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ABSTRACT

A new autonomous instrument collected 76 profiles of temperature microstructure over a ten-day period in
the eastern subtropical North Atlantic as part of the North Atlantic Tracer Release Experiment. The data
between 200-m and 350-m depth was used to determine the mean rate of temperature variance dissipation
{X). The estimated diapycnal diffusivity is K, = 1.4 X 107> m*s~'. The distribution of X is approximately
lognormal, suggesting that the 95% confidence limits on { X) are +4%. This uncertainty is less than that caused
by the imperfectly known probe response, possible noise spikes on the probes, and variability in the degree of
microstructure anisotropy; the latter two effects were estimated from a pair of closely spaced probes. Each of
these uncertainties is about +15%. Statistically significant low-frequency variability of X is observed with (X
decreasing by a factor of 2 between the first and second half of the observation. This low-frequency variability
is likely the largest cause of error in estimating a seasonally averaged diapycnal diffusivity.

1. Introduction

There is a long standing discrepancy between the
values of the diapycnal eddy diffusivity K inferred
from microstructure observations using the Osborn—
Cox model and the diffusivities inferred from model
fits to large-scale property distributions (Davis 1994a).
Munk (1966) estimated K, from the vertical advec-
tion-diffusion equation waC/dz = K,0*C/dz%. Using
an average density profile for depths of 1 to 4 km and
an estimated vertical velocity w he found K, = O(10~*
m? s™!). Today’s basin-scale models either use similarly
large diapycnal diffusivities ( perhaps by failing to sep-
arate vertical and diapycnal fluxes) or produce weak
over-turning circulations. Osborn and Cox (1972)
showed that a simplified temperature variance budget
led to a balance of dissipation and production by dia-
pycnal fluxes in which

Ky=—X
Y 2(08/82)%°

where (X) is the mean rate of temperature variance
dissipation. Since the pioneering efforts to develop
oceanographic instruments to measure X, the Ky s ob-
tained from (1) have been O (10) times smaller than
Munk’s value. Although more elaborate advection—dif-
fusion models have been used to examine basin-scale
property distributions and more extensive and better
measured microstructure datasets have been used with

(1)
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(1), the gap between values of K, has persisted (Gregg
1987; Davis 1994a).

It is possible that the K, discrepancy results from
some fundamental error in large-scale models, in the
Osborn-Cox model’s simplifications, or in the idea that
Ky measured in midocean thermoclines should be di-
rectly compared with the parameters in the large-scale
models. Magnified mixing near boundaries (Garrett
1991), increased mixing at great depth (Gargett and
Holloway 1984), time variations and lateral mixing
(Davis 1994a), the effects of the nonlinear equation
of state for seawater (McDougall and You 1990), and
the scaling simplifications in the Osborn-Cox model
(Davis 1994b) have all been implicated in trying to
resolve the discrepancy. Alternatively, Baker and Gib-
son (1987) have suggested that if X were adequately
sampled so that the long-term average (X) could be
accurately determined, then the measured K, would
be O(10~*m?s™!).

The Baker and Gibson argument is based on the
high intermittency of X and the high skewness of its
approximately lognormal probability distribution. As
a consequence, an unbiased estimator of the mean
value is much more likely to underestimate the mean
than to overestimate it. Because of the expense and
difficulty of attending instruments at sea over a wide
range of conditions, microstructure datasets are gen-
erally of short duration (~1 month maximum) and
this makes it possible that the infrequent large events
responsible for a K, of O(10™* m? s™!) have not been
adequately sampled. The Long-Term Autonomous
Microstructure Profiler (LAMP) is an instrument de-
signed to address this problem by collecting many pro-
files, of O(100), autonomously over deployments of
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several months duration. LAMP consists of an auton-
omously profiling ALACE float (Davis et al. 1992)
outfitted with two microtemperature probes and a 200-
Mbyte hard disk for data recording (see Fig. 1). In
May 1992, the prototype LAMP was deployed in the
eastern subtropical North Atlantic in the area of the
North Atlantic Tracer Release Experiment for a ten-
day period as a trial.

The purpose of this paper is to describe the LAMP
(section 2) and the May 1992 dataset (section 3). The
sources of errors in estimating (X) and the statistics
of X are examined in sections 4 and 5. In section 6 the
degree of microstructure isotropy is examined using
the two probes and leads to a corrected value of (X},
about 30% lower than if all events were isotropic. Spec-
tra over (.5-m segments were normalized in amplitude
and wavenumber and then averaged for comparison
to the Batchelor spectrum in section 7. Many individual
spectra do not, of course, fit the Batchelor prediction,
but the average spectrum has this form.

2. The long-term autonomous microstructure profiler

The LAMP is based on the Autonomous Lagrangian
Circulation Explorer (ALACE) described by Davis et
al. (1992). The ALACE is a Swallow float intended to
track ocean currents to a depth of 2 km. Instrument
buoyancy is periodically increased by pumping oil into
an external bladder, causing ALACE to rise to the sur-
face where it is located by, and relays data to, the Argos
satellite system. The instrument’s ability for vertical
cycling has been exploited to routinely collect, and relay
though Argos, profiles of ocean temperature and salin-
ity in profiling ALACEs. Dozens of temperature pro-
filing PALACE:s are in service and CTD profilers are
in advanced development. The LAMP differs funda-
mentally from these instruments. Due to the high data
rate required for microstructure measurements, the
LAMP internally records during all of its cycles. After
a prescribed number of profiles, LAMP remains on the
surface transmitting to Argos. Using the Argos locations
(~1 km accuracy) for initial guidance and a shipboard
direction finder tuned to the Argos frequency for final
guidance, the instrument is recovered.

