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a research article

Tempo and its Tribulations
Kenneth W. Wachter

Abstract

Bongaarts and Feeney offer alternatives to period life expectancy with a set of demo-
graphic measures equivalent to each other under a Proportionality Assumption. Under
this assumption, we show that the measures are given by exponentially weighted mov-
ing averages of earlier values of period life expectancy. They are indices of mortality
conditions in the recent past. The period life expectancy is an index of current mortality
conditions. The difference is a difference between past and present, not a “tempo distor-
tion” in the present. In contrast, the Bongaarts-Feeney tempo-adjusted Total Fertility Rate
is a measure of current fertility conditions, which can be understood in terms of a process
of birth-age standardization.
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1. Tempo

In the study of fertility, a distinction between quantum and tempo in the spirit of Norman
Ryder (1964) is universally acknowledged. A woman may have more or fewer children,
and she may have them earlier or later in her life. It makes sense to ask for period mea-
sures of total fertility which adjust for changes in the timing of childbearing independent
of changes in numbers of children at the individual level. John Bongaarts and Griffeth
Feeney (1998) provided such a fertility measure which has gained many adherents, in-
cluding the present author.

In the study of mortality, no distinction between quantum and tempo exists at the in-
dividual level. A person has one death, his or her own, and mortality pertains to whether
death comes early or late. It makes no obvious sense to adjust away the effects of changes
in the timing of death, thus adjusting away changes in mortality itself. New papers by
Bongaarts and Feeney (2002) and (2003) came as a surprise, offering a family of mea-
sures put forward to adjust period life expectancy for effects which they called tempo
distortions. The different measures in the family coincide with each other under a con-
dition on the age and time-specific hazard rates called the “Proportionality Assumption”
which the authors find to be approximately satisfied by adult mortality schedules in vari-
ous developed countries over some recent decades.

Any measure measures something. The question is whether the something being mea-
sured is a version of current period life expectancy freed from some kind of distortion.
This paper puts the spotlight on a representation which helps in visualizing what the new
measures do measure. The new measures do not measure current mortality conditions but
rather the cumulative effects of earlier mortality conditions. The period life expectancy
does measure current mortality conditions.

The words “current conditions” are used here in their ordinary English-language sense.
Current mortality is the mortality that can be currently observed by counting deaths
and counting person-years at risk. An alternative usage introduced by Vaupel (2002)
in which “current conditions” is used as shorthand for “current latent conditions” in a
latent-structure representation is discussed in Section 6.

The representation of the Bongaarts-Feeney measures takes the form

M(t) ≈
∫ t

−∞
wt(τ)e0(τ)dτ (1)

Heree0(t) is period life expectancy at timet. (In applications,e0 is replaced bye30 since
the approach is intended solely for adult mortality.)M(t) is a Bongaarts-Feeney measure
of adjusted life expectancy. For eacht,wt(τ) is a probability distribution defining weights
over a set of lagged time periodsτ < t. As functions of the lags = t− τ , the weights are
nearly exponential and nearly independent oft.
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The representation is an approximation which holds to first order in the time derivative
of M under the hypothesis that Bongaarts and Feeney’s Proportionality Assumption is
sufficiently nearly satisfied that the different measures in the family are equivalent to each
other within the limits of the approximation. Details are spelled out in Section 3.

The representation shows that the Bongaarts-Feeney measureM is a weighted av-
erage of periode0 values from the recent past. The period life expectancy itself at
time t depends only on current age-specific hazard rates for timet. The Bongaarts-
Feeney measure depends on past as well as current age-specific hazard rates. When
longevity has been increasing, past values ofe0 are lower than current values, and the
Bongaarts-Feeney measure averages over these lower past values and produces a value
below present-daye0. When longevity has been decreasing, past values exceed current
values, and the Bongaarts-Feeney measure averages over these higher past values and
hovers above present-daye0.

The word “distortion” is out of place when contrastingM to e0. The measures mea-
sure different things. If one cares about average mortality levels in the recent past, one
can use one of the Bongaarts-Feeney measures. If one cares about mortality levels under
current conditions, one can use the period life expectancy.

The representation (1) gives concrete form to the general observation that the Bongaarts-
Feeney mortality measures are functions not solely of current mortality but also of the
population age structure that would be produced by past mortality conditions given a hy-
pothetical constant stream of prior births. This dependence was pointed out in their initial
paper (2002, p. 23). Bongaarts and Feeney noted that their adjusted measure could not
be calculated directly from period hazard rates “becauseµ∗(a, t) [their adjusted hazard
rates] are in general not observable”. They discussed a need for a century or more of
age-specific death rates for their calculations.

