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Changing mortality and average cohort life expectancy 

Robert Schoen 1 

Vladimir Canudas-Romo 2 

Abstract 

Period life expectancy varies with changes in mortality, and should not be confused 
with the life expectancy of those alive during that period.  Given past and likely future 
mortality changes, a recent debate has arisen on the usefulness of the period life 
expectancy as the leading measure of survivorship.  An alternative aggregate measure 
of period mortality which has been seen as less sensitive to period changes, the cross-
sectional average length of life (CAL) has been proposed as an alternative, but has 
received only limited empirical or analytical examination.  Here, we introduce a new 
measure, the average cohort life expectancy (ACLE), to provide a precise measure of 
the average length of life of cohorts alive at a given time.  To compare the performance 
of ACLE with CAL and with period and cohort life expectancy, we first use population 
models with changing mortality.  Then the four aggregate measures of mortality are 
calculated for England and Wales, Norway, and Switzerland for the years 1880 to 2000.  
CAL is found to be sensitive to past and present changes in death rates.  ACLE requires 
the most data, but gives the best representation of the survivorship of cohorts present at 
a given time.   
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1. Introduction  

A life table describes the mortality of a hypothetical birth cohort, and can summarize 
that experience in terms of life expectancy at birth (LE), i.e. the average number of 
years lived by the members of the life table cohort.  When a life table is based on cohort 
data, it can reflect the survivorship of an actual group of people.  In most cases 
however, life tables are based on mortality rates observed in a given year (or period).  
The period life expectancy from such a table can reflect the long term implications of 
recent behavior, but does not relate to the experience of any real cohort, and typically 
varies from year to year as death rates change.  The question addressed here is “What is 
the average life expectancy of cohorts alive in a given year?”  It is neither the period 
life expectancy nor the cohort life expectancy, and indeed is a quantity that has not 
previously been given a precise definition. 

Recently a significant paper by Bongaarts and Feeney (2002) opened a new debate 
on how to interpret period life expectancy when rates of death vary over time. They 
argue that the period LE exhibits a tempo bias when “a rising (falling) mean age of 
persons at the occurrence of an event results in a temporary decline (increase) in 
numbers of events during the period of change” (p. 20).  To correct for that bias, 
Bongaarts and Feeney (2002) advance an alternative measure that, in other work 
(Brouard 1986; Guillot 2003a), has been termed the cross-sectional average length of 
life (CAL, a translation from the French dure�e de vie moyenne actuelle).    

Vaupel (2002) and Guillot (2003b) have criticized that approach, citing its 
ambiguous definition of mortality tempo effects.  Yet there is no doubt that the period 
LE can be seriously misleading if it is interpreted as the life expectancy of any actual 
group of persons.  Here we do not attempt to adjust for tempo effects, but seek to 
advance the area by proposing a new measure that gives the average lifetime of a period 
population.  Before presenting that measure, we discuss existing summary measures at 
greater length.  

 
 

2. Aggregate measures of mortality 

The most commonly known measures of mortality are the cohort and period life 
expectancy. Period life expectancy at age a and time t is calculated as the person-years 
lived above age a divided by the number surviving from birth to age a.  For example, 
the period life expectancy at birth at time t can be expressed as  
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where ),( tapl  is the period survivorship function at age a at time t and ω  is the highest 

age attained. Letting the radix of the table be one, i.e. 1),0( =tpl , we see that ),( tapl  is 

the period life table probability of surviving from birth to age a.  Denoting the force of 
mortality at age a and time t by ),( taµ , we can write the life table probability of 
surviving from birth to age a as 
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The subscript  p in equations (1) and (2) is used to denote period measures. In the 

rest of the text, subscript c will be used to identify cohort measures. For example, 
),( atac −l  denotes the life table probability of surviving from birth to age a for the 

cohort born at time t-a, i.e. 
 

