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ABSTRACT

The effect of alongshore variation in continental slope steepness upon the on-shelf penetration of barotropic,
siope-trapped currents is investigated using arrested topographic wave dynamics. Results are summarized by a
leakage length scale L, = fsw?/r with fthe Coriolis parameter, s the continental slope steepness, w the slope
current width, and r the linear friction coefficient. Leakage is found to be enhanced if the steepness of the
continental slope increases suddenly in the direction of current flow. The Newfoundland and Hebridean shelves
are suggested as possible locations where this effect may be observed.

1. Intreduction

Strong currents trapped against the continental slope
and flowing alongslope in the direction of topographic
wave propagation (shallow water to the right/left in
the Northern/Southern Hemispheres) are a widespread
phenomenon. Examples include the Leeuwin Current
(western Australia), the offshore Labrador Current, the
Alaskan Stream, the Bering Slope Current, the Falk-
land-Malvinas Current, and the Scottish Slope Cur-
rent. Several different mechanisms may ultimately
generate these flows including adjustment of alongshore
oceanic sea-level gradients over the continental slope
(Huthnance 1992 ) and, in some cases, western bound-
ary dynamics. Most slope currents also have a baro-
clinic component because they either transport warm
water poleward or cold water equatorward giving rise
to horizontal density gradients across the slope region.

An important question concerning these currents is
whether they are capable of significantly influencing
the circulation on adjacent continental shelves; that is,
do pressure (sea level) disturbances associated with
slope currents leak onto the shelf? It is widely held that
steep continental slopes have an insulating effect, which
prevents penetration of steady, oceanic sea-level gra-
dients onto the shelf. In this paper the problem is re-
examined with the focus on slope-trapped currents
represented by an inflow along the upper slope on an
upstream boundary. Unlike previous analyses, how-
ever, specific consideration is given to the possibility
that alongslope variation of bottom topography may
promote leakage.
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2. The insulating effect of the continental slope

The steady, linearized, depth-averaged equations of
motion and continuity are

—fo=—gn.—ru/h (1
Ju=—gn,—rv/h 2)
(hu)x + (hv), =0, (3)

where subscripts x and y denote partial differentiation.
Here 7 is the sea surface elevation; (u, v) are depth-
mean velocities in the x (cross shore) and y (along-
shore) directions, respectively; g is the gravitational ac-
celeration; fthe Coriolis parameter; 4 bottom depth;
and r a linear friction coefficient.

If the coastline is assumed to be long and straight
with no alongshore variation in topography and the
dominant cross-shore dynamical balance is geostrophy,
then elimination of # and v between (1) and (3) gives
a single equation for surface elevation derived by
Csanady (1978),

77y+(r/ﬁ)77xx=0a (4)

where s = h, > 0 is the bottom slope. At the coast there
1s no cross-shore transport (4 = 0) and 4 = 0, so the
coastal boundary condition is 5, = 0.

Equation (4) has the form of a heat conduction (dif-
fusion) equation in which n and y, = —y are the analogs
of temperature and time, respectively (Csanady 1978).
The negative y direction (analog of forward time) is
that of topographic wave propagation and defines the
downstream direction for which solutions for » may
be found. The analog of conductivity is K = r/ fs, which
is inversely proportional to bottom slope, indicating
that steep slopes behave like thermal insulators with
respect to penetration of the sea-level field in the cross-
shore direction. Wright (1986) has argued that there
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is a sense in which steep slopes may be regarded as
poor insulators. Transformation of variables in (4)
from x to A(x) = sx shows that diffusion of the ele-
vation field across isobaths is most effective for steep
slopes. However, this paper is concerned with lateral
(x direction) spreading for which the conventional view
of steep slopes as insulators is appropriate.

In Csanady’s original analysis there was no shelf
break. Later work (Wang 1982; Csanady and Shaw
1983; Chapman et al. 1986) included both a gently
sloping shelf and a steeper continental slope. Wang
(1982) showed that an alongshore pressure gradient
imposed in deep water would experience negligible
penetration onto the adjacent shelf. This effect has also
been demonstrated in several numerical simulations
over realistic bathymetry (e.g., Prandle 1984; Pingree
and Le Cann 1989). Wang (1982) considered forcing
by upstream cross-shore sea level gradients (inflows)
extending across the entire shelf-slope region, and
Chapman et al. (1986) considered those confined to
the shelf. They found that the shelf pressure field
quickly spread offshore across the (poorly insulating)
shelf to become trapped over the top of the slope.
Chapman et al. (1986 ) also examined effects of a com-
bined upstream shelf inflow, upstream deep ocean in-
flow, and an alongshore oceanic pressure gradient over
realistic topography representing the Scotian and Mid-
Atlantic Bight shelf—slope regions and found that the
oceanic parts of the pressure field tended to prevent
the shelf component flow from spreading off the shelf.
None of these studies, however, has attempted explicitly
to isolate the influence of upstream inflow confined to
the slope, which is characteristic of so many regions.
This is the subject of the next section.

