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1 Introduction

The spectral method has high accuracy, and sa often provides good numerical solutions of differ-
ential equations. But this ment might be destroved by same facts, such as instability of nonlinear com-
putations, discontinuities of data, unboundness of domains and singularities of solutions. Further the
singularities of solutions could be caused by several factors. for instance, degeneration of coefficients,
uniboundness of data and comners of domains. Some technigues have been proposed to overcome these
difficulties. KREISS and OLIGER!Y, GOTTLIEB and TURKEL'?, KUO™, VANDEVEN!Y, TAD-
MOR and GUIOM! proposed various filterings to weaken the instability in nenlinear eamputarions.
CAIL, GOTTLIEE and SHU'® provided certan essentially nonoscillatory approximations and one-side
filters for fitting discontinuous data. In particular, GOTTLIEB, SHU, SOLOMOMNOFE and VANDE-
VEN™ , and GOTTLIEB and SHUT~ 13 rerovered the spectral accuracy by using Gegenbauer approxi-
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mation. FUNARO and KAVIAN!!Y, MADAY, PERNAUD-THOMAS and VANDEVEN'S!, GUOM!,
GUO and SHEN'!, GUO and XU'! and XU and GUOF'?! developed same spectral methods in un-
bounded domains. But so far, there is no work conceming spectral method for singular problems. In
fact, the Jacobi approximation can be applied to such probiems, see GUO'®~2! GO and
WANG'®!, and WANG and GUO'™). The key points are fitting singular solutions by Jacobi polyncmi-
als, camparing mmmerical solutions with same unusual orthogonal projections of exact soluticns, and
measuring the emors in certain Hilbert spaces in which the exact solutions are. This new method could
be used in several fields, such as spectral metheds for singular problems, unbounded damains, ax-
isyirmetric domains and exterior problems. This paper is for the Jacobi approsimation and its applica-
ticns. We first inmoduce some results on the Jacobi approsimation in the next section. They play im-
portant roles in the analysis of the Jacobi spectral methods. Then we discuss its various applicaticns in
Sections 3—6. In the final section, we present same mumerical results showing the efficiency of this
new approach.

2 Main Approximation Results

Let A = |z !l x 1< 1| and y(x) be a certain weight function in the usual sense. Let
L3(A) = lv | v is measurable and | vl , < oo }
where

e x = (J’A | wlx) lzx(.:c) dr)%

Let(u.v)xbe the corresponding inner product. Further, let 2 wi(z) = a—i:-u(r), and for any non-
negative integer m , define
HMA) = [vldfv € LY(A), 0K k<< ml,

equipped with the semi - norm | v | and the nomm || » |l .., asusual . For any real r > 0,

T.‘l.x
we define the space H;(A) by space interpolation as in Adams{'3?, Let G2( A) be the set of all in-
finitely differentiable functions with campact supports in A, and Hy, , (A) be its closure in H, (A). i
x(x) =1, then we donote 7, (A), Hy, ,(A), 1w i, loll, . loll, and Cu.v), by
HA), H(A), 1vi,, lwll,, Tvll and (x,v) . respectively.
The Jacobi polynomials [, #?(x) are defined by
ERY:
(1 - 2)*(1 + D) P (z) = (—2;%,)3;((1 — )L+ )R, L = 0,1,
leta, >~ 1and
2 P(2) = (1~ 1)1 + 2)E.
The set { 7, #(x)} is the sz"- # (A )- orthogonal system. For any v € Li“—ﬂ’(A).
wlzx) = E';’Ea ﬂ’}[fu’. ,EJ(I)

2=l



http://www.cqvip.com

£ OO0 http://www.cqvip.com|

B1M AT - Jacoh: EE KK B 3

where 2} # are the Jacobi coefficients, £ =0 .

Now let N be any positive integer, and 5’3:\, be the set of all algebraic polynomials of degree at
mostN . P, = tuvl v € Py vl-1) =0} and‘:gd;‘.= lvlv€ P, v{-1) = (1) = 0}.
Dencote by ¢ a generic positive constant independent of any function and .