In this same early paper, Bongaarts and Feeney (2002, Eq. 12), introduced a differen-
tial equation (originally under Gompertzian assumptions) which agrees to first order with
equation (7) of Section 3. They imposed a boundary condition which allowed them to es-
timate values of their measure at each timet from the sequence of prior values of period
life expectancy, in effect implementing a numerical calculation of the representation (1).
The equation forM(t) in terms of coefficient values for timet is a differential equation,
not an algebraic equation. It is therefore not a recipe for calculating the value ofM at time
t solely from period information for timet. The solutionM is only defined with respect
to the boundary conditions and time trajectories of the coefficients. This dependence on
the past is the fundamental property of the Bongaarts-Feeney mortality measures.

Definitions of the measures are given in Section 2. The representation is presented in
Section 3 with examples in Section 4 and discussion in Section 5. Proposals to relate the
Bongaarts-Feeney measures to latent structure representations of mortality are analyzed
in Section 6. Unlike the adjusted life expectancies, Bongaarts and Feeney’s adjusted total
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fertility measure at a timet depends only on age-specific fertility rates in an arbitrarily
small neighborhood oft. It is independent of population age structure and independent
of past levels of fertility. This fundamental difference between the proposed mortality
adjustments and the fertility adjustments precludes any close analogy between them. The
difference is highlighted in Section 7, which presents an interpretation of the fertility
adjustments in terms of a process of birth-age standardization.

2. Measures

Clarity is promoted by expressing the measures under discussion in standard demographic
notation.
µ(a, t) is the hazard rate at agea at timet;
N(a, t) = N(0, t) exp(− ∫ a

0
µ(x, t − a + x)dx) is the number of population members

ageda at timet expressed as a density with respect toda dt;
N(0, t) = 1 is a normalization on initial cohort size which keeps the number of births

per unit time constant at unity;
e0(t) =

∫
exp

(− ∫ a

0
µ(x, t)dx

)
da is the period expectation of life;

d(a, t) = N(a, t)µ(a, t) is the count of deaths at agea and timet;
D+(t) =

∫
N(a, t)µ(a, t)da =

∫
d(a, t)da is the period count of total deaths;

N+(t) =
∫
N(a, t)da is the period total population;

The basic condition on the population distributionN(a, t) is the normalization which
sets the size of every cohort at birth equal to unity, equivalent to dividing the numbers aged
a at timet by the numbers aged0 at timet− a for all a andt. Given this normalization,
the measuresM1 . . .M4 introduced in the notation of theirPNAS article (Bongaarts and
Feeney, 2003) correspond to familiar population quantities:

• M1 is the total population countN+(t), equal to the “Cross-Sectional Average
Length of Life”CAL(t) introduced by Nicolas Brouard (1986) and Michel Guillot
(2003);

• M2 is the period mean age at death,MAD(t) in the terminology of Bongaarts and
Feeney (2005), given by

∫
aN(a, t)µ(a, t)da/D+(t);

• M3 is the period life expectancye0(t);
• M4 is an adjusted life expectancy defined by

M4(t) =
∫

exp

(
−
∫ a

0

µ(x, t)
1 − d

dtM1(t)
dx

)
da (2)

In Bongaarts and Feeney (2005), the derivative ofM1 in (2) is replaced by the deriva-
tive ofM2, producing a closely related measure which might reasonably be calledM5.
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The total population count changes over time by the addition of births and subtraction
of deaths, so the time derivative ofN+(t) = M1(t) = CAL(t) is 1−D+(t). Dividing the
hazard rates for timet at every age by the count of total deaths, retaining an unchanged
populationN(a, t) at risk, resets the total deaths to unity. In other words, the rates inside
the integral in the definition ofM4 are rates which, given the age structure, would make
period deaths equal normalized period births. Caution is advisable in interpreting these
measures. The measureCAL does not always correspond to the statistical expectation
of a waiting time, even though the formula might seem to suggest so. The measureM4

employs a proportional adjustment to hazards, whether or not hazards have been changing
proportionally in the past.

The “Proportionality Assumption” of Bongaarts and Feeney (2003) is a condition on
the partial derivatives ofN(a, t) for all a andt in terms of a functionr(t) varying in a
neighborhood of zero:

∂N(a, t)
∂t

= −r(t)∂N(a, t)
∂a

(3)

(This r(t) is the same as1 − p(t) in Bongaarts and Feeney (2003, Eq. 6).) It should be
borne in mind that the condition expressed in terms ofN for given a and t involves a
whole family of constraints on the hazard ratesµ at earlier ages and earlier times which
produce the value ofN and its rates of change with age and time. It is not a local condition
confined to a neighborhood ofa andt.

Equation (3) determines a family of parallel curves giving contours of constantN
over time. The shape of the age distribution is preserved and shifted up or down as shown
in Bongaarts and Feeney (2003, p. 13133). Specifically, settingF (t) =

∫ t

0
r(τ)dτ ,

(3) provides for a vanishing time derivative forN(a + F (t), t), allowingN(a, t) to be
expressed in terms ofN(a, 0). The hazardsµ(a, t), defined from the partial derivatives
of the logarithm ofN at timet and hence from the partial derivatives at time zero, have
to take the form

µ(a, t) = (1 − F ′(t))ψ(a− F (t)) (4)

Hereψ is a non-negative function of agea vanishing for negativea, defined from deriva-
tives of the logarithm ofN at time zero.

