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On stochastic comparisons of population densities  
and life expectancies 

Maxim Finkelstein 1 

Abstract 

Cohort measures, describing a lifetime random variable are easily and unambiguously 
obtained using standard tools. On the contrary, the lifetime random variable, and 
therefore life expectancy, for the period setting cannot be unambiguously defined 
without additional simplifying assumptions. For non-stationary populations the 
corresponding conventional period measures should be justified in some way. Our 
paper is based on Bongaarts and Feeney (2002). We consider different measures of life 
expectancy and compare them for specific populations using stochastic ordering of the 
corresponding random variables. This gives possibility to look at the problem in a more 
general way. 
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1. Introduction 

Mortality is declining with time, which is a consequence of better conditions of life. By 
“conditions of life” or mortality conditions we mean the whole range of factors with 
health care being probably the major one. As a result, life expectancy at birth is 
increasing. For instance, Oeppen and Vaupel (2002) state that female life expectancy in 
the country with maximum life expectancy is increasing every year for approximately 3 
months. 

‘True’ mortality rates and life expectancies for birth cohorts can be derived simply 
and unambiguously using standard statistical tools as the corresponding lifetime 
random variable has a proper statistical meaning in this case.  Period life tables and age-
specific mortality rates have been used for many years for obtaining life expectancy and 
other demographic measures. However, changing in time mortality or, more generally, 
population non-stationarity makes life much more complicated. The ‘statistical’ origin 
of this complexity is in the fact that unlike the cohort setting, the lifetime random 
variable for the period setting cannot be unambiguously defined without additional 
simplifying assumptions. Under rather stringent “proportionality” conditions and for a 
specific population Bongaarts and Feeney (2002) suggested a candidate for the ‘true’ 
life expectancy and obtained analytical relations for the deviation from the conventional 
measure in this case. They showed that it is quite substantial and varies from 1.5 to 3 
years for different developed countries. Therefore, when mortality rates are decreasing 
with time, the conventional approach gives larger values of life expectancy, as 
compared with this measure. The attractive and at the same time restrictive feature of 
this model is that it fixes mortality conditions at a given instant of time and assumes 
that a specifically defined population exists in this fixed environment.  

As the notion of a ‘true’ life expectancy is somehow elusive, it is more a matter of 
definitions and assumptions.  The average age at death, e.g., might be also a widely 
used measure of life expectancy, if it were more easily calculated in practice. 

This is a technical note with a main goal to suggest some types of stochastic 
ordering for populations, to explore some possibilities in defining life expectancy and to 
compare mathematically these definitions using suggested stochastic ordering of 
populations. In our next publication on the topic we intend to present further results in 
this direction and to illustrate them by the data. 
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2. Stochastic comparison of population densities 

Denote by 0),,( ≥xtxN  a population density (age-specific population size) at time t  - 

a number of persons of age x . See Keiding (1990) and Arthur and Vaupel (1984) for 
discussion of this quantity. It can be also interpreted as the continuous population 
surface over age x  and time t .  

Let  tX  denote a random age at time t  of a person who is picked out at random 

(with equal chances) from a population of size ∫
∞

0

),( dutuN , where for convenience of 

notation the upper limit of integration is ∞  (instead of the maximal attainable age ω ). 
Therefore we interpret tX  as a random age in a population with a density 

0),,( ≥xtxN .  Let  

 

∫
∞=

0

),(

),(
),(
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define the probability density function (pdf) and the cumulative distribution function  
(Cdf) of tX , respectively. Therefore ),( txF  is the age Cdf which corresponds to the 

population density 0),,( ≥xtxN .  It can be equivalently interpreted as a proportion of 

persons in our population whose age does not exceed x .  Note, that equations (1) and 
(2), in fact, define for a given population the estimates of the pdf and the Cdf, 
respectively (observed period values). Distribution ),( txF  can be formally written via 

some hypothetic rate ),(~ txµ  by a standard exponential representation: 
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where: 

∫
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The mean age of a population with a population density 0),,( ≥xtxN  is: 
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The mean age of a population is not sensitive to the tail of the Cdf ),( txF , which 

also could be of interest in demographic studies. The simplest tail measure of an age 
structure is its −q quantile:  

 

)(1 qFq tF
−= ,        (5) 

 

where )(1 ⋅−
tF  is an inverse function of ),( txF  for the fixed t . Therefore, the 

proportion of persons in a given population with age exceeding Fq  is q . For high 

quantile values ( 8.0≥q ) Fq  indicates the start of an old age zone of a population. It is 

worth mentioning that the mean age of a population is quite different from life 
expectancy. In the latest U.S. life table, life expectancy is 77.3 years and the implied 
stationary population has the mean age around 40.4 years. 