We comsider various orthogonal projections. The Li“-W(A)— orthegenal projection Py, 50
Lzzh.m (A} = P, is a mapping such that for any v € Lir...m(A),

(Pj'\',u_lﬂ'v_-ul¢)x“'p) = 0! V#e E’F)N'
For technical reasons, we introduce another Hilbert space. For any interger r 22 0, set

I-I;tla|ﬂ>_A(A) = |v | vis measurable and f vl , Jfo? 4 < oo |

where

. L
(X h Q- ta s [ 2en + Wk pem )i forr = 2m,
r=n

holl,, om, =

- l L
(E I (1 — g2)ymrzEIm A i“-'” + el ?u.xrd'm_)zn for r = 2m + 1.
t=0

For any real r > 0, the space H ‘= s 4(A) is defined by space interpolation. Next, for any non-nega-
tive integer u.,
Hpn (A} = lv) 3fv€ Hitn (41,
H’:\;“'m. --.F(A) =jv]| v & H;u.ﬂ»l R_él:,A).. O0<S k<l ol
with the following norms

boll, om ., = 3% 0 e,

o|—

T nf e, [i i ﬂﬂi.xh'ﬂj,l.&)

k=210
For any real g > 0, we define the spaces H -#» | _F(A) and H;ln-m‘ . ,_F(AII by space interpola-
tion.
Theorem 1 Ifa +r >1lor@+r>1, tenforanyv € H v | v a(A), rZzland p
=r,
H Pp.,'_ﬂ‘@) - || " Ila..ﬁ‘l < cf\t"':"‘" w1 “ - H .. x(..m. .

Ve
where

2p— 7. for p =0,

olu.r) =

FIE for p < 0.

In particular, for any @ = 8 > — 1, the above result is valid with
Zy—r—%. for o > 1,
alp.r) = %#rr' for 0<C pe < 1,

L;.:—r, for p < 0.
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As is well known, we usually consider the H;(--a'(A ) - orthogonal projection in murnerical analysis of
differential equations. But in many practical problems, the coefficients of derivatives of different orders
may degenerate in different ways. Alsa by certain suitable variable transformations, differential equa-
tions in unbounded domains might be changed to same singular problems in bounded domains. In these
cases, it is not possible 10 compare the approximate solutions with the exact solutions in the Scholev
spaces. For instance, we consider the problem
- 3,1 -3, U) + U = f, x € A.

Then U is not in H'( A ). So the numerical solution could not tend to U in H' ( A). Indeed, it is not
necessary. Howerer, it might be carmried out in certain Hilbert spaces.

Now, leta, 8, 7,6 >— 1, and introduce the space g , s(A), 0= a2 <C 1. For o = 0},
HS p,5(A) = LE»o(A) Fapu = 1,

Hh,ﬂ.:r.a(ii) = v | v is measurable and [{ © || Lagors < o}

where

n
lall gy = (Loil o+ follime)?,
For0 < g < 1, the space I 4, ;{A) is defined by space interpolation.
Let
g, gy 6l v) = (3, 0,3, v) oo + (u, w) Gl Vu,v € Hy g, :(A).
It is an inner product of the space H, g, 7,4( A ). The orthogonal projection Pl ., 5,7, 2: Hb g 7. 2(A)
— ¥y is a mapping such that for any v € H,l,,ﬁ_,,"g(d),
uﬂ.ﬂ.?.ﬁ‘(P}\'.a.ﬂ.T.é‘v_U! ﬁ) = 0: VF‘E %‘J'
Theorem 2 If
a s r+2, p=d+2, (1)
then for any v € Hoes [ ((A)withr 221,
Il P.l\r.u..ﬁ'. yoa o I Lo r s S C Nl el AT
If, in addition,
a5 Y +1, F<&+1, (2)
then for all 0 <C pr < 1,
l P.'l'\«'.n-.ﬁ, y.5v — v I oo g S o N | = oyt

= L

In same practical problems arising in fluid dynamics, biology and other fields, the unknown func-
tions vanish at one of the extrerne points, sava = — 1. So we need other orthogonal projections. Let
HopgrolAY=lviee H! 4 ,2(A) and w(~ 1) = 0],

The orthogonal projection ; Py ng,'_g_,_,g (A )1 —y E‘F)_N. is a mapping such that for any
v Eg H:.ﬂ.r,a(A),
a,‘ﬂ,,‘a(DP;\m — v, p) =10 Y 60.’:-5?’!\,.
Theorem 3 I a << ¥ +2, 3<<0and & 21, ' o for any © €oHL g4.5(A) N
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H oo, b A) withr 21,