Three other results proved in Bongaarts and Feeney (2003) follow readily from (3).
Integrating both sides of (3) with respect toa shows that the time derivative ofM1(t),
that is, ofCAL(t), is given byM ′

1(t) = 1 −D+(t) = r(t). Integrating
∫
ad(a, t)da =∫

aN(a, t)µ(a, t)da by parts yields the equalityM2 = M1. Writing the hazard rate
quotientµ(a, t)/(1 − r(t)) as the partial derivative with respect toa of − log(N(a, t))
shows thatM4 =M1.
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3. Representation of M

When the Proportionality Assumption holds, the equality ofM1,M2, andM4 allows us
to setM = M1 = M4 in the equation definingM4 and obtain a differential equation
satisfied by the common values ofM1,M2, andM4:

M(t) =
∫

exp

(
−
∫ a

0

µ(x, t)
1 − d

dtM(t)
dx

)
da (5)

When the Proportionality Assumption does not hold exactly, this equation can also be
regarded as defining a measure of interest in its own right, which could take a place beside
M1, M2, andM4 in the family of measures. Indeed, the original measure introduced
in Bongaarts and Feeney (2002, 23) was a solution to a version of this equation. It is
expected that all these measures will be close to each other when the Proportionality
Assumption is approximately valid. One could, for example, stipulate thatµ(a, t) agree
to first order in some parameterε with the corresponding values for a set of hazard rates
that do satisfy the Proportionality Assumption. Weaker conditions might also suffice
to guarantee agreement to orderO(ε) among the measures. All that is at stake here is
approximate consistency among the different choices of measures in the family. Once
Equation (5) is in hand, the further arguments leading to our representation do not depend
on the Proportionality Assumption.

We obtain our representation by expanding the right-hand side of (5) in powers of
r = M ′(t) for eacht. The value of the right-hand side atr = 0 is the period life
expectancy. The inner integrandµ/(1 − r) in (5), being proportional toµ, brings into
play the familiar machinery of proportional hazards. As in Keyfitz and Caswell (2005,
80), the derivative with respect tor is a multiple of “lifetable entropy” given, atr = 0, by
minus the quantity

g(t) =
∫ ∞

0

e−
∫ a
0 µ(x,t)dx

∫ a

0

µ(y, t)dy da (6)

The result is an equation which is a first-order approximation to (5) whenM ′(t) is uni-
formly small:

M(t) = e0(t) − g(t)M ′(t) (7)

Under appropriate regularity conditions mentioned below, the differential equation (7)
has a unique solution bounded at minus infinity given by the integral already presented in
Equation (1):

M(t) =
∫ t

−∞
wt(τ)e0(τ)dτ (8)
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The time-dependent weightswt(τ) are given in terms of the reciprocals ofg(τ) by the
expression

wt(τ) = g−1(τ) exp
(−∫ t

τ

g−1(s)ds
)

(9)

For eacht, these positive weights integrate up to unity overτ and define a probability dis-
tribution. The inner integral in (9) can be used to define an alternative time-like coordinate
in terms of which the weights become exponential functions.

It is easy to verify that (1) formally satisfies (7) by differentiating the right-hand side
of (1) with respect to the argumentt which occurs both in the limit of integration and
in the functionwt(τ). The derivative ofwt(τ) with respect tot is −wt(τ)/g(t) and
wt(t) = 1/g(t).

e0(t) − g(t)M ′(t) = e0(t) − g(t) d
dt

∫ t

−∞
wt(τ)e0(τ)dτ

= e0(t) − g(t)wt(t)e0(t) − g(t)
∫ t

−∞

d

dt
wt(τ)e0(τ)dτ

= e0(t) − g(t)(1/g(t))e0(t) −
∫ t

−∞
−wt(τ)e0(τ)dτ

= M(t)

The functiong(t) is strictly greater than zero, so long as lifetable deaths in the period
lifetable are not concentrated all at a single age, which is always true ifµ is finite. We
assume further that1/g(t) ande0(t)/g(t) are integrable on bounded intervals and that
g(t) is bounded, making the weights in (9) finite and the solution in (8) the unique one
bounded at minus infinity (Coddington and Levinson, 1955, pp. 67,97).

In expanding the right-hand side of (5), we could have expressed the difference be-
tween the values at zero and atr using the derivative evaluated atr instead of at zero.
The answers would agree to first order. The derivative at zero from (6) has the advantage
of being a purely period measure. But the derivative atr, obtained from (6) by substitut-
ing µ/(1 − r) for µ, is also informative. It is exactly constant when the Proportionality
Assumption is exactly valid. It follows thatg(t) must be nearly constant so long as the
Proportionality Assumption is nearly valid, making the weightswt(t− s) as a function of
the lags nearly equal to a fixed exponential distribution(1/g) exp(−s/g).