Microstructure measurements are made by two mi-
crotemperature probes and recorded on a 200-Mbyte
hard disk (Fig. 1). A pair of probes, separated hori-
zontally 18 cm, provides a cross-check on sensor health
and minimal sampling of the horizontal scales of mi-
crostructure. It also increases the odds of having at
least one probe survive a long deployment. Data is re-
corded while the instrument is descending. Normal de-
scent rate during data acquisition is 5-8 cm s™'. The
temperature probes and front-end electronics are
manufactured by Sea-Bird Electronics (SBE). The
temperature probes are fast response thermistors
(FP07). Their output is high-pass filtered on the SBE
analog board and sampled by a 16-bit digitizer con-
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le—s-11cm
FiG. 1. The LAMP is a 30-cm stretched version of a normal
ALACE. Extra room accommodates the 200-Mb hard disk plus extra

batteries required. The microtemperature probes are located near the
bottom end cap, horizontally separated by 18 cm.

trolled by an Onset TattleTale 6 microcomputer. At
the end of each profile the data is written to hard disk.
Power is supplied by three parallel lithium 30-amp-
hour, 15-volt battery packs (compared to two packs
for a standard ALACE). To accommodate the added
electronics and batteries, the standard ALACE pressure
case has been extended 0.3 m to a total length of 1.24
m and to a mass of 30 kg.

In case a malfunction causes low battery voltage, the
instrument goes into a low-power state for the remain-
der of the scheduled deployment and then switches on
a spare battery pack for final pumping to the bladder
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FIG. 2. Cascade plot of 76 temperature profiles shows a remnant
mixed layer between 75 and 150 m depth. Profiles are taken every 3
h and are offset by 0.5°C.

and Argos transmission. The spare battery provides
power for 90 days of Argos transmission at the end of
deployment.

3. The May 1992 dataset

In May 1992, the first leg of the North Atlantic
Tracer Release Experiment (NATRE) was conducted
near 26°N, 28°W. NATRE is a multi-investigator ef-
fort to directly measure diapycnal eddy mixing by
tracking the vertical spread of intentionally released
SF¢. The vertical profile of tracer concentration was
measured within a month of its initial release and at
approximately 6 and 12 months after release (Ledwell
et al. 1993). While the SF¢ was being released along
an isopycnal near 300-m depth, LAMP was deployed
for a ten-day period to collect 76 profiles (one every
3 hours) to an average depth of 350 m. Average hor-
izontal drift rate was 4 cm s~', with LAMP finishing
40 km away from its deployment site. The time series
of temperature profiles in Fig. 2 shows a remnant
mixed layer between 75 and 150 m, followed by the
seasonal thermocline. The deployment-average pro-
files of temperature 7" and buoyancy frequency N (Fig.
3) exhibit a fairly constant temperature gradient below
200 m. Density was computed using the 7-S rela-
tionship measured by Schmitt (1992) on a cruise
conducted just prior to the NATRE leg.

Potential temperature profiles were computed and
isotherms tracked. The isotherm displacement 5 has
rms values of 10 m below 200 m (Fig. 3). High rms 7
above 150 m results when changes in the mean mixed-
layer temperature cause isotherms to migrate across
the mixed layer. In comparison, the Garrett-Munk
(GM) internal wave model (i.e., Munk 1981) predicts
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FIG. 3. From the mean temperature profile (left solid line), the
corresponding Viisild frequency profile N is calculated (middle solid
line). Measured rms vertical displacement 7 (right solid line) is com-
pared with the Garrett and Munk internal wave model (dashed line).
Their model has ~50% less variance than the measured values for
z> 200 m.

rms 5 = (3 ¢cph/N)'/2 7 m; Fig. 3 shows the predicted
values for the measured N profile. The observed values
show about 50% more variance than the GM model
for z > 200 m. Agreement between GM and measured
rms 5 near 350-m depth is an artifact of the measuring
process. Only a few profiles go to this depth, causing
the rms displacements to be biased toward zero. Al-
though a 10-day record provides marginal resolution
of tidal frequencies, the spectrum does show a distinct
peak at 2 cpd (Fig. 4).

Investigation of the thermal dissipation rate X con-
centrated below 200 m, where d7°/dz is fairly constant
and statistics of X are most representative of the dis-
sipation rate near the tracer at 300 m. Time series of
X (computed from 97/9z assuming isotropy) display
intermittency, with only a few high-intensity events
(Fig. 5). One such event occurs near 215 m in profile
18, where, although there is no overturning in 7 on
0.5-m scales, there are high X values extending over a
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FIG. 4. Frequency spectrum of # shows a tidal peak at 2 cpd. The
10-day record does not allow very good frequency resolution. Profiles
are separated by 3 h, such that high-frequency variance is aliased
into lower-frequency spectral estimates.
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FIG. 5. Rms dT/dz values for all 76 profiles display the high degree
of intermittency of large X events. Larger values near 180 m mark
the start of the seasonal thermocline. Profiles are offset by 1°C m™,
so the x axis also represents the profile number.

7-m range (Fig. 6). The X in this one event accounts
for 10% of the time- and depth-integrated X measured
below 200 m and doubles deployment-averaged {X)
in the range of 215-220 m. This dependency of
{X) on a few events, typical of all ocean datasets, is
what makes it so difficult to determine the mean dis-
sipation and is responsible for the skewed distribution
that, as Baker and Gibson (1987) point out, makes
it likely that (X} is underestimated when X is under-
sampled.

4. Estimating (X)

Let the temperature be the ensemble-mean { ') plus
a fluctuating component: 7= 7' + { T'). The thermal
dissipation rate is

X = 2k[(T%)* + (T})* + (T9)*]1 = 2I(T3)?, (2)

where « is the molecular thermal diffusivity and sub-
scripts refer to components of the gradient. Typically,
T is measured along vertical profiles, resolving only 7,
= T, + (T.). Statistics of X must then be estimated
by assuming a relation between statistics of [V7"'| 2 and
(T%)?(i.e., I = 3 for isotropic flow or I = 1 for complete
stratification ). Inferred statistics of X will depend on
the value of 7, which is itself time dependent, and the
technique used to estimate <Tz>. Like previous inves-
tigators, we assume a constant value of I = 3; this is
discussed further in section 6.