" DP!\'.a.ﬂ.T.d‘v - ” lLa.8,. 7.8 ‘—-<__ C‘;\rl—r ” i " . x‘“-l”‘ P
If. in addition, (2) holds, then for all 0 << u << 1,

|| DP}‘-’.a.ﬂ. -l ” coa B ¥ & -.<__ cNETT || o || - x(t.ﬂ)’ T

When we study cthe movernents of fluid flows in bounded damains with fixed non — slip walls, the
populations of budworms in hounded forests with lethal boundary conditions. and some problems on
other topics, we meet honogenous boundary conditions. 1o those cases, we have 1o consider another
projection. Let
HypraldA) = ivlv € H 5y.(A) and w{- 1} = »{1) = 0].

The orthogonal projection P_lqluu_r.;ly‘a: Hﬁln'ﬁ.yla(ﬁ) — ,—_?{L is a4 mapping such thar for anyv = €
HI]ZI.:z.ﬂ.J'.é‘(A)1
Au,a v 5PN gy — v $Y =0, $ ;Fj;
Theorem 4 I 7 << e << ¥+ 1, d << < d+1and 7,8 < 1. then for mmy v €

Hicoa7.e0AY N H;ta.m. La(A ) withr 22 2,

I Ph?-:.;?m.a"t' -z La. 2. 7.8 < N el ey e

If, 1 addition, « = 7, 3 = dand . 8 > 0, then for all0 << < 1,
I PRy — ol pag s < e Nl ull, pem 5

The thecrems in this section Play important roles i nirnerical analvsis of Jacobi spectral method.
The proofs of these theorems can be found in Guo' 2 1.

Remark 1 Guo and Warg'®:. and Wang and Guol?®! also considered Jacobi interpolation.
Their results laid the mathematical foundation of Jacob: pseudospectral method, which is easier to be
Performed m actual calculation.

Remark 2 All results can be generalized ro multiple-dimensional spaces, see Gue and

Wzmg[u'].

3  Singular Problems

As an example, we consider the following problern
=3 (¥, U{x)}y + b{x) Ulx) = flx), r € A, (3)
where £{z)} =0, b{x)=0and f{x) are given functions. Assurne that £{ ) and &#{ ) only degen-
erate as | r |— 1. Suppose that
Blr) — ' P (x), &) ~ ¥ (D),

and for certain positive constants ¢ and ¢,
Y < R (x) < eyt PR,
P €D IE I E S PR FO
We lock for the solution of (3) such thar at least 2 ()} [H{z)—=0as | r |— 1. A weak formulation
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of this problem is to find U € H. 4 (A ) such that
(2, U,9,v) + (8U,v) = (fiw), ¥ v € H. 5,:(4). (4)
Iff€ (H; pys(A)), then (4) has a unique solution.
Let uyy € ’:?'N be the approdmation to Lf , satisfying
Qg gy sluns B) + ((k = )3 uy,38) + (6 - ¥ Dun, 8) = (£,8), V€ P,
(5)
Theorem 5 Lec (1) hold. B U € Hsew (A} withr =2 1, then
b PhagrdlU—un W iepres<e N7 UN, oo L)
If, in addition, {2) holds and &£(x) = y'*# (x), then for all 0 < g < 1,
fu - wptl e oy, 8 = € NS hud AT

Remark 3 If 5(x) degenerates at several distinct points, then we divide the interval into sever-
al subintervals. Their exrems points coincide with these distinet points. Further we use different Jaco-
bi approsimations in different subintervals.

Remark 4 We can use Jacobi approximation or Jacobi interpolation to solve boundary value
problemss with singular source termns, and initial-boundary value Problems with singular source terms
and singular inicial states, see Guo and Wang'®). Also, we can use these methods for inhormegenecus
boundary value problams defined on darmains with comners.

