the
tracer field as the spectral expansion

Ny Ny
Cx,y,0= 2 2 Com(®)Ta(x)T(y),

n=0 m=0

where N, + 1 modes describe the variation in the E-
W direction, etc. Transforms between coordinate
space arrays and spectral coefficients are performed
by means of double cosine transforms based on FFT
algorithms. Functions defined on the two-dimensional
spatial grid

1 i
P == 1-—— —_— , ;] = 5 ..-,Nx
X 2[ COS(NX)] i=0

1 wj .
il 0o

are transformed to spectral space using the relationship

Ne Ny wni amj
C is = n,m .
(x yj) nz() mzo C Cos( NX ) COS( N.V )

To implement the boundary conditions correctly in
a spectral model (tau method ) the diffusion term must
be treated semi-implicitly. Representing the rate of
change of tracer concentration by a “leap frog™ ap-
proximation, the time step variables a and » may be
introduced:

-V C-—C
4 At
Pe
=ViC+—=C,
b At
giving the time step scheme
a™! = —p"1 + 2 PeJn,
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where J" is the Jacobian J(y, C) evaluated at the nth
time step.

To determine the tracer concentration at the new
time level the Helmholtz equation

_Pe

A"
is solved by the method described by Haidvogel and
Zang (1979). The tau method imposes the gradient
boundary conditions as the constraints

V2nn+l n+l — an+l

> PCom= 2 P’Com=0, 0<m<N,
=0 =

even Ic;dcll

> p’Cup= 2 p’Crp=0, 0<n<N,.
= =1

even podd

The advection of the tracer concentration is treated
pseudospectrally. The spectral coeflicients J,, ,, are de-
termined from the flux form of the Jacobian; namely,

m = {8,(C) = 0x(COW) bnm-

The braces indicate that the Chebyshev transform
is to be taken of the expression enclosed. The tracer
fluxes are evaluated using the recursive algorithm for
the derivative in the x direction:

Cstxr)n = Cr(1i)2m +(2n+ 1)C'n+l,ma O<sns<

with Com = Cihim = 0.

The flux form of the Jacobian ensures that the tracer
concentration is conserved exactly since the discrete
algorithm preserves (J) = 0. Unfortunately, the al-
gorithm does not guarantee ( CJ) = 0 exactly, owing
to the Chebyshev nonuniform weight. Explicit evalu-
ation of { CJ) indicates that it is generally two or more
orders of magnitude smaller than the explicit diffusion
coefficient —x((VC)? . However, since the term is not
constrained to be exactly zero, experience has shown
that some level of explicit diffusion is necessary to pre-
vent the scheme from generating small-scale noise.
Both terms are monitored throughout the integrations
and for the range of explicit diffusion values examined
here this has not proved a serious restriction. On this
basis the effects of numerical diffusion are considered
to be small in comparison with the levels of explicit
diffusion studied.

N+ 1
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