The effect of errors in estimating ( 77, ) is investigated
by exploring four methods of estimating the mean gra-
dient. Since X is usually averaged over some depth
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range Az, ( T, ) is often taken as T., the spatial average
over Az. This exaggerates the ensemble mean ( 7, if

. variability on the scale Az and larger is significant. The

dissipation based on this mean gradient estimate will
be referred to as Xg.

As discussed by Davis (1994b), if the Osborn-Cox
model is to describe the fluxes that establish the general
circulation, the average { - ) should extend over mul-
tiyear timescales and over all seasons. This is necessary
to remove the effects of straining by internal waves and
mesoscale activity that causes T, to differ from the long-
term mean gradient associated with the general cir-
culation. As an approximation of this long-time av-
erage, ( T,) has been estimated by averaging over all
76 profiles and fitting this profile to a smooth curve.
This estimate is called X, .

Another method, advocated by Dillon (1982), is to
compute the Thorpe temperature profile (resorting the
profile to remove all overturns) and use the Thorpe
gradient, denoted G for the mean gradient. In a very
active region, where the local mean gradient 7, may
equal zero, G may yield a better estimate of the back-
ground gradient. Since the maximum and minimum
values of T for each Az segment defines Gy = (Tmax
— Thin)/ Az, the Thorpe gradient is always greater than
or equal to 7, and, consequently, <GT> is a biased
estimator of ( T, ) (Table 1 indicates it overestimates
{T,) by 20%). Values of X based on G will be referred
to as X,.

The final technique is not to remove a mean value
(ie., {(T,) = 0). Where the local variance is much
greater than the mean, the value chosen for ( 77, ) will
make little difference. However, where the local vari-
ance is very small, X can be dominated by (7). Al-
though taking the mean gradient to vanish does not
significantly affect (X}, it does alter its probability
density function (pdf) at small X. The dissipation es-
timated by this approach is called X;.
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FiG. 6. An expanded section from 200 to 230 m depth of profile
18 shows no temperature inversions on 0.5-m scales (solid line marked
with +, scales with upper axis). Measurements of X (solid line: probe
1, dashed line: probe 2) delineates an active patch from 213 to 220
m.
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TABLE 1. Values of (x) computed using different estimates of the mean gradient. Averages are based on 23 000 nonoverlapping 0.5-m
averages for z > 200 m. Values of of,x are derived by fitting the pdf to a lognormal distribution to minimize the X* measure of misfit (see
text). The deployment-average value of (T, is given for each estimator, the Thorpe gradient is biased high. (X, is smaller than the other
estimates because the local “mean” gradient includes some of the gradient variability. The mean dissipation computed from the lognormal
fit, (f(), is somewhat smaller than the mean obtained by straight averaging, even though it would be biased above the true mean if X were

truly lognormal.

(X)X 108

(T2)

Estimator (K2s™) Ot (Km™) GYI{Xo) COVeH)
Xo (local) 1.21 3.56 0.020 1.0 0.88
X, (seasonal) 1.25 3.75 0.020 1.03 0.82
X, (Thorpe) 1.22 3.57 0.024 1.01 091
X3 (zero mean) 1.28 3.53 0.0 1.06 0.88

Here X was calculated over 0.5-m intervals with a
0.25-m overlap between sequential estimates. The
spectrum of T, was computed, and the wavenumber
where it enters the high-frequency noise floor was de-
termined as outlined in the appendix. All wavenumbers
higher than the noise-floor intersection were set to zero.
The remaining low wavenumbers were corrected for
temperature probe time response (see the appendix)
while taking care not to distort the various measures
of mean gradient. The spectrum was then integrated
to find the mean-square gradient over the 0.5-m bin;
this is the sum of the squared mean gradient plus the
gradient variance that goes into X.

Errors arise in X because the time response of the
probe is imperfectly known; uncertainty in probe re-
sponse could potentially cause up to 15% error in {X)
(see the appendix). Also, { X)) depends on the method
used to remove the noise. The method used here of
integrating the spectrum up to a modeled noise floor,
without any attempt to remove the noise floor, leads
to an additional 1% uncertainty.

The data indicates that probe 2 became fouled after
26 profiles (see the appendix and Fig. 12). Although
not catastrophic, this causes (X} from probe 2 to be
25% lower than from probe 1. The pdfs of the two
probes have no significant difference in shape. To avoid
confusion, results are reported here only for probe 1
unless stated otherwise.

Values of { X) corresponding to different mean gra-
dients are listed in Table 1. These were estimated by
averaging over 23 000 nonoverlapping 0.5-m bins. Al-
though the estimators use quite different mean gra-
dients, (X)) only varies by 6% between them all.