).),(exp(),(
0
∫ +−−=−
a

c dxxatxata µl     (3) 
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Since at exact age a and time t the cohort and period forces of mortality are 

identical, ),( taµ  does not have a subscript.  
The cross-sectional average length of life, CAL, incorporates the past and present 

mortality of all active cohorts.  Consider a population that has a constant number of 
births every year, but where mortality is free to vary over age and time.  The number of 
persons in that population at time t is CAL(t).  Mathematically, it can be expressed as 
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In the stationary population of the life table, with its constant age-specific 

mortality, CAL equals life expectancy. In general, however, the size of CAL(t) differs 
from a population’s period LE at time t. Because in most contemporary populations 
mortality in past periods is generally greater than mortality at recent time t, the survival 
probabilities that are summed to produce CAL(t) are usually lower than those that are 
summed to yield the period LE.  As a result, the size of CAL typically understates the 
current level of period mortality, that is the level reflected by the period LE. 

 
 

3. ACLE: A new measure of longevity 

At its core, the criticism of period life expectancy is that it fails to provide an accurate 
measure of the actual longevity of the persons in the population being examined.  At 
present, however, no measure in demography does that, including CAL (which does not 
incorporate mortality after the specified period).   Here we fill that gap by presenting a 
new measure that does capture the average LE of active cohorts. 

Our approach is straightforward: we specify a weighted average of the life 
expectancies at birth of all active cohorts.  Weights are needed because it is not 
reasonable to give equal emphasis to newborns and to the few who survive to high ages.  
At every age, the weight we propose is the actual cohort probability of survival to that 
age.  In effect, we let cohort survivorship provide the weights for our measure of 
average cohort survival.   

Let ACLE(t) denote this Average Cohort Life Expectancy.  We can then write 
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where ),( ataCCAL −  denotes the density distribution of the cohort survival probabilities, 
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Bongaarts (2004) defined an alternative measure ACLEp, using period deaths 
instead of cohort survivors as weights.  Such a measure is likely to yield values quite 
different from ACLE, and will in some (though not all) cases approximate CAL.  There 
are two reasons why we believe that alternative is not attractive.  First, it seems much 
more logical to weight a measure of cohort survivorship by cohort survivors rather than 
by deaths.  Second, some populations may have deaths occurring only at several high 
ages.  If deaths were used as weights, only those few older cohorts would determine 
average cohort survivorship, defeating the purpose of having a measure that reflects the 
longevity of all living cohorts. 

The value of our ACLE(t) is the average of the life expectancies of the cohorts 
alive in year t, with those expectancies weighted by the CAL population.  When 
mortality is constant over time, period life expectancy, cohort life expectancy, ACLE, 
and CAL are all equal.  When mortality is declining, ACLE will be less than the LE of 
the youngest cohort, but greater than period LE which in turn is greater than CAL. 

To find ACLE, we must know the ultimate life expectancy of all active cohorts, 
information not available for at least a century after the time in question.  Yet the need 
for that cohort data is inescapable, since the purpose of the measure is to determine 
average cohort life expectancy.  Three points should be made.  First, ACLE provides a 
precise and conceptually clear measure of average cohort LE.  When it can be 
calculated, it provides a “gold standard”, i.e. a clear, conceptually based measure that 
best captures the idea of an average cohort life expectancy.  When ACLE cannot be 
calculated, it identifies what needs to be estimated.  Second, in the context of dynamic 
population models it can be examined under different mortality scenarios and its 
performance compared to that of alternative measures.  Third, given the continuing 
interest in cohort mortality and future mortality trends, the ACLE standard helps to 
focus attention on how best to estimate future mortality and to assess the errors in such 
estimates. 

To gain a better appreciation for how cohort LE, period LE, CAL and ACLE differ 
from each other, the following section examines their values in the context of models 
with changing mortality.  
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4. Cohort and period models of changing mortality 

Model populations provide a useful way to examine the sensitivity of aggregate 
measures to known, patterned changes in period and cohort mortality. To begin, we 
assume a simple Gompertz form for the force of mortality and write 

 

µ(a,t) = exp[ A + ba − f(t) ]     (7) 
 

where f(t) is a known function of time.  To start with the simplest dynamic model, we 
assume that f(t)=0 for t≤0, and f(t)=k for t>0, where k can be any constant. 