Let 0),,( ≥xtxN  and  0),,( ≥∗ xtxN  be the densities for two populations with 

random ages tX  and ∗
tX , respectively. Specific types of these population densities will 

be considered in the next section. Above all, these specific populations are needed for 
dealing with ‘proper’ random variables in defining life expectancy.  

Stochastic comparison of  tX  and ∗
tX  is of interest. We say that the age ∗

tX  is 

stochastically larger (Ross, 1996; Shaked and Shantikhumar, 1993) than the age tX  

and write 
 

tstt XX >∗ ,         (6) 

 
if the corresponding age distribution functions are ordered as 
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0),,(),( >∀<∗ xtxFtxF .       (7) 

 
Inequality (7) is equivalent to:  
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and the population density 0),,( ≥∗ xtxN  gives larger probabilities to ages beyond x , 

than 0),,( ≥xtxN . It also follows from (7) and definitions (4) and (5) that the 

corresponding mean population ages and the quantiles are ordered in a similar way, 

respectively:  )()( tete >∗ ,  10; <<>∗ qqq FF
,  which illustrates the fact that stochastic 

ordering (6) is stronger than comparison in the mean values and comparison of 
quantiles (Finkelstein, 2003). 

Stochastic comparison of the same population at different time instants can be also 
of interest.  Inequality   

 

12;
12

ttXX tstt >>        (9) 

 
means that the population with age structure 0),,( 2 ≥xtxN  is stochastically older than 

population with age structure 0),,( 1 ≥xtxN , which certainly is the case in practice 

(under reasonable restrictions on fertility and migration), because mortality rates are 
declining with time. If this inequality holds for all ordered 1t  and 2t  in some interval of 

time, we say that the population is aging in this interval of time. In fact, this is a 
definition of an aging in a strong sense population. The corresponding ordering of the 
mean values defines aging in a weak sense. 

 
 

3. Specific populations modeling 

Let ),( txµ  denote the mortality rate as a function of age x  and time t  for a population 

with a density 0),,( ≥xtxN : 
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),(

/)),(),((
lim),( 0

txN
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δδδµ δ
−++= →     (10) 

 
As, given a population, this rate is observed, there is nothing wrong with it in a 

period setting. On the other hand, a lifetime cumulative distribution function cannot be 
unambiguously defined only via ),( txµ  without additional assumptions. 

Consider a population, which is closed to migration and experience a constant 
number of births B  annually. The population density 0),,( ≥xtxN  in this case can be 

defined via the corresponding cohort survival function: 
 

),(),(exp),(
0

xtxlBduuxtuBtxN c

x

−=












+−−= ∫ µ ,    (11) 

 
where ),( xtxlc −  denote the survival probability of a cohort of age x , which was born 

at time xt − .  
Let 0),,( ≥xtxN  be the same as in (11) observed population density. As in 

Bongaarts and Feeney (2002), we ‘freeze’ now mortality conditions for a fixed time t :   
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∗
x
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The function ),( tx∗µ  can be interpreted as the mortality rate for a stationary 

population with the density 0),,( ≥xtxN . Therefore the corresponding lifetime random 

variable is defined via ),( tx∗µ  in a usual way. Note, that although the integrals (and 

therefore the corresponding survival functions) in equations (11) and (12) are obviously 
equal, the integrands are not equal.  The corresponding exponential representation via 
the mortality rate ),( txµ  for the same density reads (Preston and Coale, 1982): 
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where  ),( tuρ  is the intensity of population growth:  
),(

/),(
),(

txN

ttxN
tx

∂∂=ρ . 
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It can be easily seen from equations (11), (12) and (13) that 

∫ ∫ −+−=
x x

dutuuxtudutu
0 0

)),(),((),( µµρ   

and that ),(),(),( txtxtx µµρ −= ∗  in this specific case (see also Arthur and Vaupel 

(1984)).  Equation (13) can be formally transformed to: 
 












−= ∫

x

dutuDtuBtxN
0

),(),(exp),( µ ,        (14) 

 
where  
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),(
1),(

tx

tx
txD

µ
ρ+=          (15) 

 
is a factor, which adjusts, in accordance with equation (11), the period mortality rate at 
a fixed time instant t  to the mortality rate with a changing time variable. If, e.g., a 
population is growing: 1),( >txD . Under additional assumptions (see later), Bongaarts 

and Feeney (2002) show that with a suitable in practice accuracy ),( txD  does not 

depend on age x . 
Consider now a hypothetical population (also closed to migration and with a 

constant birth rate) and define a hypothetical population density 0),,( ≥∗ xtxN  via the 

mortality rate ),( txµ : 

 












−= ∫

∗∗
x

dutuBtxN
0

),(exp),( µ .       (16) 

 
Therefore, ),( txµ  can be also interpreted as the mortality rate for the stationary 

population with the population density 0),,( ≥∗ xtxN .  