The accuracy of the sample average of dissipation
depends on both the number of samples averaged and
on the correlation between these samples. The non-
overlapping 0.5-m averages are nearly uncorrelated.
To show this, the mean product {X(z)X(z + dz))
= Cyx( dz) was computed for spatial lags from dz = 1
mm (the sampling rate) to dz = 150 m for z > 200 m
(see Fig. 7), where Cyx is based on the zero mean gra-
dient estimator X3 and Cyx was computed in three steps.
Using X values calculated directly from the time series
every | mm of depth, Cy, was estimated for dz from

1 mm to 1 m. Then X was averaged over 0.1-m bins,
and Cyx was computed for 0.1 < dz < 20 m. Finally,
X averaged over 0.5-m bins (as above) was used for
0.5 < dz < 150 m. These 0.5-m averages were also
used to compute Cyx( df) for time lags between profiles
for 3 < dt < 240 hours. The correlation of x falls to
0.1 by dz = 10 cm and decreases to 0.01 by 1 m. The
fractional decrease of Cyx( dz) slows near dz = 10 m,
where its value is near Cy,(dt) for all observed lags.
Although many realizations were averaged to form Cyy,
the averages are dominated by a few large events, re-
sulting in the somewhat noisy curve in Fig. 7. Because
the correlation of X drops to 0.03 by dz = 0.5 m and
continues to decay, the sampling error for nonoverlap-
ping sequential 0.5-m averages will be only a few per-
cent larger than it would be if the samples were taken
from separate profiles at nearby times and locations.
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FIG. 7. The mean product of X, Cy,{(dz), is computed for z > 200
m for lags dz = 0.001-150 m. In addition, time lags are computed
from 3 h to 10 days (scales with inset). At dz = 0.5 m, Cyy has fallen
to ~0.03 of its dz = 0 value. For dz ~10 m, Cy, is equal to its time-
lagged values.
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Fi1G. 8. The ratio of X from both probes, R = Xa/Xg, has 99% of
its values where 0.1 < R < 10. The asymmetry is due to probe 2
fouling during profile 26, thus biasing R (see the appendix). Bin width

of histogram is 0.1. There are a total of 46 000 points. Due to the
half-overlap between samples, there are 23 000 independent points.

Given the intermittency of X, it is difficult to separate
a spike of instrumental noise caused by some detritus/
biota running into the probe from a real turbulent event
(i.e., a salt finger, billow, or initial overturn of a Kelvin~
Helmholiz instability ). Comparison of the two probes
gives some indication of how important such spikes
might be. Let X, and X be the 0.5-m average X esti-
mated from probes 1 and 2, respectively, and let R be
the ratio X4/Xz. To account for the possibility that
sloping isopycnals might cause large X from the same
event to appear in different depth bins for the two
probes, R is calculated for adjacent bins and the value
closest to R = 1 kept. The histogram of R in Fig. 8
indicates that 93% of the time Y5 < R < 3 and 99% of
the time 0.1 < R < 10. If the 1% of the data where the
two X values differ by 10 are not used, (X} decreases
by 5% for probe 1 and 1% for probe 2. The asymmetry
in the distribution of R occurs because probe 2 is fouled

during the latter part of the cruise. The occasional lack

of correspondence between events in the two probes
may result from noise spikes on one probe or from
one probe passing through the boundary of a turbulent
patch that the other probe misses. Even if all the factor
of 10 discrepancies are noise spikes, the effect on the
average dissipation is small.

5. The statistics of X

How reliable is the average dissipation obtained from
this dataset? In addressing this, it is important to isolate
two kinds of sampling error. The first is caused by the
high intermittency of ocean turbulence under a given
set of large-scale conditions (internal wave spectrum,
large-scale stratification, lateral shear, etc.). This in-
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termittency is the reason that a sample average over a
small dataset is more likely to underestimate { Xy than
to overestimate it. There are theoretical reasons to ex-
pect the statistical distribution of X for fixed large-scale
conditions to be approximately lognormal. This is why
Baker and Gibson ( 1987) suggest estimating the mean
by fitting the observations to a lognormal distribution
and finding (Xx) from the parameters of that distri-
bution. The second kind of sampling error results from
changes in the large-scale low-frequency characteristics
of the ocean. The consequent variability of X is sam-
pling error if { X)) is defined by the many-year average
appropriate to the diapycnal flux affecting the general
circulation but is not an error for the average over a
particular time period and region.

The probability density function (pdf) of 0.5-m av-
eraged X, (local mean) over the 76 profiles shown in
Fig. 9 is indeed strongly intermittent and approximately
lognormal. This figure shows that a substantial fraction
of the total dissipation results from large events. Baker
and Gibson (1987) suggest estimating { Xy by plotting
the cumulative distribution function (cdf) of Inx on a
“normal probability plot” in which a normal distri-
bution appears as a straight line. Fitting a straight line
to the observed cdf provides the mean and variance,
(Inx) and o, of InX as well as confidence limits for
these parameters (assuming the true distribution is
lognormal). This plot for the LAMP data does appear
as a straight line over most of its range (Fig. 10). The
behavior at low values depends on which { 77, ) is used.
The distributions of all estimators, X;, deviate from
lognormal for x > 107° K?s™'. Applying Baker and
Gibson’s graphical method to Xo, (X ) is 18% lower

Log1o (Xo)

FIG. 9. The pdf of X, p(X), appears lognormal (solid line). Since
{X) is given by the first moment of p(x), (X) = ZXp(X), the fraction
of (X)) determined by p(X) is f = Xxp(X)/{X) (dashed line). The value
of fis summed over each decade of X, given by the bar graph, such
that values where —5 < log(X) < —4 accounts for ~6% of {(X).
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FiG. 10. The cdf of X is plotted on a normal probability plot, such
that if X is lognormally distributed, it would appear as a straight line
above. Left axis denotes number of standard deviations away from
the mean value for a normally distributed variable. All four estimates
of X are shown, as marked. All deviate from lognormality at large X.
The plotted straight line is a graphical fit to Xo, with ofx = 3.9.

than the straight arithmetic average from Table 1 with
o =~ 3.9; for a lognormal distribution with o2, = 4
the 95% confidence limits for (X) from 23 000 inde-
pendent samples are (0.96, 1.04) of the sample mean.