4 Unbounded Domains

As an exarmple, we consider the logistic equation govemning the population of budworms in an un-
bounded forest, say A = {3 | 0 < y < oo |. Suppuse that the boundary condition at ¥ = 0 is lethal,
and the population V( v, t) grows infinitely as ¥ — %, but at least ¢ **3,V{(y, ¢} — 0. This problem
is of the form

a,V(y,[)-"aiV(}l,t) =V(}'y?)(1_vt.}'y?))! }'e EJ]'(IQT.
Vi0,t) = }ge‘z’ayV(y,r) = 0L < T, (6)

MNows we make the variable transformation (see Guol?!1),
¥(x) =-2In{1 - 2) +2In2.
Let Uz, 2ty = Viy(2x), 1) and Ug(x) = V(2{x)). Then (&) becanes

3..U(r,t)—%(l-r)ai((l—x)t?,U(r,z))=U(r,:)(l—U(:r.t)).J:EA,U< 1=<T,
U(- 1,8 = lim{1 - 2)%, U{x, ) = 0, 0=t << T, (7

U(I',O) = Uﬂ(r}'
A weak forrmulation of (6) is to find U € L™ (0, T:L2(A)) N LZ(U,T;QH;(I-W(A)) such that
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€3, U(x.t),v) + %az.a.u.u(U(E). ) + %‘(U(t),ajv)x“-"’ =

(SUe) - U1)), Vo €booalA), 0< < T, &

U(Uj = Lr(]-
I, L:;h.#l(A), then {8) has a unique solution.
Tet up{2) be the approxamation to [7{¢). The Jacobi spectral scheme for (8) 15 o find uy

eD@N S'LICh that

(a: ILNQT).(!‘!') + %allglgln(llm(f‘}m ¢)‘ + %(ICN(‘T)-QI‘#)XU‘”I =

Gule) = wd(0).4). V4 €, 0< i< T (9)
In addition, wn(0) = wuyg =0P}v,2,a,0.nUa-
Let
ECo) = 1oke) 12+ [ “1ots) W 00,085

Theorem 6 HHiorr = 0and a4 > 1,
U € L0, TsH #o , ((A)) N L=(0, T H(A) NoH w0,

1
i LNt

thenfor all0<C ¢t < T,

LAY MHES | (A,
E(U — up, t) << 6N
where £ is a positive constant depending only on the nomns of UV in the mentioned spaces.

Remark 5 By the variable transformation (see Guo!®)

¥=lang—"

the problems on the whole line become certain singular problerms on a finite intervals. Then we can also
use the Jacobi spectral method for their numencal slutions.

Remark 6 In multiple-dimensicnal space, we can use different varable oansformations and
choose same suitable Jacobi approximations with different parameters @ and £ in different directions. Sa
we can solve problems in different unbounded domains, such as the whole space, the half space, same

infinte straps and so on, see Wang and Guol?!.

5 Mixed Approximaticn

For instance, we consider the Laplace equation on an axisynmmmetric domain £2, i.e.,

— AV = F, in {2,
f " (10)
=0, on 302.
By using the cylindrical coordinates {», &, z), we get that
-3 (r a,U)e%aﬁFU—ra;’U: o, in 2. (11)
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We can resolve {11) numerically, by using the Jacobi approximation in the » -direction, the Fourier
approximation in the - direction and the Jacobi approsimation with « = 8 = 0 { the Legendre approx-
mation) in the = -direction.

Azaiez, Bernardi. Dauge and Maday'®! first used such method by using some combinations of
Legendre polyncmials. Indeed, it is equivalent to the Jacobi approximation with ¢ = 1 and 8 =0, as
studied in Guo'®). We also refer to Wang and Guo™@!.

6 Exterior Problems

We can use the Jacobi approximation to solve some exterior problems. For instance. we consider
the twodimensional problern
~ AL = f, r>1,
U=0, r=1.
Here the obstacle is a unit disc. We resclve {12) by a variable transformation and rational approxima-

(12)

ticn induced by the Jacobi approximation. If the obstacle is not a dise, we can resolve it by using the
abave method combined with damain-decomposition and certain specific finite element method with high

accuracy.