Figures 1a and 1b show values of period and cohort LE, ACLE, and CAL for k=1 
and k=−1.  In the Gompertz model, we take b=.1, the conventional value for the pace of 
mortality increase over age, and set A=−11.2146608 so µ(50,0)=0.002, a reasonable 
value for a contemporary low mortality population.  With b=.1, putting k=1 is 
equivalent to a mortality “set back” of 10 years, as a person aged x becomes subject to 
the mortality risk that characterized a person aged x−10. Similarly, k=−1 is equivalent 
to a mortality “set ahead” of 10 years. 

Figure 1 shows that at time 0, when mortality shifts, the cohort LE completes its 
gradual transition from the old to the new level, while the period LE abruptly moves 
from the old life expectancy at birth to the new.  At t=0, ACLE has completed most, but 
not all of its transition.  CAL begins its rise at time 0, when deaths depart from 1, and is 
the last measure to complete the transition. 
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Figure 1a: Cohort and period life expectancy, ACLE and CAL for a Gompertz 
mortality model with A= -11.2146608, b=0.1 and, beginning at time 0, 
k = 1 
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Figure 1b:  Cohort and period life expectancy, ACLE and CAL for a Gompertz 
mortality model with  A= -11.2146608, b=0.1 and,  
beginning at time 0, k = -1 
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Figure 2a shows the total number of deaths occurring in the population each year, 
given one birth a year.  Before time 0, there is one death each year.  At t=0 and k=1, 
there is an immediate fall to 0.38 deaths, with the annual number of deaths then 
increasing over time and eventually returning to one.  Each year, CAL grows by the 
amount that deaths are less than 1. 

Wachter (2004) showed that CAL(t) is a weighted average of period life 
expectancies for year t and preceding years.  In this simple case, with only 2 period life 
expectancy values, it is possible to determine the weights involved.  Specifically, we 
have 

 

CAL(t) = w(t) LE(−) + [1−w(t)] LE(+)    (8) 
 
Where LE(−) and LE(+) are the old and new life expectancies, respectively, and 

w(t) is the time t fractional weight exerted by LE(−).  
Figure 2b shows that after t=0, w(t) declines to 0 in a roughly exponential fashion, 

with larger values of k associated with slower declines.  The decline in w(t) need not be 
rapid.  When k=1 and t=20, the rates prevailing 20 or more years earlier still exert a 
weight of 0.24.   

Let us now turn to an extension of the Gompertz model of mortality that traces a 
constant rate of decline over time. The basic model has been discussed by Vaupel 
(1986) and extended by Schoen, Jonsson and Tufis (2004).  In that model, the force of 
mortality at age a and time t is defined as  

 
ctbaAeta −+=),(µ ,       (9) 

 
where A and b retain their previously specified values.  The annual rate of mortality 
improvement at all ages, c, is examined at two values: 0.008, less than the recent rate of 
mortality decline in the West, and 0.015, a closer approximation to many recent 
declines.   
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Figure 2a: Total number of deaths in a population with one birth each year and 
Gompertz mortality shifting by k at time 0 
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Figure 2b: Values of the weighting function w(t) in the equation of CAL(t) for a 
Gompertz mortality model with a shift in mortality by k at time 0; 
CAL(t) = w(t) LE(-) + [1-w(t)] LE(+) 
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Figure 3 shows cohort and period LE, CAL, and ACLE for times 0 through 200 
years based on equation (9) and our chosen parameter values for A, b, and c.  All four 
measures are represented by virtually straight lines that appear to be parallel.  At any 
given year t, the cohort life expectancy for those born in that year is the highest of the 
four measures, followed by ACLE, period life expectancy and CAL.  The difference 
between CAL and period life expectancy is particularly small (e.g. about 0.8 years for 
c=0.008), and the LE/CAL ratio is about 1+c.  The slope of the curves depends on 
parameters b and c.  For period LE and CAL, the slope is close to c/b.  For cohort LE, it 
is about c/(b–c), so over time the cohort LE line diverges from CAL and period LE. 
ACLE is roughly the arithmetic mean of the cohort and period life expectancies, and its 
slope approximates the average of the slopes of those expectancies.  The ratio of ACLE 
to the cohort LE is close to constant over time, at a value of 1−c/(2b).   