The graphical fit is subjective, relying on a qualita-
tively “best” fit to the data. An alternate procedure is
to select the lognormal distribution that has the max-
imum likelihood of producing the observations as a
random realization (Gregg et al. 1993 performed sim-
ilar steps). Following Bendat and Piersol (1986), let
the range of InX be divided into equal width bins and
let the true probability of an observation falling in bin
i be F; and the observed fraction of events in the bin
be f;. If the number of events in each bin is large, the
guantity

L — F}

v=zPg

i

3)

is distributed as a x? variable with degrees of freedom
equal to the number of bins less the number of con-
straints applied in calculating f;. The probability that
a set of f; was produced by a particular F; therefore
increases as y decreases. Assuming the underlying pdf
for InX is Gaussian, a mean and variance for InX were
found by minimizing ¥ for —10 < log;oX < —6.4,
thereby avoiding problems at low X caused by noise
and sensitivity to the mean gradient and also ignoring
the large-X tail of the curve that also deviates from the
lognormal. For X, a narrower range, —9 < log;oX;
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< —6.4, is used to avoid the large deviation from a
straight line at low X,. Values of o, (Table 1) range
between 3.5 and 3.8. With ¢ minimized, the resulting
fits fail to pass X2 tests at a confidence level above 8%-
32%, and this level drops below 1%-20% when the en-
tire upper tail of the pdf is included. In other words, if
X were indeed lognormal and the experiment were re-
peated many times, a distribution that fits the theory
as poorly as the observed distribution does would occur
only 1%-~20% of the time. Values of { X)) based on the
different lognormal models are smaller than the arith-
metic mean by 9%-18% (Table 1).

Figure 11 shows the measured Cox number, Cy
= (X)/(2x+{T. )" = Ky/x, obtained by averaging X and
{T,(z)) over 5-m bins. The depth-averaged Cox
number { C;) is 98, consistent with K, ~ 100k ~ 1.4
X 1073 m? s~!. The large value near 220 m arises from
a single event in profile 18 (Fig. 6). Without this event,
the average of (X)) over all depths would be reduced
by 10%, and (x) for 215-220 m would decrease by
50%. There are ~800 samples per depth bin giving
Baker—-Gibson 95% confidence limits of (.79, 1.27) for
the average in each bin. The observations fall outside
these limits 30% of the time suggesting a nonrandom
pattern of K variation with depth.

Could this pattern of variation reflect the effect of
Viisild frequency N on K;? For z = 200-350 m, N

DEPTH (m)

PR W S B W Y

Logig (Cx)

FIG. 11. Plot of C, estimated in 5-m bins for the 76 profiles, with
an average value of 100 (right-hand solid line). Dotted lines represent
95% confidence limits using the Baker and Gibson model. The large
value near 220 m is due to the patch in Fig. 6. C, is also averaged
over 20-m bins (C,/4 is plotted, left-hand solid line), with its corre-
sponding confidence limits (dotted lines). Dashed lines represent how
C, would scale with Viisild frequency using the Gargett and Holloway
model, where C, = N”, with —1 < p < —0.5. The “Xx” represents the
20-m average C, value ignoring the large event in Fig. 6.
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varies from 2.5 to 1.5 cph (see Fig. 3). According to
the Gargett and Holloway (1984) model, C, should
vary as N? with —1 > p > —0.5, causing C, to increase
30%-66% from 200 to 350 m. Neither the observations
averaged over 5 m nor 20 m (Fig. 11) can confirm
this. Regression analysis suggests there is no significant
correlation between N and C,. The 20-m averages have
tighter confidence limits and between 230 and 310 m
C, falls between the expected —0.5, —1 slopes. The
single event in profile 18, however, makes C, above
230 m so large as to disagree with the Gargett-Holloway
theory with 95% confidence. The small values below
310 m are also, by the lognormal distribution, signif-
icantly different from the model. We must conclude
that the observations are unable to explain how K,
varies with depth or with N. The observed K profile
may result from an unexplained pattern of variation
or from statistical variation that is larger than expected
from the natural variability of X. Averaging over more
profiles and/or greater range in N will be required to
determine which with statistical confidence.

There is also an apparently significant variation of
{x) with time. Figure 12 shows X averaged over z
> 200 m for each profile and also the Baker-Gibson
95% confidence limits. The profile 18 value is about
10 times larger than the rest, arising from the patch in
Fig. 6. For the latter half of the deployment (X is
about 50% of the average over the first half; this is
significant by the calculated confidence limits. This
could reflect either natural variability or degradation
of the probes. Comparison of (X from both sensors
shows a step function, with sensor 2 apparently fouling
at profile 26, (Fig. 12, the appendix ). Since sensor 2
after fouling has a different frequency response (Fig.
Al), it more severely attenuates large X (which has
more variance at high wavenumbers), with less bias
for low x. Thus, the two sensors agree better at small
X values. From Fig. 12 it appears as though there is
only one large fouling event. Otherwise, the two sensors
track the long-term variability in X within the expected
sampling uncertainty. To explain the long-term vari-
ability by fouling requires synchronous fouling or sen-
sor degradation. Modeling of biomass distribution leads
to ~ 1% probability that both sensors would foul versus
just one (the appendix ). Since only one fouling event
is apparent, it seems unlikely (but certainly not im-
possible) that dual fouling occurred.

In conclusion, the 23 000 nearly independent esti-
mates combined with a nearly lognormal distribution
gtve 95% confidence limits of 4% for the deployment-
average (X). Similar variability arises from how the
mean gradient is defined (3:3%). Uncertainty in probe
transient response adds +15%. uncertainty. Addition-
ally, 1%-5% of dissipation occurs in high X events seen
in one probe but not the other and may represent noise
spikes. Assuming strict isotropy, the vertical eddy dif-
fusivity is Ky = 100k = 1.4 X 107> m* s~ with error
bounds near =17%. Sampling uncertainty within the
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F1G. 12. Plot of T2 averaged for z > 200 m for each profile for
both sensors (solid line: sensor |, dashed: sensor 2). After profile 26,
variance of sensor 2 falls to 65% of sensor 1 for the remainder of the
deployment. The dotted lines represent 95% confidence limits on the
mean value of 72 for each profile, assuming lognormal statistics (Baker
and Gibson 1987). Thus, the reduction of variance in the latter haif
of the cruise is statistically significant. The lower solid line is the ratio
of T2 of sensor 1/sensor 2, with dashed lines given as references.

time and depth range investigated is not a significant
factor in this uncertainty.