Expressions (11)-(16) will be used for comparing Cdfs of ∗
tX  and tX  and also for 

comparing different definitions of life expectancy.  
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Lemma 1. Let )(xf  and )(xg  be continuous functions such that )(xg  is 

decreasing and ∫
∞

∞<
0

)( dxxf . Then 
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Proof.  Applying the mean value theorem: 
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where ),0( xg  and ),0( ∞g  are the corresponding mean values, which exist due to our 

assumptions.  As )(xg  is decreasing: ),0(),0( ∞> gxg , and, therefore, the inequality 

follows.  
The following result shows that random ages of two populations under 

consideration are ordered as in definition (6). In demographic terms it states that: 
If mortality is declining, the observed population will be stochastically younger 

than that of the stationary population implied by ),( txµ . 
 
Proposition 1.  Let mortality rate ),( txµ  decrease in time t. Assume that 

population densities 0),,( ≥xtxN  and 0),,( ≥∗ xtxN  are given by equations (13) and 

(16), respectively. Then stochastic ordering (6) ((7)) holds. 
Proof.  In accordance with inequality (8) and equations (13) and (16), we must 

show that: 
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As mortality rate decreases with time, the population is growing. Therefore, 

0),( >tuρ  and the corresponding exponential function in the integrand is 

monotonically decreasing with y . The result immediately follows from Lemma 1 after 

noting that    ∫ ∫
∞

∞<











−

0 0

),(exp dydutu
y

µ .  

The useful for stochastic comparison of populations alternative proof of 
Proposition 1, based on a totally different concept, is deferred to the Appendix.  

Remark. Proposition 1 can be generalized to the case when mortality rates for 
each fixed x  are decreasing in average, which means that the following integral is 
decreasing in t  for 0>∀ x : 

 

t

duux
t

∫
0

),(µ
. 

 
A rather cumbersome mathematical proof of this fact is out of the scope of this 

paper. 
The following result (Lemma 2) can be interpreted in demographic terms as: 
If mortality is declining, the age at death in the actual population is stochastically 

younger than that of the corresponding stationary population. 
We feel that this result can be also generalized to the case of declining in average 

mortality rates, but this should be still proved.  
 
Lemma 2.  Let mortality rate ),( txµ  decrease in time t . Assume that population 

densities 0),,( ≥xtxN  and 0),,( ≥∗ xtxN  are given by equations (13) and (16), 

respectively. Then: 
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Proof. Substituting relations (11) and (16) into this inequality: 
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which is proved using exactly the same argument as while proving Proposition 1 after 
noting that 
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4. Definitions of life expectancy 

4.1 Period life expectancy at birth (conventional) 

Period life expectancy at birth at time t  is usually defined as the average age at death 
that would be observed for a group of persons (a cohort) who experience, over the 
course of their lives the age specific mortality rates ),( txµ observed during the time 

period: 
 

∫
∞

=
0

),(),0( dxtxlte .          (17) 

 
where ),( txl  is a life table survival probability:  
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−= ∫ dututxl

x

0

),(exp),( µ .       (18) 

 
When mortality rates are changing over time, as it was mentioned, the 

corresponding lifetime random variable cannot be unambiguously defined and other 
approaches for obtaining life expectancy can be used. Bongaarts and Feeney (2002) 
have suggested the following model: 

 
 

4.2 Life expectancy at current mortality conditions 

Definition (17) is based only on age-specific mortality rates obtained without any direct 
information on the population age structure. Life expectancy at current mortality 
conditions is defined by Bongaarts and Feeney (2002) for the specific ‘frozen’ 
population, described by equation (12) as  

 

∫
∞

∗∗ =
0

),(),0( dxtxlte ,          (19) 

 

where ),( txl ∗  is a survival function, defined via the mortality rate ),( tx∗µ  similar to 

equation (18).  

Alternatively, ),0( te∗  can be written via the observed mortality rate as an integral 

of the survival function in equation (11): 
 

∫∫ ∫
∞∞

∗ −=


























+−−=
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),(),(exp),0( dxxtxldxduuxtute c

x

µ , 

 
which is, in fact, the cross-sectional average life (CAL), introduced in Gulliot (2003). 