Goldstein and Wachter (2005) studied gaps and lags between cohort and period 
life expectancies. They found that in populations with steady mortality declines the gap 
between cohort and period life expectancies at any point in time remains roughly 
constant, while the time lag increases.  The time lag, λ, indicates the number of years 
between the time that cohort LE reaches a given level and the time period LE attains 
that level.  In the model of Figure 3a, λ ranges from 74 years earlier at time 0 to 90 
years earlier at time 200, while in the model of Figure 3b those lag values are 74 and 
103 years, respectively.  Over those years, however, the gap only increases from 6.3 to 
7.7 years in Figure 3a and from 12.8 to 18.1 years in Figure 3b.   

Now, let us modify the mortality model in equation (9) to allow cyclical 
fluctuations over time. The new expression for the force of mortality can be written    

 

    ))sin((),( θµ tdctbaAeta +−+= ,     (10) 

 
where 60/2πθ =  (about 0.10472) yields a cycle (from peak to peak) of 60 years, and 
d=.25 is a constant that moderates the amplitude of the oscillations.   
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Figure 3a: Cohort and period life expectancy, ACLE, and CAL for a continually 
declining mortality model with  A= -11.2146608, b=0.1 and c=0.008 
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Figure 3b: Cohort and period life expectancy, ACLE, and CAL for a continually 
declining mortality model with  A= -11.2146608, b=0.1 and c=0.015 

80

90

100

110

120

130

140

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Year / cohort year of birth

V
a
lu

e
s 

of
 m

o
rt
al

ity
 m

ea
su

re

80

90

100

110

120

130

140

Cohort LE
Period LE
ACLE

CAL 

 



Schoen & Canudas-Romo: Changing mortality and average cohort life expectancy 

128  http://www.demographic-research.org 

Figure 4a presents values of the cohort and period LE, CAL, and ACLE calculated 
on that basis.  Those trajectories contrast markedly with those shown in Figure 3.  The 
cohort LE now cycles modestly, though it is still the highest of the four measures.  
However, CAL and the period LE alternate as the lowest measure, as they cycle with 
different phase shifts and the period LE has a slightly larger amplitude.  The smoothest 
of the four measures is ACLE.   As an average of cohort LEs, it cycles with an 
amplitude markedly smaller than that of the cohort LE.   

The continually declining mortality model in Figure 3, which is based on equation 
(9), will yield similar results (though with a different rate of change over age) if rates 
change over cohorts instead of periods.  That is not the case with Figure 4a, which is 
based on equation (10).  To examine patterns when mortality changes cyclically over 
cohorts, we can write  

 

    )))sin((()(),( θµ atdctacbAeta −+−++= .     (11) 

 
The coefficient of the age variable is (b+c) because age and time move together in 

the cohort perspective. 
Figure 4b shows the results when cohort rates fluctuate sinusoidally as described 

by equation (11).  The results are similar to those in Figure 4a, but here the cohort LE 
cycles with the largest amplitude.  Period LE and CAL alternate in the last position, 
though CAL is usually lower.  Again, ACLE is the second highest measure and shows 
the smallest amount of fluctuation. 
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Figure 4a: Cohort and period life expectancy, ACLE, and CAL for a 
sinusoidally declining mortality model with period cyclical 
fluctuations of 60 years and parameters A= -11.2146608,  
b=0.1 and c=0.008 
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Figure 4b: Cohort and period life expectancy, ACLE, and CAL for a 
sinusoidally declining mortality model with cohort cyclical 
fluctuations of 60 years and parameters A= -11.2146608, 
b=0.1 and c=0.008 
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Guillot (2003b:20) suggested that tempo distortions in mortality be defined by  
adapting the approach used by Ryder (1964) in specifying timing effects in fertility.  
Accordingly, tempo effects on period measures are defined as those produced by 
changes in the timing of deaths within cohorts that do not affect the cohort LE.  
Following that definition, Figure 5 illustrates timing effects by introducing a tempo 
change, but no quantum change, in cohort mortality.  The initial 25 and last 125 birth 
cohorts in those 200 cohorts are subject to the force of mortality  

 
µ(a,t+a) = exp[ A + ba]      (12) 
 

where A and b have the same values as before.  However, the cohorts born in years 26 
through 75 have different parameters, specifically A*=10eA=–8.91202 and 
b*=0.067867.  As intended by that deliberate choice of b*, those parameter changes 
increase mortality at younger ages, decrease mortality at older ages, but leave cohort LE 
fixed at 83.61 years for all cohorts.   