Fitting the data to a lognormal distribution reduces
the estimated (X) by 9%-18% (Table 1). We have
observed more high X events than expected from a
lognormal distribution. That the lognormal model
underestimates { X) by more than its own 95% confi-
dence limits suggests that the model does not represent
the data. Much of the variability not accounted for by
the lognormal model appears to represent a consistent
pattern of change in time and perhaps depth. Here X
decreased by a factor of 2 over the 10-day observation
and time averages at different depths differ by more
than the apparent statistical uncertainty. Some of this
variability may be due to sensor fouling, although it
seems unlikely that probe degradation accounts for all
of it (the appendix). It is quite possible that variability
of this sort is the primary difficulty in establishing the
long-term average K, appropriate to the general cir-
culation.

6. Isotropy

The preceding calculation of (X assumed isotropy
by setting /"= 3 in (2). This approximation potentially
overestimates (X) by a factor of 1-3. Gargett et al.
(1984) addressed anisotropy by comparing Cross-
stream and streamwise velocity spectra for varying dis-
sipation rates. They found that the degree of isotropy
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depended upon the ratio of the Kolmogorov wave-
number k, = [¢/»>]!/* and the buoyancy wavenumber
ko = [N?/€]'? (e kinetic energy dissipation rate, v:
kinematic viscosity). The ratio k,/ko = [¢/(¥N?)}3/*
represents the range of scales available for the devel-
opment of the inertial subrange. Gargett et al. ob-
served a departure from dissipation-scale isotropy for
e < 200vN*. For typical oceanic values of {¢) they
concluded that large dissipation events are isotropic so
that no significant correction of { €) is required. Itsweire
et al. (1993) conducted a numerical simulation study
and found significant anisotropy at dissipation-scale,
even for e > 200vN2, Their simulation was for low
Reynold’s numbers (Re, = 26-104, where X is the
Taylor microscale), which might lead to the discrep-
ancy with the Gargett et al. results. They also observed
that isotropy was more strongly influenced by the
strength of the shear flow than by the stratification.
They concluded that anisotropy could reduce obser-
vational values of K by a factor of 2.

Anisotropy is investigated here using the difference
between the two probes to characterize T/.%2. Over the
0.5-m depth bins, T, and T, were calculated for dx
= dz = 0.18 m. The 0.5-m average values were removed
and the resulting (7’2 computed. Subtracting the
0.5-m mean coupled with the dx = dz = 0.18-m sep-
aration is equivalent to applying a bandpass filter caus-
ing the gradient variances to be dominated by 0.5-
0.18-m scales.

Let the horizontal-to-total variance ratio F be defined
as F = (T *)/({T5*) + {T%*)). The associated de-
gree of isotropy is I = (1 + F)/(1 — F)with I = 3 for
isotropy (F = 0.5). Here F can be interpreted in two
ways: If T is taken as T = Tyexp[i(kx + mz)], then
F = k%/(m* + k?) is a measure of the aspect ratio of
the small-scale temperature field. Alternatively, the T
field could be completely stratified but tilted at the angle
6 to the horizontal. Then T.? = T’'2sin%), T2
= T'?cosf, and F = sin?f is a measure of the tilting,
If F = 0.5, then either the flow is isotropic or the local
tilting is of order 45°. The deployment mean for z
> 200 mis (F) = 0.38, equivalent to (1) = 2.25, or
rms tilting of 38°. For a stratified ocean of constant N
and no background shear, Thorpe (1978) argues that
advective instability will arise for average slopes greater
than 14°, equivalent to F ~ 0.06. Values of F > 0.06
therefore suggest that the temperature variability is in-
deed due to small-scale flows (or shortly will be).

Values of F, I, and isotropy-corrected X are calcu-
lated over 0.5-m depth bins, leading to a new estimate
of (Xo) 27% lower than the value in Table 1. This is
equivalent to using I = 2.2 instead of the value 3. This
estimate is biased since it is calculated from scales larger
than 0.18 m, and therefore does not represent the de-
gree of isotropy at higher wavenumbers, which contain
most of the variance. Osborn and Lueck (1984) com-
pared velocity spectra and found anisotropy to be a
function of wavenumber, with full isotropy at dissi-
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pation scales. Therefore, reducing the ( X> based on
isotropy should produce a lower bound.

As stated above, the degree of isotropy should be
correlated with [¢/(¥N?)]%/4. Assuming a balance be-
tween turbulent production and viscous dissipation
combined with a constant mixing efficiency v, the Cox
number can be related to ¢ as Cy = e¢y/xN? (Osborn
1980). Using this relation, ¢/#N? = C,/+vPr, (Prandtl
number Pr = v/«), and we expect I to be correlated
to C,. Calculations of 7 and C, over individual 0.5-m
depth bins likely violate the above basic assumptions
since production and dissipation are not necessarily in
balance for each single realization. Additionally, v de-
pends upon the balance between buoyancy flux and
turbulent production, which will also not be constant
over 0.5 m realizations. Nevertheless, undaunted, we
investigate the correlation between F and C.

For each 0.5-m estimate, C, was calculated using
the local temperature gradient: C, = X/(2«+ T,%). The
correlation was computed between log(F) and log(Cy),
yielding a low value of p = 0.13. The plot of the con-
ditional pdf between F and C, shows this weak cor-
relation, more pronounced for the lower bound on F
(Fig. 13a). This suggests high C, events tend to be
slightly more isotropic than low C, values, which dis-
play wider variability.