A clear conclusion follows from this representation: This candidate for a “tempo-
adjusted expectation of life” is, to first order, an explicit moving average of recent past
values of the period expectation of life. When levels of survival are increasing, current
values ofe0(t) exceed past values. What Bongaarts and Feeney are interpreting as a
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“tempo distortion” is simply the difference produced by focussing on the present instead
of focussing on the recent past.

Period life expectancy is sensitive to sudden changes affecting mortality at many ages.
It is meant to be so. That is an advantage, not a drawback. When period life expectancy
falls, deaths are surging. People are dying. It is no mirage or distortion of reality.

A rise or fall in hazard rates concentrated in time but spread over many ages will have
effects spread over many cohorts, so a large temporary change in period life expectancy
should and does correspond to a suite of small changes in cohort life expectancy for many
cohorts. Averaging period measures over a stretch of time that includes large parts of
the lifespans of many cohorts naturally leads to values in line with the average values
of the corresponding cohort measures. The retrospective averaging implemented by the
Bongaarts-Feeney measures has this kind of outcome. The period life expectancy, for its
part, is a faithful indicator of current conditions.

4. The Moving Average

To see how the representation of the Bongaarts-Feeney measures works out in practice,
consider Swedish female adult mortality, example B of Bongaarts and Feeney (2003, Fig-
ure 6). The measures are only meant to apply after about age 30, so we let agea = 0 cor-
respond to age 30 and condition on survival to that age. Single-year age-specific mortality
rates from 1861 to 2001 are taken from the Human Mortality Database (2004) assembled
by John Wilmoth at Berkeley, allowing calculation ofCAL andMAD for ages above 30
from 1941 onwards.

In these Swedish data, the entropy measureg (for ages above 30) is close to9 back
to about 1945, a level reached after a gradual long-term drop from Nineteenth Century
values around13. The gradual changes ing imply slight changes in exponential weights,
but for measures after 1941 the moving average (8) with changing weights (9) is only
slightly different from a moving average with fixed exponential weights set withg = 9.
(The mean difference is0.063 years and the maximum difference is0.186 years.) Thus we
are essentially dealing with a simple exponential distribution with a nine-year mean. The
Bongaarts-Feeney measuresCAL,MAD, andM4, where they agree with each other, are
given by a simple exponential weighted average of past values of period life expectancy,
with an average look-back time of9 years.

For example, consider the calculation ofM for t = 2001.0. The year from December
2000 back to January 2000 is the first year back. The weight for this year, applied to
period life expectancy centered at mid-year, is the integral of(1/9) exp(−s/9) between
0 and1, or e−0/9 − e−1/9. The weight for the second year back (1999) ise−1/9 − e−2/9,
etc. M is the weighted average, the sum of weights times life expectancies back over
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time:

M = (e−0/9 − e−1/9)e30(2000) + (e−1/9 − e−2/9)e30(1999) . . .
= (0.10516)(52.587) + (0.09410)(52.451) . . .
= 51.55

For 2001, comparingM to values ofCAL, MAD, andM4 calculated directly from
single-year mortality rates, we see that the weighted averageM = 51.55 years falls a
little aboveCAL = 51.43 years betweenM4 = 51.52 years andMAD = 51.58 years.
The period life expectancye30 is a year higher, at52.63 years.

It is instructive to see with formulas how the weighted average recovers the values of
CAL andMAD when the Proportionality Assumption holds. As before, we leta = 0
correspond to human age30. Thanks to (4), we haveµ(a, t) = (1 − F ′(t))ψ(a − F (t))
with a baseline age scheduleψ and a shift functionF (t) whose time derivative equals
the proportionality factorr(t). Values ofCAL andMAD at time zero are given by
η =

∫
exp(− ∫ a

0
ψ(x)dx)da and the values at timet include the shiftF (t):

CAL(t) =MAD(t) = η + F (t) (10)

The same Taylor expansion as in (7) for life expectancies under proportional hazards
yields

e0(t) ≈ η + F (t) + gF ′(t) (11)

Here the coefficientg can be set equal to the rescaled entropy derived fromψ which is
constant over time. It is given by formula (6) withψ(x− F (t)) in place ofµ(x, t). Since
ψ vanishes for negativea and the outer integral runs over alla, the formula is unchanged
whenF (t) is deleted from the arguments ofψ, leaving an expression independent oft.