 
 

4.3 Average age at death 

Another period measure, which is used for calculating life expectancy at least under the 
assumption of a constant in time birth rate, is )(tA -the average age at death at current 

mortality rates: 
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∫
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µ
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This measure already reflects population characteristics and can be estimated from 

the period life table data, although, as it was mentioned, the calculations are not so easy 
compared with  ),0( te . 

Under additional assumptions (see the next section) Bongaarts and Feeney (2002) 

showed that )(),0( tAte =∗ . Note that we do not need these additional assumptions for 

comparing ),0( te  with )(tA  in the next section.  

In stationary populations all three measures are equal: 

)(),0(),0( tAtete == ∗ . 
When mortality is changing with time, however, they are different and the use of 

conventional ),0( te  should be justified in some way.  

Some other ‘corrected’ measures based on ),0( te∗  (e.g., weighting in some 

suitable sense the inputs of different cohorts) can be also considered.  
 
 

4.4 The mean population age 

It is clear that the mean population age )(te , defined by equation (4), is not a very good 

indicator of life expectancy, but it can be used as some helpful additional characteristic. 
Assume for simplicity, that mortality rate ),( txµ  is increasing in age x  for all 0≥x . 

The following comparison of  )(te  with the average age at death )(tA  is 

straightforward: 
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Indeed, the ‘modified’ population density is 0);,(),( ≥xtxNtxµ . It is clear that 

under the assumption of increasing in age mortality rate ),( txµ  this density gives larger 

probabilities to ages beyond x , than 0),,( ≥xtxN , which results in inequality similar 

to inequality (8) and, finally, in inequality (21).  
 
 

5. Comparing life expectancies 

5.1 Comparison of ),0( te  with ),0( te ∗∗∗∗  

We shall make this comparison for a population that experiences no migration and 

constant number of births annually. In fact, ),0( te∗  was defined in Section 4 only for 

this specific population type. As population is growing (declining mortality rates): 
 

0;0),(),( ≥∀>−∗ xtxtx µµ ,       (22) 

 
which obviously leads to the corresponding ordering of life expectancies (see equations 
(17) and (19)) and to a difference )(t∆ :  

 

.0),0(),0()( >−≡∆ ∗ tetet       (23) 

 
This is a general result for the population of the defined type, which can be also 

formulated as: 
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Bongaarts and Feeney (2002) make additional assumptions for estimating )(t∆ , 

which they call the tempo bias. They assume that changes in the population density  
0),,( ≥xtxN  due to mortality decline are modelled as an age-independent shift )(ts  

to higher ages: 
 

)(),0),((),(

)(,),(

tsxtsxNtxN

tsxBtxN

≥−=
<=

      (24) 
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Equations (24) lead to the same shift in mortality rates. Formally this is a rather 
stringent assumption, although assuming the Gompertz law for mortality curves with 
fixed t , we immediately arrive at the following Gompertz shift model, as an 
exponential function ‘converts shifts into multipliers’:  

 

)exp(),0(),( bxttx ∗∗ = µµ ,       (25) 

 
where 0>b  is a parameter. This relationship was verified in Bongaarts and Feeney 
(2002) for a number of countries with remarkably good accuracy. Therefore, the 
contemporary demographic data supports assumption (24) as well. It was proved by 
these authors that: 

 

),(
),0(

1),( tx
dt

tde
tx ∗

∗











−= µµ .      (26) 

 

Equation (26) shows that when life expectancy ),0( te∗  is increasing the observed 

mortality rate ),( txµ  is smaller than the non-observed ),( tx∗µ . Using numerical 

procedure Bongaarts and Feeney (2002) obtained the values of ),0( te∗  and the 

corresponding tempo bias (23). It turned out that the average tempo bias, e.g., for 
females in France, Japan, Sweden and USA for the period 1980 to 1995 is rather large: 
2.3 years, 3.3 years, 1.6 years, and 1.6 years, respectively. However, a question still 

remains: is ),0( te∗ , defined for a specific population under rather stringent conditions, 

the best candidate for the ‘true’ life expectancy? 
 
 

5.2 Comparison of ),0( te  with )(tA  

The following lemma is a direct consequence of definition (16): 

Lemma 3. Let 0),,( ≥∗ xtxN  be a density for a hypothetical population defined by 

equation (16). Then the average age at death for this population )(tA∗  is equal to 

conventional life expectancy ),0( te : 
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Proposition 2. Let mortality rate ),( txµ  decrease in time t . Assume that 

population densities ),( txN  and ),( txN ∗  are given by equations (13) and (16), 

respectively. Then conventional life expectancy ),0( te  is larger then the average age at 

death  
 

0)(),0( >− tAte .        (28) 

 
Proof.  In accordance with Lemma 3 and definition (20), we must prove that 
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As ordering of survival functions trivially leads to the same ordering of the 

corresponding  mean values, inequality (29) immediately follows from  Lemma 2 (the 
sign of inequality of this lemma will be opposite for survival functions). Alternatively, 
averaging procedures (Vaupel, 1992) can be also used for proving Proposition 2.  