 
 

Figure 5: Cohort and period life expectancy, ACLE, and CAL for a model with 
tempo changes in cohort mortality between years 25 and 75 but a 
fixed cohort LE 
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As a result, Figure 5 shows that cohort LE is a horizontal line.  As evident from 
equations (6), a constant cohort LE produces ACLE values constant at that level.  It 
follows that tempo distortions, as defined here, do not affect ACLE.  However, those 
changes in timing substantially impact both the period LE and CAL.  During years 80-
120, both period LE and CAL decrease in size by more than 2, while during years 140-
170, both increase by more than 2.  The fluctuation in CAL was only a bit less than that 
in the period LE, indicating that in some circumstances CAL is nearly as susceptible to 
tempo effects as is period life expectancy.  

Mortality trends and fluctuations have long characterized human demographic 
history.  As shown in the above models, under those conditions cohort LE, period LE, 
and CAL can differ substantially from ACLE, the average life expectancy of the cohorts 
present in a given year.  Next we examine those four measures of mortality in the 
context of three Western countries with a long history of data on mortality.   

 
 

5. ACLE in England and Wales, Norway, and Switzerland 

The following illustrations are based on data derived from the Human Mortality 
Database (2004).  Estimates were made to calculate the average cohort life expectancy 
for years where full data on all active cohorts were not available.  To complete cohort 
experience for years before the first available data year, we used the rates of the earliest 
available year.  For cohorts not extinct by the latest data year, two scenarios were used.  
Scenario A completed cohort experience using death rates from the last available 
period. Scenario B completed cohort experience by assuming that, at all ages, the death 
rates of the latest period declined by c=0.005 annually.  Hence, if the last data year is 
2000, then the calculations begin with the age-specific death rates for that year, 
µ(a,2000).  For age a and for year t > 2000, the force of mortality is given by 

 

( ) )2000()2000,(, −−= tceata µµ .     (13)  

 
Figures 6a, 6b, and 6c present the results for constant rate Scenario A, showing 

the cohort and period LE, CAL and ACLE for England and Wales, Norway and 
Switzerland.  Similar patterns are observed in all three countries.  The cohort LE has the 
highest value of all four aggregate measures.  With the last available year used for 
future mortality, cohort and period LE converge to the same value.  If that constant rate 
pattern continues, all four measures will converge.  Initially, the period LE and ACLE 
alternate as the second largest value, with CAL having the lowest value.  More recently, 
as mortality declines continued, ACLE has consistently been between the period LE and 
CAL.  
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Figure 6a: Cohort and period life expectancy, ACLE, and CAL for England and 
Wales from 1880 to 1998, with cohorts completed preserving the 
mortality observed in the last period 
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Figure 6b: Cohort and period life expectancy, ACLE, and CAL for Norway 
from 1880 to 2000, with cohorts completed preserving the mortality 
observed in the last period 
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Figure 6c: Cohort and period life expectancy, ACLE, and CAL for Switzerland 
from 1880 to 2000, with cohorts completed preserving the mortality 
observed in the last period 
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Figures 7a, 7b, and 7c present the results for declining future mortality Scenario 