7 Numerical Results

We now present same mumerical results. We consider problem (8) and take the following test
function
c{e® - 1)

e *
ce™ + &

Viy.t) =

where & = 0.5, ¢ = 1.0and d = 0.01. Clearly, V{y,t) —1as y — 0o In this case, the come
sponding test function solution

40 — (1 — z)*

4bc — (1 — )2

We use (9) to solve (8) with the related non-zero source term. In actual camputation, we advance in
time by using the Runge-Kutta method of fourth order with mesh size ¢ . Let un{.x, r) be the numeri-
cal solution. For description of numerical errors, let TR be the Legendre interpolation nodes, and

wP? be the corresponding Legendre weights. The errors E(upn,t) and E;( wp. ¢) are delined by

Ulx,t) =

N

1
Eun,2) = { 2(UCERP ., 6) - an £, )1 20002

J=0

and

i

N 20,0 (0,0) 2 =

- (3 (UCEN, 1) — a8 )Y B
Ejlan.t) = (;tﬁ | O™, 2) |12 wy; )

N — - — - -
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The numerical ermors of scherme (9) atz = 0. 5 are presented in Table 1, which show the convergence

of scheme (9).
Table 1  The emors E; (.. 5) and E;(ny, U.5)

E{ay, 0.5} E;lun.0.5)
N =8, r =49.01 6. 93E - 07 2. IS5TE- 06
N o= 16, =4 01 7 AE-13 2. 135E— 12
N =24, ¢ = 1,000 1.351E—- IS 3. 434E-I5

In Table 2, we list the numerical errors of scheme (9} with ¢ = 0.0001 and &N = 16, It indicates
that the stabilitv of the calculagon.

Table 2 The errors E,( uy,. )} and E;Ceey, )

ECw.t) Ey(ny, £)
0.5 7.694E ~ 13 2 J48E- 12
1.0 7 5MME-13 2. 260E— |2
1.5 T.I01E - 13 2 395FE - 12
20 & O4E— I3 2.532E— 12

We nexx take the test function
. 1 _
U{x.t) = (1—I}T51n(7(1+1)(1+t)}, y =— 1074,

Clearl, | Ufx,t) =~ © as 2 — 1, and U & L0, T;HY(AY). Bu U € LU0, T;
Hj p,0,00 A ). We use scheme {9) to sclve (8) with the corresponding source term. The numerical
errors at 2 = 0.5 are presented in Table 3. The nummerical errors of scheme (9) with + = 0. 0001 and
N = 16 are listed in Table 4. The numerical results show the convergence of scheme {9) and the sta-
bility of the calculation again. Bur the ertors do not decay as [ast as in the first example, since the ex-

act solution in the second example has certain singularity as & — 1 . It coincides with the theoretical

analysis.
Table 3 The emors Er( e, 0-5) and E;{ uy, 0.5}
Elay, 0 5} Ezl . U.5)
N =8, r = 0.1 1. {MEE -6 2 JMHE—6
N =16 =0.001 4+ 4T7E-7 7.43E-7

N =24, r=0.0001 3.245%E-7 4. 23DE-7
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Table 4 The errors E {uy-t ) and E;Cuys ).

L E||:T¢N',f) Ez(riu-.!)

4. 9T7E-7 7.413E-7
6.273E~7 7.443E -7
1.13tE~ 6 1.70E -6
3.285E- 6 2.0l4E - b

]

D koe

References:

(1]
(2]
31

(4]
(5]

(6]
(7]

(8]

(91

[10]

(11]

(121

(13]

[14]

(15}

[16]

(17]

KEREISS H O, OLIGER J. Smhility of the Founer methed[J]. SIAM J Numer Anal, 1979, 16, 421-433.
GOTTLIEB I, TURKEL E. On time discretization for specrral methods{ J1. Stud Appl Math, 1580, 63, 67-86.
KO Pen-yu. The convergence of spectral scheme for solving two-dimensianal vorticity equation[]]. ] Comp
Math, 1983, 1, 353-362
VANDEVEN H. Family of speciral filters for discontinuous problems[J). ] Sci Camput, 1991, 6, 159-192,
TADMOR E. Shock captunng by the spectral viscosity method[]]. Comp Methods Appl Mech Engi. 1990, 20,
197-208.
GUO Ben-yu. Spectral Methods and Their Applictions[M]. Singapore:; World Scienrific, 1998,
CAI W, GOTTLIEB Db, SHU C W. On one-side filters for spectral Fourier approsumations of discantinucas fune-
tions[J]. SIAM ] Numer Annal. 1992, 29, 905 —916.
CAI W, GOTTLIEB D, SHUJ C W. Essentially nonoscillatory spectral Fourier method for shock wave calculatians
[(J1. Math Camp, 1989, 52, 38%-410.
GOTTLIEB D, SHU C W, Solomonoff 4, Vandeven O H. On the Gibbs phenomenon |, Recovering exponential
accuracy from the Fourier partial sutn of 2 nonpenodic analytic function[J1. ) Comp Appl Math, 43, 1992, 81-
98.