The weights are given bywt(t− s) = (1/g) exp(−s/g). The weighted average is an
integral with respect to this exponential probability distribution whose mean isg:

M =
∫ ∞

0

e0(t− s)(1/g)e−s/g ds

=
∫

(η + F (t− s) + gF ′(t− s)) (1/g)e−s/g ds

= η + F (t) −
∫

(F (t) − F (t− s))(1/g)e−s/g ds

+
∫
F ′(t− s)) e−s/g ds

Integrating the third term by parts yields− ∫ F ′(t − s)e−s/gds, exactly cancelling the
fourth term, so that

M = η + F (t) = CAL(t) = MAD(t) (12)
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When the proportionality factorr(t) = F ′(t) is constant, we have the case of linear
shifts analyzed by Goldstein (2005) and by Rodriguez (2005). The graphs ofe0(t) and
CAL(t) = MAD(t) are parallel straight lines with sloper. Lagged life expectancy is
the linear functione0(t− s) = e0(0) + r(t− s). Its average ise0(0) + r(t− g) since the
average value fors is g. ThusCAL(t) comes out to be the lagged valuee0(t− g).

Wheng is calculated from a hazard function given by a Gompertz modelαeβa, we
haveg = (1/β) − (α/β)e0. The second term is usually two orders of magnitude smaller
than the first term, sog ≈ 1/β. Suppose that hazards change over time according to
a Gompertz model with constantβ and more or less exponentially decliningα(t) ap-
proximated, say, byα(0) exp(−rβt). Suppose also thatα(0) is small enough that young
mortality can be neglected or set to zero. Then the Proportionality Assumption comes
to be satisfied with something close to a linear shift of sloper. In principle the Propor-
tionality Assumption could hold under different, non-Gompertzian conditions, but in the
empirical examples known to the present author it seems to arise in this way.

Since the weights in the moving average representation fall off exponentially, the
remote past has negligible impact, and the full moving average can be replaced by an
average reaching back over a finite span of years. The representation is meant to hold to
first order inM ′. In the Swedish data,M ′ is on the order of0.15 and second-order terms
are on the order of0.02. A span of6g years, or54 years, includes all butexp(−6g/g) =
exp(−6) = 0.002 of the weight from the exponential distribution. Periods that represent
the early adult life experience of cohorts older than30 + 54 = 84 years have only minor
impact onCAL andMAD.

Mathematically speaking, when the Proportionality Assumption is only tenable for
some limited spant > T , the solution (8) to the differential equation (7) (which is the
solution vanishing at minus infinity) needs to be replaced by the solution satisfying an
appropriate boundary condition att = T , that is, one makingM(T ) = CAL(T ). The
moving average only reaches back toT and the term introduced by the boundary condition
tapers exponentially as time goes by.

Figure 1 shows mortality measures for Swedish women from 1941 to 2001, all calcu-
lated beyond age 30. The upper solid line is period life expectancy. The lower solid line
is CAL, trending steadily upward with an average slope of0.17 per year. The dashed
line forMAD hugsCAL from 2001 back to 1975 but separates from it at earlier times
just outside the range of years shown in Bongaarts and Feeney (2003, Figure 6B). The
separation signals failure of the Proportionality Assumption. The moving averageM is
the dotted line. The measureM4, not shown in the plot, is close toM before 1970 and
close toCAL after 1980. WhereCAL andMAD diverge from each other, the moving
averageM turns out to strike a balance between them.
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Figure 1: Mortality Measures for Swedish Women 1941-2001.
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5. Period Counts of Deaths

Period counts of deaths play an important role in the formulas for the mortality measures
and an important role in the analogies which Bongaarts and Feeney (2005) seek to de-
velop. In their papers they give a new name to the period count of deathsD+(t), calling it
the “Total Mortality Rate” or “TMR”. They liken this quantity to the Total Fertility Rate,
Total First Marriage Rate, and other indices for processes that, unlike mortality, admit a
distinction between quantum and tempo at the individual level.

Ordinarily, one would expect instead to define the “TMR” with a formula parallel to

http://www.demographic-research.org 211



Wachter: Tempo and its Tribulations

the formula for the TFR:

TFR(t) =
∫
f(a, t)da (13)

TMR(t) =
∫
µ(a, t)da (14)

The period count of deaths is a count, not a rate. Bongaarts and Feeney defend their
practice of calling it a rate by taking the usual denominator, those at risk of the event, and
adding on a set of “ghosts”, those who would have been at risk had they not exited from
the population by dying. The same construction can be applied with fertility to obtain
period counts of birthsB+(t) from the fertility rates, albeit counts that need not agree
with initial cohort sizes:

B+(t) =
∫
N(a, t)f(a, t)/N(0, t− a)da (15)

D+(t) =
∫
N(a, t)µ(a, t)/N(0, t− a)da (16)

The tempo adjustment for fertility in Bongaarts and Feeney (1998) is an adjustment to the
TFR, notB+(t), whereas the tempo adjustments for mortality in Bongaarts and Feeney
(2003) involve adjustments toD+(t), not to the TMR, which is generally infinite.

The normalization which enforces a constant unit stream of births into the population
means that the population is increasing when and only whenD+(t) is less than1, that is,
when births exceed deaths, and decreasing whenD+(t) > 1. This quantityD+(t), the
period count of deaths per unit birth, is less than1 if mortality has been higher in the past
than in the present. The higher death rates of the past deplete the surviving population at
risk of dying and thus reduce current deaths. This outcome is not a tempo effect. It can
remain true even if current mortality is increasing rather than declining.