B, showing our four measures for England and Wales, Norway, and Switzerland.  With 
mortality continuing to improve at 0.5% per year, the cohort LE and ACLE show higher 
levels in Figure 7 than in Figure 6 from 1920 through the latest year shown.  
Consequently, ACLE exceeds the period LE during the last decades of the century.  
Differences between Figures 6 and 7 are fairly modest in all three countries.  
Nonetheless, with mortality steadily declining by more than 0.5% in recent decades, 
Figure 7 suggests that current life expectancies in many Western countries may 
understate the average life expectancy of living cohorts. 
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Figure 7a: Cohort and period life expectancy, ACLE, and CAL for England and 
Wales from 1880 to 1998, cohorts completed by assuming a 
continually declining mortality model with c=0.005 
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Figure 7b: Cohort and period life expectancy, ACLE, and CAL for Norway 
from 1880 to 2000, cohorts completed by assuming a continually 
declining mortality model with c=0.005 
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Figure 7c: Cohort and period life expectancy, ACLE, and CAL for Switzerland 
from 1880 to 2000. The cohorts have been completed following a 
continually declining mortality model with c=0.005 
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6. Discussion and conclusions 

Recent discussions of mortality dynamics have noted that period life expectancies may 
not provide an accurate measure of the longevity of the population living in any given 
year. To provide such a measure, this paper presents ACLE, a new aggregate measure of 
survivorship.  As derived, ACLE is a weighted average of the life expectancies of the 
cohorts present in a given period, with each cohort weighted by its probability of 
survival to that given year.   

Using population models with changing mortality and data from three Western 
European countries, we compared ACLE with period and cohort life expectancies and 
with CAL, a measure combining period and cohort mortality that has been advanced as 
an index of survivorship.  ACLE is relatively insensitive to both period and cohort 
fluctuations in death rates, and is unaffected by changes in the timing of mortality that 
do not change cohort life expectancy.  In contrast, CAL was found to be more sensitive 
to cohort and period fluctuations and to be quite susceptible to distortions from 
mortality timing effects.  In models with continually declining mortality, and in 
contemporary Western populations with a long history of mortality declines that can 
reasonably be expected to continue, ACLE is larger than period life expectancy.  
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However, CAL is consistently less than period LE.  If interpreted as a measure of tempo 
distortion, CAL implies a downward level adjustment in the context of sustained 
increases in longevity. 

 The value of ACLE is that it provides a quantitative, conceptually clear, and 
methodologically sound definition for the intuitive but vague idea of the average 
longevity of cohorts alive in a given year.  ACLE demands data that span over two 
centuries, but those data are essential given what it seeks to measure.  The necessary 
data are in fact available for a number of populations, and are fully knowable in the 
context of population models.  Calculations for contemporary populations require 
estimates of the future course of mortality, but that is an active area of research and, 
provisionally, alternative scenarios can be used to assess the range of plausible 
outcomes.   

Cohort LE only represents one cohort, period LE is sensitive to timing changes, 
and CAL is not only sensitive to tempo effects but generally understates the period level 
of longevity. None of these problems are seen in ACLE, which reflects actual trends 
while minimizing fluctuations.    
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Appendix:  

Decomposing the change over time in ACLE 

A further analysis of the dynamics of ACLE and its decomposition show that typically 
the main component of change in this measure reflects changes in cohort life 
expectancies, not the survivorship weights used.  The change over time in ACLE can be 
decomposed using the method introduced by Vaupel and Canudas-Romo (2002).  It is 
possible to apply this decomposition because ACLE(t) can be written as an average of 
cohort life expectancies weighted by cohort probabilities of survival, i.e. by 
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The change in this average is due to two components: first the average change in 

cohort life expectancies, or the direct change, and second changes in the distribution of 
the probabilities of survival, or the compositional change.  Following the Vaupel and 
Canudas-Romo (2002) notation of a bar and dot over a variable to denote the average 
over age and the derivative over time, respectively, we obtain 
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where the average change in cohort life expectancies is expressed as 
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The expression ),( atarc −  denotes cohort age-specific growth rates, i.e. 
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l , and the covariance term is calculated as 
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Table A-1: Change over time in ACLE and its decomposition:  
England and Wales 

Year ACLE ACLE Change in Average Covariance 
Equation 

(11) 

t t-5 t+5 ACLE change   

    [1] [2] [1+2] 