As it was mentioned, for proving inequality (28) we do not need additional 
proportionality assumptions. Note, that an obvious from general considerations (under 
given assumptions) Proposition 2 is a simple corollary of stochastic orderings of 
Section 3 that are, in fact, the main mathematical results of this paper.  

 
 

5.3 Comparison with a hypothetical cohort 

The following alternative comparison with a hypothetical cohort, which allows for 
time-dependent birth rates, can be also helpful: 

Let W  denote the maximum age in our life table, e.g., 110=W years. The age 
structure 0),,( ≥xtxN  means that )( xtB −  persons were born at xt − , ),( txN  of 

which had survived up to t  (no migration).  Let us shift the ‘life trajectories’ of 
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survivors backwards on xW −  units of time. This means that the whole population 

∫
W

dutuN
0

),(  will be born at Wt −  and the cohort for the whole population can be 

considered. As mortality rates are declining with t : 
 

),(),( txxWtx µµ >+−       (30) 

 
This inequality also means that ),0( te > ),0( tes , where ),0( tes  denotes life 

expectancy of the described shifted cohort.  
 
 

6. Concluding remarks 

Life expectancy in reliability and survival analysis studies is the simplest characteristic 
of a lifetime distribution, as it usually has a clear cohort-type meaning. In demography, 
however, the period life tables are the main data source and due to population non-
stationarity (e.g., the declining in time mortality rates) there can be different definitions 
of life expectancy based on period life tables. What is the ‘true life expectancy’ is still 
an open-ended question. In Section 5 we compare the conventional life expectancy with 
two other possible measures. 

Bongaarts and Feeney (2002) considered a specific, closed to migration and with 
constant number of births annually population with frozen mortality conditions. They 
showed that when mortality rates are declining in time, the conventional observed life 
expectancy substantially overestimates the life expectancy for this model, obtained 
using numerical methods. 

In the current paper we prove analytically that conventional life expectancy also 
majorizes the average age at death. We consider stochastic comparisons of age 
distributions for specific populations and obtain inequalities for the corresponding mean 
values as a simple consequence. We feel that stochastic comparisons of populations 
should be explored to a greater extent in the future studies.  
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Appendix 

The following simple probabilistic reasoning can help in interpretation of ordering (8). 
Denote by 0),( ≥xxNG  an age structure of a stationary population with age Cdf )(xG : 

∫

∫
∞=

0

0

)(

)(

)(

duuN

duuN

xG

G

x

G

. 

Let 1,21 ...,, −nxxx  be 1−n  be the points dividing population into n  equal parts of 

size d , which represent number of persons in each interval 
∞===− nkk xxnkxx ,0;,...,2,1],,[ 01 : 

∫ ∫ ∫
∞

−

====
1 2

1 10

)(...)()(
x x

x x

GGG

n

dduuNduuNduuN . 

Thus: 

nk
n

k
xG k ≤= ,)( . 

Denote, as previously, by ),( txG  the age Cdf for a ‘real population’ with 

declining mortality rate, closed to migration and with constant birth rate. This 
population immediately starts to be stationary when mortality rate stops changing. Let 

dtt =  be some fixed instant of time: the ‘demographic regime’ for dtt <  is more severe 

than for dtt = . Let, specifically, )(xG  be defined by a constant in time demographic 

regime, which is experienced by the ‘real population’ at dtt = . As mortality rates are 

declining with time:  
 

nk
dnd

dkd
txG

n

i

k

i

dk ≤
−

−
=

∑

∑
,),(

1

1  

 
where id  is the number of persons that were lost (died) in the corresponding interval of 

time due to the change of the constant regime model to the one with improving regime. 
It is clear that id  increase with the number of the interval: 

 

nddd <<< ...21 . 
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Given this ordering: 

nk
n

k

dnd

dkd

n

i

k

i

≤<
−

−

∑

∑
,

1

1  

which is a discrete analogue of (8)  By letting ∞→n , the continuous analogue of this 
inequality (which corresponds to inequality (8)) can be obtained.  



Finkelstein: On stochastic comparisons of population densities and life expectancies 

162  http://www.demographic-research.org 

 
 