Replacement of the hazard ratesµ(a, t) by ratesµ(a, t)/D+(t) in the formula forM4

does, as mentioned, bring total deaths into equality with normalized total births so long as
the population age structure is retained unaltered. However, this transformation cannot be
achieved by a systematic reassignment of times of death, because any reassignment nec-
essarily alters the population age structure. The substitution underlying theM4 measure
is a form of standardization for the total flow of deaths which is difficult to interpret in
terms of any assumptions about individual experience.

6. Current Latent Conditions

A question arises as to whether measures equivalent or similar to those of Bongaarts and
Feeney might be definable from some latent structure representation of mortality. Vau-
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pel (2005) writes about such possibilities. An example predicated on the heterogeneous
frailty model of Vaupel, Manton, and Stallard (1979) is given by Vaupel (2002). Start-
ing from anyµ(x, t), for each choice of a frailty dispersion parameterσ, one can define
hypothetical latent baseline hazardsµo(x, t) by the equation

µo(x, t) = µ(x, t) exp
(
σ2

∫ x

0

µ(a, t− x+ a)da
)

(17)

This formula is arepresentation. For any observedµ(x, t) it supplies a latentµo(x, t)
which will reproduce it. Fromµo, Vaupel defines a measure which he calls a version of
life-expectancy “under current conditions”, that is, under current latent rather than current
observed conditions.

Vaupel’s frailty-based measures are well defined but they are at a far remove from the
Bongaarts-Feeney measures. They depend on population heterogeneity, whereas Bon-
gaarts and Feeney’s arguments apply to wholly homogeneous populations. In empirical
cases like the Swedish series, the frailty-based measures fluctuate in tandem with period
life expectancy, lack the smoothing properties ofCAL,MAD, andM4, and differ only
by small amounts from period life expectancy.

The interesting feature of the frailty-based measures is conceptual. Although current
µo is calculated from past values ofµ, one can imagine an experiment for measuring
currentµo from current observations. Take a random sample of people who had lived in a
country with negligible mortality up to agex, transplant them to a country beset byµ, and
identifyµo with any higher hazards that such higher-mean-frailty refugees experience. In
practice, debilitation probably dominates culling, and the experiment would founder, but
the concept is coherent.

Recognizing the absence of connection between his frailty-based measures and the
actual Bongaarts-Feeney measures, Vaupel (2005) goes on to sketch a different approach
which might also come under the heading of “mortality under current latent conditions”.
The latent variables are tickets associated with predestined ages of death. Life is like a
pastiche of an old Beatles song

“I have a ticket to die.”

Vaupel’s paper presents examples rather than a general treatment. In some examples,
the proposal is to have ticket values that can change either deterministically or stochas-
tically over time, depending on the current ticket value but not on the current age of the
holder. When a person’s age catches up with his or her current ticket value, the person
dies.

We may writeV (U, t) for a ticket process started at an initial state indexed byU and
varying over timet. U has some probability distribution across the population. In ver-
sions with deterministic transitions,V (U, t) is a function ofU andt, usually a continuous
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function. In versions with stochastic transitions,V (U, t) is a Markov process started at
a state indexed byU unfolding either with discrete time steps and discrete states corre-
sponding to age groups, or with continuous time and age. The distribution of ticket values
at birth for a cohort born at timeτ is the marginal distribution ofV (U, τ) generated by
the randomness inU and the randomness, if any, inV givenU . The distribution of ages
at death for the cohort is the distribution of the random variable

min{x : V (U, τ + x) ≤ x} (18)

A person dies when he or she first reaches an age coinciding with the age currently on his
or her ticket.

Detailed treatment is beyond the scope of this paper, but we proffer some reflections
based on early analysis.

If V (U, t) can be specified, then a current measure can be defined to equal the period
mean ofV . That part is easy. What is difficult is the representation problem. No equation
like (17) is at hand for taking observedµ(x, t) and writing down some specificV that
generates it. Without a representation formula, one has no well-defined measure and
nothing to compare with Bongaarts and Feeney’s proposed adjustments.

One can, of course, make up ticket modelsde novo and endeavor to test their goodness
of fit to µ values like the Swedish series. That may be interesting, but testing goodness
of fit is not what Bongaarts and Feeney are doing. They are defining measures. From
anyµ, they obtain measures to contrast with period life expectancy, and they argue for
an automatic adjustment to period life expectancy whenever observed past hazards differ
from present ones.

To make ticket models relevant to Bongaarts and Feeney’s proposals, one needs, then,
to focus on the representation problem. With deterministic transitions, the only apparent
prospect is a version of Feeney’s (2005) derivations. See also Wilmoth (2005). We can
letU be a uniform random variable marking a cohort member’s predestined proportional
placement in a rank ordering of the cohort from oldest to youngest by age at death. Define
the quantile function

Q(U, τ) = min{x :
∫ x

0

µ(a, τ + a)da = − log(U)} (19)

For each fixedU and t , the equationQ(U, t − v) = v may have a unique solutionv,
and if it does, we can setV (U, t) = v. In such cases the measure, the period mean ofV ,
comes out to equalCAL.