GOTTLIEB D, SHUC W. On the Gibbs phenamenon 11, Resolution properties of Fourier methods for discontinu-
ous waves[]]). Camp Meth Mech Engi, 1994, 11, 27-37

GOTTLIEB D, SHU C W. On the Gibhs phenomenon 111, Recovering exponential accuracy in a subinterval from
the spectral sum of a piecewise analytic function(]]. SIAM | Numer Anal, 1996, 33, 280-290.

GOITLIEB D, 8HU CW. On the Gibbs Phenamenon IV, Recovering exponential accuracy in a subinterval from
a Gegenbauer partial sum of & piecewise analytic functions[J1. Math Comp, 1995, 64, 1081-1095.

GOTTLIEE D, SHU C W, Recovering exponemtial accuracy from collocation point values of piccewise analytic
functions[ ] ]. Numer Math, 1995. 71, 511-526.

FUNARO T, KAVIAN O. Approumation of some diffusion evolution equations in unbounded dormains by Hermite
functions{J}. Math Camp, 1990, 57, 597-619.

MADAY Y, PERMAUDCTHOMAS B, VANDEVEN H. Une réhabilitation des méthodes spectrales de type La-
guerre[J 1. Rech Adrospar, 1985, 6, 353-379.

GUO Ben-vu. Emor estimation of Hennite spectral methed for nonlinear partial differenrial equatons. Marh
Camp, 1999, 68, 1067-1078.

GUO Ben-yu, SHEN Jie. laguerre-Gaderkin method for nonlinear partial differential equations o semi-infinite

i S e ee————a et s e pmerpen e . —- -


http://www.cqvip.com

£ OO0 http://www.cqvip.com|

2514 ¥ AR : Jacohi JEHIE R K7 A 11

interval[J]. MNumer Math, w0 appear.

[18] IO Ben-yu, XU Cheng-long., Hermire pseudospectral methed far nonlinear partial differential eruation, submut-
ted.

[19] XU Cheng-long, (XD Ben-yu. Laguerre pseudospectral method for nondinear partial differential equations on the
half line, submitted.

[20] (O Ben-yu. Gegenbauer approdmation and its applications to differentia]l equations on the whale line. JMAA,
1998, 226, 180-206.

[21] GLID Ben-yu. Jacohi approximation and its applications to differential equations on the half line, JCM, w0 ap-
pear.

[22] GLUD Ben-yu. Gegenbauer approximanon in certain Hilbert spaces and its applications to singular differencal e-
yuaticns. SIAM | Mhumer Anal, to appear.

[23] GUO Ben-yvu. Jacohi appraxunations in certain Hilbert sapces and their applications to sin@ular differential equa-
tions, JMAA, to appear.

[24] GUO Ben-yu, WANG Li-lian. Jacobi interpolaton approximations and their applications to singular differential e-
quations( unpublished ) .

[25] WANG Li-lian, GLID Ben-yu. Jacobi-Gauss-Radau interpolanon approximations and their applications 1o singular
differential equations { unpublished) .

[26] GUOD Ben-yu, WANG Li-lian. Jacobi approxamations in multiple dimensions and their applications 1o singular dif-
ferential equations{unpublished).

[27] WANG Li-lian, G0 Ben-yu. Jacobi spectral method for mnaltiple-dimensional unbounded domains and axisym-
metric domarns{ unpublished) .

[28] AZAIEZ M, BERNARDI C, DAUGE M, MADAY Y. Spectral Methods for Asusymmetnie Damains, Series 1
Appl. Math. 3, ed. by P.G Ciarlet and P.L.. Lions, Gauhtier-Villars & Morth-Holland, Paris, 1999,

Pt
1

PRUTEERAINE

i Jacobi i&@3iT & 2 Kz B (o

= s -
(LR S SRy, Fig 200234) L.

MW B K — 2 Hilbert DR Jacohi Bil. DY AT S R RS, T 7 KX BE, Sa#F £ B 435 E S /Y

W, BEHGERERT X —-FENARHE,

A Jacobi T A EE A - ‘ _l -, ] Jl . J ,
e e EEEE R ¥ ‘_,’_% | .

S mammae o S Pt



http://www.cqvip.com