1905 46.891 49.283 0.239 0.246 -0.007 0.239 

1915 49.283 52.234 0.295 0.304 -0.009 0.295 

1925 52.234 55.864 0.363 0.375 -0.012 0.363 

1935 55.864 59.866 0.400 0.418 -0.018 0.400 

1945 59.866 63.925 0.406 0.434 -0.028 0.406 

1955 63.925 67.891 0.397 0.425 -0.028 0.397 

1965 67.891 71.457 0.357 0.392 -0.036 0.356 

1975 71.457 74.654 0.320 0.357 -0.038 0.320 

1985 74.654 77.394 0.274 0.316 -0.042 0.274 

1994* 77.394 79.251 0.232 0.271 -0.039 0.232 
 
*The data only go to 1998, therefore the last period is for eight instead of ten years 
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Table A-2: Change over time in ACLE and its decomposition: Norway 

Year ACLE ACLE Change in Average Covariance 
Equation 

(11) 

t t-5 t+5 ACLE change   

    [1] [2] [1+2] 

1905 51.943 54.216 0.227 0.226 0.001 0.227 

1915 54.216 56.965 0.275 0.274 0.001 0.275 

1925 56.965 60.244 0.328 0.330 -0.002 0.328 

1935 60.244 63.716 0.347 0.357 -0.010 0.347 

1945 63.716 67.110 0.339 0.368 -0.029 0.339 

1955 67.110 70.466 0.336 0.368 -0.032 0.336 

1965 70.466 73.606 0.314 0.342 -0.028 0.314 

1975 73.606 76.371 0.277 0.308 -0.031 0.276 

1985 76.371 78.722 0.235 0.264 -0.029 0.235 

1995 78.722 80.712 0.199 0.221 -0.022 0.199 

 
 
 

Table A-3: Change over time in ACLE and its decomposition: Switzerland 

Year ACLE ACLE Change in Average Covariance 
Equation 

(11) 

t t-5 t+5 ACLE change   

    [1] [2] [1+2] 

1905 52.977 55.063 0.209 0.243 -0.043 0.201 

1915 55.063 57.645 0.258 0.280 -0.027 0.252 

1925 57.645 60.611 0.297 0.309 -0.015 0.294 

1935 60.611 63.673 0.306 0.312 -0.006 0.306 

1945 63.673 66.920 0.325 0.342 -0.016 0.326 

1955 66.920 70.372 0.345 0.383 -0.038 0.345 

1965 70.372 73.726 0.335 0.383 -0.048 0.335 

1975 73.726 76.706 0.298 0.352 -0.054 0.298 

1985 76.706 79.272 0.257 0.305 -0.048 0.256 

1995 79.272 81.431 0.216 0.253 -0.037 0.216 
 
Discrepancies between the change in ACLE and the results in the last column arise because discrete data over a 10-year period are 

used to approximate derivatives (see Canudas-Romo, 2003) 
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Tables A-1 to 3 show the annual change in ACLE for each decade of the twentieth 
century, and its decomposition, for three countries: England and Wales, Norway and 
Switzerland. The first column shows time t, the midpoint of the 10 year interval 
examined.  The next two columns give values of ACLE at the beginning (time t-5) and 
the end (t+5) of the interval. Column four is the annual change in ACLE. That change is 
then decomposed into two components: the “average change” (or the “direct” change) 
and the “covariance” (or the “compositional” change).  They are calculated from 
equations (16) and (17), respectively.  Those two components sum to the figure shown 
in the last column, which gives the value that follows from equation (15).  That final 
column does not exactly reproduce the “Change in ACLE” column because of 
inconsistencies between the continuous equations and the discrete data (for a discussion 
and techniques for minimizing discrepancies, see Canudas-Romo 2003). 

For the three countries considered, Tables A-1 to 3 show that the direct change 
explains most of the change in average cohort life expectancies over time.  The 
contribution of the compositional component is minor and almost invariably negative, 
partially offsetting the increase in ACLE.  

The pre-eminence of the direct changes in cohort life expectancy over time and the 
relative unimportance of the weights used was confirmed by an analysis using an 
alternative weighting function. Instead of using cohort survival probabilities, period 
survival probabilities were used as weights and an average cohort survival measure, 
ACS, was created.  The decomposition of the ACS reinforced the importance of the 
direct effect.  Although ACS gives results similar to ACLE, the rationale for using those 
weights was weaker, and the ACS was abandoned. 