However, unique solutions do not always exist. The same cases that defeat Feeney’s
(2005) attempt at generality prevent this construction from yielding a general represen-
tation of mortality schedules. Cases that fail occur when the partial derivative ofQ with
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respect toτ takes values less than or equal to−1. These tickets are intrinsically cohort
objects that resist alignment by periods. A person’sU value is a cohort percentage. To-
day’s ticket values only have meaning insofar as we match values for current survivors
to values for current decedents who share the sameU , fixed by their cohort’s prior his-
tory. Unlike Vaupel’s frailty-basedµo values, the current values of these latent variables
have no independent reality in the present that can be easily discerned. No experiment
is on the table which would allow us to elicit present-day ticket values from present-day
observations alone.

Turning to ticket models with stochastic transitions, we encounter the representation
problem in a different guise. Here the specification ofV (U, t) is drastically underdeter-
mined. Analysis in continuous time is technically challenging, but the issues can be scru-
tinized in discrete time with Markov chains with finitely many states corresponding to age
groups numbered from1 to k. Each transition matrix at each timet containsk(k − 1)
elements that need to be determined. The observed distribution of deaths for each cohort,
which the model has to match, is specified byk − 1 quantities. Thus, ignoring endpoint
effects,T cohorts give(k− 1)T equations ink(k− 1)T unknowns. Already withk = 3,
a wide range of different solutions are allowed. Subject to some messy inequalities, one
can choose one’s solution at will to make the resulting period measure agree with any
of a wide variety of arbitrary sequences. Without some natural set of identifying restric-
tions, as yet to be discovered, the ticket model framework with stochastic transitions gives
nothing definite to compare with Bongaarts and Feeney’s measures.

7. Total Fertility

It would be an unhappy outcome if the limitations of the proposed measures for adjusted
life expectancies undermined confidence in the tempo-adjusted measures for total fertility
proposed earlier by Bongaarts and Feeney (1998). Unlike the mortality measures, the
fertility measures are standardized indicators of current conditions. The adjusted total
fertility rate at timet depends only on age-specific fertility ratesf(a, t) in an arbitrarily
small neighborhood oft. It does not depend on age structure and it does not depend
on past fertility rates. It has a direct interpretation in terms of individual experience.
This section offers a formulation of the adjusted fertility measures which highlights these
attractive features.

Age-specific fertility ratesf(a, t) are written here as a function of continuous agea
and continuous timet. As usual, the period Total Fertility RateTFR(t) and period mean
age at childbearingA(t) are given by

TFR(t) =
∫
f(a, t)da (20)
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and

A(t) =
∫
a f(a, t)da/TFR(t) (21)

A simple procedure for producing an adjusted index is to define a coordinate transfor-
mation which, in effect, reassigns the timing of births within cohorts leaving numbers of
births invariant within cohorts. The transformation is chosen so that, after reassignment
has been carried out, a period computation of mean age at childbearing would give a con-
stant outcome, thus erasing period variations in timing. The post-reassignment value for
the mean age can be set arbitrarily to some standard valueAs, perhaps most sensibly to
a long-term average for cohort mean ages at childbearing conditional on survival through
childbearing years.

The transformationΨ is given by

a → α = a−A(t) +As (22)

t → τ = t−A(t) +As (23)

We assume thatA(t) is differentiable and we impose the reasonable assumption that the
period mean age at childbearing never increases by as much as a full year per year, so that
the time derivativeA′(t) is always less than1. Then the transformation is invertible and
has a finite Jacobian given by

∂ α, τ

∂ a, t
= 1 −A′(t) (24)

The inverse functiont(α, τ) only depends onτ . Age-specific fertility rates after reassign-
ment are given by

f̃(α, τ) =
f(a(α, τ), t(τ))
1 −A′(t(τ))

(25)

This definition guarantees agreement between integrals over subsetsS in the Lexis plane:∫ ∫
S

f̃dα dτ =
∫ ∫

Ψ−1S

fda dt (26)

An adjusted or standardized Total Fertility RateSTFR can be defined from̃f :

STFR(τ) =
∫
f̃(α, τ)dα =

TFR(t(τ))
(1 −A′(t(τ))

(27)

These integrals are taken overα for fixed τ , unlike the double integrals of Equation (26).
It is readily verified that the period mean age of childbearing defined fromf̃ remains
constant at a levelAs and that integrals of̃f along diagonals of the Lexis diagram are
identical to integrals off itself.
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Kohler and Philipov (2001) introduce this Jacobian-based formulation for tempo ad-
justments, although they deviate from it in the definition of their own generalized mea-
sure. The transformation shifts fertility backwards or forwards along cohort lifelines on
the Lexis diagram. The cohort quantum of fertility measured by a cohortTFR (condi-
tional on survival) is unchanged. The positioning of births along the lifelines of mothers
in the cohort is adjusted in such a way as to hold the transformed period mean age at birth
constant at the chosen standard valueAs.