3. Slope current inflow
a. Uniform alongshore topography

An infinitely long, straight shelf-slope region is con-
sidered as shown in Fig. 1. The x axis points offshore
and the y axis is parallel to the coast and located at the
shelf break, which is at x = 0. In what follows, subscripts
1 and 2 denote variables defined on the shelf and slope,
respectively. The shelf is located in the region (—L
< x < 0) and has constant bottom slope 4, = s, and
zero depth at the coast. The continental slope is in
the region (x > 0) and has constant bottom slope 4,
= 5, (>5;). The upstream boundary of the shelf-slope
region is at y = 0 and negative y direction is that of
topographic wave propagation.

The slope current is treated as a steady, barotropic
inflow across an upstream boundary and flowing in
the sense of topographic wave propagation. By impli-
cation, no attempt is made to explain the physical or-
igin of the flow. Neglect of baroclinic effects is justified
on the grounds that barotropic forcing (oceanic sea-
level gradients) naturally generates flow over steep
slopes and thus may be regarded as the primary forcing
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FIG. 1. A semi-infinite, straight shelf-slope region.

agent with baroclinic effects playing a modifying role.
As shown in Fig. 1, the sea level on the continental
shelf at the upstream boundary is taken to be flat (un-
perturbed ), decreasing exponentially to a level — 7o in
deep water over an e-folding width, w = 1/d; that is,
m(x,0)=0for —L < x < 0 and n,(x, 0) = no(e™*
— 1) for x> 0. :

The problem is to determine how the shelf sea-level
field is disturbed downstream in response to the slope
current inflow. Previous authors have tackled such
problems numerically. However, it is possible to find
an analytical solution in this case using Laplace trans-
form methods applicable to heat conduction problems
in composite solids (Carslaw and Jaeger 1959). Equa-
tion (4) governs the solution in the shelf and slope
domains. Solutions obtained in each region are
matched subject to the conditions of continuity of sur-
face elevation and of cross-shore surface slope at the
shelf edge. In the shelf region the coastal boundary
condition 5, = 0 applies. At large distances offshore in
the slope region n,(x, y,) = — g as x = .

The shelf part of the solution is

mix, y) = (1 Z_O )[2 (=" (F(2nL — x)
Y n=0
+ FQ2[n+ 11L +x))], (5)
where
x
F(x)= erfc(W) — exp(dvyx + K d*~%y,)
X erfc(i(—l{—l)i)jﬁ + d'Y(Klyt)l/z) , (6)

with v = (K2/K)'> and v, = (1 — 7v)/(1 + 7).
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FiG. 2. Analytical solutions of (4) for a shelf-slope region. Surface elevation at y = 0 is prescﬁbed as zero
on the shelf, decreasing to n = —7 = —0.1 m on the slope over an e-folding width, w = 20 km. Elevations
(cm) below n = 0 are shown: (a) Shelf gradient s, = 1 X 1073, slope gradient 5, = 5.0 X 107% (b) 5, = 1

X 1073, 5, = 2.5 X 1072

The following values were assigned to the principal
parameters: g = 9.81 ms™2, f=10"%s"!, r=10"3
ms™', 70=0.1m, L =100km, and w = 20 km. The
value of r has been chosen to be characteristic of the
shelf region and hence will probably overestimate fric-
tion over the slope part of the region. Figure 2a shows
the elevation field (cm) over the shelf-slope region for
which s; = 1 m km™' and s, = 50 m km™' correspond-
ing to a fairly steep continental slope. The basic features
of the solution are that the elevation gradient on the
upstream boundary relaxes onto the shelf in the down-
stream direction, inducing both alongshore and cross-
shore sea-level gradients on the shelf. There is little
corresponding spread of the elevation field in the off-
slope direction. Figure 2b shows a similar solution but
for a gentler continental slope (s, = 25 m km™), the
gradient of the continental shelf remaining unchanged.
Clearly in the latter case there is much more penetration
of the slope elevation field onto the shelf, consistent
with the view that steep slopes are the most effective
insulators of the shelf with respect to the elevation field.

Nondimensionalization of (4) or inspection of the
solution (5)-(6) shows that the characteristic along-
shore distance over which spreading of the elevation
field onto the shelf occurs is

L, = w?/K, = fs;w?/r, (7

where w is the slope current width and s, is the
continental slope steepness. This implies that narrow
inflow, gentle bottom slope, and high friction all
promote leakage (small L,). For the examples shown
in Fig. 2, L, = 2 X 10> km and 1 X 10 km for
slopes of 50 mkm™' and 25 mkm™', respec-
tively.

b. Alongshore variation in topography

When alongshore variation in bathymetry is allowed,
we require the generalized form of (4), obtained by
eliminating u and v between (1)-(3) and retaining the
cross-shore friction term in (1). Surface elevation is
then governed by the elliptic equation (Schwing 1992)

o(ex + M) + (e = B) e + (B + a)n, =0, (8)

where o = R%/(1 + €?), 8 = R?*/(1 + €%), R
= (gh)'"?/f, and e = r/ fh.