The relation between F and C, provides a rather
dubious confirmation of our assumptions. One ob-
vious fault is that in the definition of C, the local
gradient is used, which will underestimate the back-
ground gradient when there are overturns of the same
scale as the averaging size of 0.5 m. This suggests using
the Thorpe gradient G instead, forming an effective
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F1G. 13. (a) The conditional pdf between the horizontal-to-total
variance ratio F and the Cox number is shown. The solid line refers
to {F(C,)) (mean value of F, conditional on C,). The upper and
lower values of F, such that 10% of all values of F(C,) are above the
upper limit, and 10% are below the lower limit, are marked with +s.
If F and C; are uncorrelated, (F(Cy)), along with the 10% limits,
should be independent of C,. There is a weak correlation, best seen
by the dependence of the lower limit on C,. (b) The same as (a)
except using the Cox~Thorpe number C;. Note the stronger corre-
lation, particularly exemplified by the lower limit dependence on Cr.
Although there is wide scatter in F at low Cr, this is significantly
reduced at the highest Cr values. The dotted line marks F = 0.5,
equal to full isotropy (I = 3).
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Cox number, labeled here as the Cox-Thorpe number
Cr= X/(2x+ G%). Dillon (1982) defined his local Cox.
number in a similar way.

A simplistic explanation gives a more intuitive
meaning for C7. The Thorpe gradient represents the
largest potential gradient possible over the 0.5 m, that
is, what would be present in the absence of all small-
scale motions. We can therefore use Gr as the 0.5-m
estimate of the background gradient. Let the Fourier
components of T, be defined as T, (k) = Gr- k),
where £(k) represents the wavenumber distribution of
the finestructure. This says we can have the same fine-
structure pattern between two patches, with the only
difference being the value of the background gradient.

Thus, X = G%{£2(k)dk depends upon both the mag--

nitude of Gr, which is distorted by the turbulence, plus
the dissipation rate, which pushes T variance into
higher wavenumbers. By dividing X by G%, the effect
of Gr is removed, and Cr is an estimate of the high
wavenumber variance. If the overall spectral shape is
the same between 0.5-m realizations (i.e., the Batchelor
spectrum), then an increase of C7 does not necessitate
a balance of turbulent production and dissipation, but
simply serves as an estimator of the smallest scales of
the turbulence.

Correlation between log(F) and log(Cr)is p = 0.23.
Although this correlation is still low, it is higher than
that obtained using C,. This higher correlation is most
evident for the 10% lower bound in the conditional
pdfplot (Fig. 13b). Low Crevents have a more variable
degree of isotropy, whereas high Cr values are rarely
anisotropic.

The potential effect of anisotropy is to lower (X by
as much as 27%. Due to isotropy not actually being
measured at high wavenumber, the estimate defines
the lower bound. The degree of isotropy appears to be
best correlated with Cy. This relation will be exploited
in the next section.

7. The Batchelor spectrum

The Osborn—-Cox model provides an estimate of the
diapycnal eddy diffusivity Ky by balancing the pro-
duction of temperature variance against its dissipation
at molecular scales. Although predicting Ky, this ap-
proach does not provide insight into how the variance
is cascaded to smaller scales. In a sense, this is an ad-
vantage because it does not require particular dynam-
ical conditions to be met for the model to apply. All
that is required is that accumulation and turbulent
fluxes of (7'?) be unimportant and that production
be dominated by the diapycnal flux. If these conditions
are met, the model applies to fluxes supported by
breaking internal waves, double-diffusive convection
or intrusions.

Batchelor (1959) predicted a theoretical universal
temperature spectrum for homogeneous, locally iso-
tropic, unstratified, turbulent flow. The Batchelor
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spectrum depends on the physics of the energy flux,
breaking the spectrum into three regimes. Low wave-
numbers are an inertial subrange where the velocity
field is not affected by viscosity and the classical Kol-
mogorov cascade results in a k!/3 spectrum for T,. This
is followed by a viscous-convective range where ve-
locity, smoothed by viscosity, strains the temperature
field and produces a k' spectrum for T’,. At the Batch-
elor wavenumber, kz = (ev 'k 72)'/4, thermal conduc-
tion becomes important and causes an exponential
rolloff of the spectrum at higher wavenumbers. The
shape of the spectrum is invariant to the dissipation
rate, but the location of kg relative to the spectrum’s
peak depends on a universal constant g that scales the
rate of straining in the viscous-convective range. The
Batchelor spectrum plays three potential roles for
oceanic microstructure. It relates the temperature field
directly to the dissipation of kinetic energy through K
and provides a model for the energy flux to smaller
scales. It also defines the length scale that must be re-
solved before thermal dissipation can be accurately
measured. :

The ocean is strongly stratified with intermittent
turbulence having a variable degree of isotropy so the
applicability of the Batchelor spectrum is uncertain.
Dillon and Caldwell (1980) found T spectra to be in
good agreement with the general shape of the Batchelor
spectrum. They did this by normalizing spectral am-
plitudes and wavenumbers before averaging and by
sorting spectral estimates according to the local Cox
number C,. In the process of normalizing, information
is lost on Batchelor’s constant g. Dillon and Caldwell
found that all spectra display the dissipative exponential
decay at high wavenumber, with the +1 slope in the
viscous-convective range holding for only high C,
events. Their dataset is from the mixed layer as well
as the thermocline, includes dissipation events 100
times larger than observed by LAMP, and therefore
covers a much broader range of C,.