The size ofSTFR defined by Equation (27) is the same as Bongaarts and Feeney’s
tempo-adjustedTFR. It is expressed as a function of the hypothetical coordinateτ rather
than the real time coordinatet, but, if desired, it can be attributed back tot, since the
transformation is invertible. Althoughτ depends on the choice of the standard ageAs,
the measure itself does not depend on it. The mathematics would be the same if we took
As equal to zero, but visualization is easier if we take it equal to some realistic benchmark
age.

The reassignment process expressed by our coordinate transformation can be regarded
as a kind of standardization. It differs from familiar kinds of demographic standardization
like the standardization of Crude Birth Rates for effects of age distributions. But it serves a
parallel purpose. Just as one asks, “What would a Crude Birth Rate turn into if population
age group sizes were set to standard values?”, one can ask, “What would a Total Fertility
Rate turn into, if period mean ages at childbirth were set to a standard values?” In this
sense, the Bongaarts-Feeney tempo adjustment for fertility can be viewed as a process of
birth-age standardization.

This way of viewing the measure clarifies several issues. Bongaarts and Feeney’s
fertility measure does not depend on any behavioral assumptions about fertility, any more
than an age-standardized birth rate depends on behavioral assumptions. It does, however,
suggest a thought experiment, because one can imagine individuals changing the timing of
their births in such a way as to change the observedTFR into the adjusted or standardized
one.

For applications of their measure, Bongaarts and Feeney recommend applying their
adjustment separately parity-by-parity to birth-order-specific frequencies. These are not
the same as age and parity-specific rates. Each numerator includes only births of a given
parity while the corresponding denominator includes person-years from women of all par-
ities. These quantities sum up to the overall age-specific fertility rates, so they comprise
an additive decomposition. Conceptual difficulties arising from reliance on such frequen-
cies or “rates of the second kind” in place of occurrence-exposure rates or “rates of the
first kind” have been pointed out by Van Imhoff and Keilman (2000).

As a formal procedure, nothing prevents the kind of standardization achieved by Equa-
tion (22) from being applied separately to any additive decomposition of age-specific fer-
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tility rates:

f(a, t) =
∑

i

fi(a, t) (28)

Any such decomposition in terms of some categorization of births can be accommodated.
Birth order is one option, but mother’s marital status, mother’s education, region of birth,
and sex of baby are among a host of others. When a transformation is applied to eachfi
and the resultingSTFRi are added together to produce an aggregateSTFR, the result
is an index which has been standardized for changes in period mean ages at childbearing
within each of the subgroups. No behavioral claims need be at issue. It is probably a
mistake to make a fetish of the decomposition by parity. The fact that one particular
breakdown among many would allow a complicated re-expression in terms of occurrence-
exposure rates need have no deep bearing on the nature of the adjustment.

In summary, Bongaarts and Feeney’s tempo adjustment for the Total Fertility Rate
can be viewed as a process of standardization. It erases effects of changes in period
mean ages while preserving cohort quantum (conditional on survival). There is a clear
distinction at the individual level between something that is being reset and something
that is being left invariant. The adjustment does not rely on any behavioral model or
structural representation of fertility processes. Like traditional standardized measures, it
is a valuable device for comparing cases, controlling for a particular source of variation.

No such process of standardization makes sense in the context of mortality, because
there is no distinction at the individual level between something to reset and something to
leave invariant. The timing of a person’s death is what is being assessed when we assess
mortality. Controlling for changes in the timing of death is tantamount to controlling for
mortality itself.

Discussions of quasi-behavioral models and structural representations in the context
of Bongaarts and Feeney’s proposed mortality measures serve to highlight the gulf be-
tween these measures and their fertility measure. No elaborate modeling is required with
fertility.

Bongaarts and Feeney’s adjusted Total Fertility Rate is a current measure, whose value
at a timet depends only on values and slopes of age-specific fertility rates at timet.
Altogether otherwise, the mortality measures they propose as alternatives to period life
expectancy are not current measures. They average over mortality conditions observed in
the past. Under the Proportionality Assumption which makes the measures coincide with
each other, the measures average over conditions in the past in a particular simple way, as
a weighted moving average of prior period life expectancies, as shown in this paper.

Mortality measures likeCAL andMAD are valuable for studying changing hazard
schedules, smoothing as they do over sudden changes. Everyone agrees that changing
hazards make cohort life expectancies diverge from period life expectancies and that the
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divergence is worthy of attention. But measures that depend on past hazards serve dif-
ferent purposes from period life expectancy, which depends on current hazards. The
past may differ from the present. This fact is not a “tempo” distortion. Adjustments for
“tempo” are only meaningful when there is a meaningful distinction between quantum
and tempo in individual experience.
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