Equation (8) was solved numerically, using the
method described by Lindzen and Kuo (1969), by
expressing it in terms of centered finite differences on
a grid with mesh size dx = 5 km (cross-shore) and dy
= 10 km (alongshore). Depth is taken to be zero at
the coast, hence the coastal boundary condition re-
mains as before. At the ocean boundary, surface ele-
vation is clamped (n = — 7o), which is the numerical
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FiG. 3. Numerical solutions of (8). Surface elevation at y = 0 is prescribed as zero on the shelf, decreasing to n = —n¢ = —0.1 m on the
slope over an e-folding width, w = 20 km, Elevations (cm) below # = 0 are shown. (a) Slope steepness increasing alongshore. Shelf gradients
s1 = 1 X 1073, slope gradient constant s, = 2.5 X 1072 for (0 > y > —200 km), increasing linearly between (=200 km > y > —300 km),
then constant with s, = 1 X 10~! (¥ < = —300 km). (b) Shelf gradient 5, = 1 X 1072, slope gradient s, = 2.5 X 1072, (¢) 5; = 1 X 1073, s,

=1x107".

implementation of the far-field condition used above.
The upstream boundary condition is as before, and
at the downstream boundary the condition is that
there be no elevation gradient in the alongshore di-
rection, (5, = 0). The model was tested by ensuring
that it was able to reproduce the analytical solutions
shown in Fig. 2.

Figure 3a shows the elevation field resulting from
a slope current inflow of width w = 20 km onto a
continental slope for which s, = 25 m km™! from
the upstream boundary to 200 km downstream.
Slope steepness then: increases linearly from 25
mkm~' to 100 m km™! between 200 and 300 km
downstream. Beyond 300 km, the slope remains
constant with s, = 100 m km™'. Figures 3b and 3c
show equivalent numerical solutions for s, = 25
mkm™! and 5, = 100 m km~! when there is no
alongslope change in steepness (Figs. 2b and 3b
provide a direct comparison between the analytical
and numerical solutions). In all cases, the conti-
nental shelf has constant steepness 5; = 1 m km™".
Thus, while the conventional view is that steep
slopes should reduce on-shelf leakage of the elevation
field, the results above clearly demonstrate that

alongshore steepening of the slope actually increases
leakage.

4. Discussion

The paradoxical increase in slope current penetration
with increasing alongshore slope steepness can be ex-
plained by consideration of the leakage length scale
(7). To first order, elevation contours over the conti-
nental slope are almost parallel to isobaths because the
steep slope makes topographic steering the dominant
process. When the slope steepens rapidly (over a dis-
tance much less than fsow?/r where s, is the initial
slope), the width of the elevation field narrows as iso-
baths bunch together. Characteristically, an increase
in the bottom gradient by a factor k decreases the width
of the slope current to w/k and, because L, is linear
in s but quadratic in w, reduces the leakage length
scale to L,/k. For the simulation shown in Fig. 3 the
increase in bottom slope by a factor of 4 reduces the
leakage length scale from L, = 1 X 10* km to 250 km.
Physically, therefore, steepening of the slope causes the
slope current to become narrower by topographic
steering, which in turn sharpens the offslope elevation
gradient, increasing the potential for leakage, by relax-
ation of the elevation field onto the shelf. Similarly,
alongshore reduction of bottom slope would widen the
flow and reduce the capacity for leakage.

There are at least two locations where there is some
evidence that the dynamics described above may apply.
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Hukuda et al. (1989) performed a numerical simula-
tion of flow on the Newfoundland shelf-slope and
found that at least part of the westward flow across the
shallow Grand Banks could be accounted for by leakage
onto the continental shelf of the sea-level field asso-
ciated with the offshore Labrador Current. This onbank
spread of the flow, which is also apparent in the sim-
ulation of Greenberg and Petrie (1988), appears to be
associated with a steepening of the slope in the vicinity
of Carson Canyon.

There is evidence from current meter records that
the Scottish continental slope current spreads over the
shelf edge to the north of Ireland, particularly in au-
tumn and winter (Booth and Ellett 1983; Ellett et al.
1986). A broad eastward incursion of Atlantic water
onto the Malin-Hebrides shelf north of Ireland as well
as eastward flow along the north coast of Ireland are
also documented (Ellett 1979). The onshelf incursions
appear to occur where the slope current flows from a
region of fairly gentle slope west of Ireland to a location
at about 55°N where the upper slope becomes ex-
tremely steep (about 70 m km™),

Other processes may be implicated in slope current
leakage such as enhanced shelf friction, inertial effects,
and variations in shelf bathymetry resulting in onshelf
steering of flow. In this paper a particularly simple ex-
planation of the phenomenon has been provided, based
solely upon alongshore steepening of the continental
slope with no variation in shelf bathymetry. Slope cur-
rent leakage is important as a possible coupling mech-
anism between coastal ocean circulation and the
oceanic processes, that ultimately drive slope currents.
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