Gargett (1985) measured both the velocity and tem-
perature fields, allowing direct estimates of isotropy, e,
and kg. She found that 7, spectra did not obey a
Batchelor form for the most isotropic velocity events,
including in the dissipation scale, where the estimated
g was 12, rather than the canonical value of 4. The T,
spectra only tended toward the Batchelor spectrum
when the velocity field was anisotropic (at low values
of ¢/vN?, and thus presumably for low C,). The con-
tradiction of Gargett’s results with those of Dillon and
Caldwell is perplexing. It either implies that Cox num-
bers based on 7, and T, are not well correlated (there-
fore T is anisotropic), or that instantaneous estimates
of C, do not necessarily scale with e. A direct compar-
1son of T, with the Batchelor spectrum requires know-
ing € so that, unfortunately, Gargett’s results cannot
be verified with our data.

The Dillon and Caldwell (1980) approach is ex-
plored here with a much larger dataset. The one-di-
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mensional wavenumber spectrum S(k) of T, was
computed for every 0.5-m subrecord using a Hanning
window and 0.25-m overlap between estimates. To de-
termine the parameters used for normalization before
bin-to-bin averaging, the spectrum was smoothed by
averaging seven consecutive wavenumbers to form
S(k). To minimize the effect of noise, only spectra
with large dynamic range, defined as maximum-to-
minimum ratio of at least 20, are used for averaging.
These spectra are scanned to find the wavenumber Apax
at the maximum of £S(k) and the spectral amplitude
normalized to ® = S(k)/S(kmax ). Then S'was scanned
to find the wavenumber k. > k.., Where the spectrum
rolled offto 0.1 of its peak value. The normalized spec-
trum at fixed normalized wavenumber m = k/k_ were
then averaged over categories defined by the Cox-
Thorpe number Cr. Each S(m) was cut off at its noise
floor (see appendix ) so that the maximum wavenum-
bers vary. At large m the average of ®(m) is computed
from fewer individual spectra with low signal to noise
ratio and some residual noise contamination is evident.

The normalization technique for finding the maxi-
mum value of k - S(k) constrains the normalized spec-
trum to roll off with a slope steeper that k™' to its S(k,)
= (.1 value. Other schemes were tested, including nor-
malizing by the maximum value of S(k) and by the
total variance, and the results were essentially un-
changed.

Normalized spectra are computed from sensor 1 for
all z > 200 m. These were sorted by Cr, which has
already been shown to be correlated with isotropy in
section 6. Four estimates of {(®(m)) were made for
the following subsets of C7: (1) all values of C7 (3960
individual spectra averaged), (i1) Cr > 100 (1240
spectra averaged), (iii) Cr > 150 (511 points), and
(iv) Cr > 190 (88 spectra averaged ). The four subsets
are not mutually exclusive, so for example spectra av-
eraged in group (iii) include those in (iv). Each spectral
density was averaged over 8 cycles per m (4 estimates
in k) so that the number of degrees of freedom in
(®(m)) is 8 times the number of spectra averaged. In
addition to { ®(m)), a histogram of spectral densities
for each m was calculated to define upper and lower
bounds such that 80% of all individual spectra lie be-
tween these bounds. This envelope is used to describe
the variability between individual spectra. If the nor-
malized spectra are shape invariant and 7 is approx-
imately normally distributed, then spectra should cor-
respond to a X% variable with 80% lower and upper
bounds of (0.43, 1.67) X (®(m)).

Averages of ( ®(m) ) for all four ranges of C display
a steep dissipative rolloff at high wavenumber (Fig. 14,
m > 0.7). At large m, noise contamination interrupts
the dissipative rolloff. At low wavenumbers a nearly
flat { ®(m)) is seen for the average over all Cr, similar
to Dillon and Caldwell’s average for all Cox numbers.
As averaging is limited to higher and higher values of
Cr (>100, 150, 190), the resulting low-wavenumber
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FiG. 14. Normalized T, spectra S(m) for various subsets of Cr
values (solid lines) are compared with the Batchelor spectrum (dashed
line). Dotted lines represent where 10% of the spectral density values
lie above/below the lines, such that 80% of all values lie between the
dotted lines. Spectra are computed for all Cr, Cr> 100, Cr> 150,
and C7> 190. As Cris constrained to higher and higher values, the
low wavenumber slope steepens, approaching Batchelor’s viscous-
convective region at the highest Cr. All spectra exhibit the exponential
decay at high wavenumbers. The 98% confidence limits are shown
for the far normalized spectra, with the largest error bars for Cr> 190.
Also on the far right is the 80% sampling bar for each individual
spectrum, such that the 80% measured dotted lines should agree if
the underlying shape is stationary.

slope increases, approaching the slope of the Batchelor
spectrum for Cr > 190. This last average is over only
88 spectra, and represents the upper limit of Cr for
which reliable averages can be computed from this da-
taset. As with the results of Dillon and Caldwell, a vis-
cous—convective range is observed only for the highest
Cox number events, with a high-wavenumber expo-
nential decay seen on the averages for all Cox numbers.

If on average Cris related to e by Cr = ey/«xN?, and
v = 0.2, then ¢ and k3 can be computed, and m can
be given dimensional units. For C = 100-200, the
18-cm probe separation corresponds to m = 0.2-0.17.
This range of m only agrees with the Batchelor spec-
trum for C7 > 190 (Fig. 14). From Fig. 13b, full iso-
tropy as measured between the sensors is observed on
average for Cr > 200-300. This implies that isotropy
at low wavenumbers is reached as the Batchelor spec-
trum is approached.

Although the average spectra exhibit dissipative
rolloffs similar to the Batchelor spectrum, individual
spectra do not necessarily follow the Batchelor form.
The spectral deviations are not due to sampling un-
certainty alone, but represent actual physical features.
Secondary peaks are sometimes embedded in the rolloff
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region, and in different examples the spectra decay at
different rates. Lack of uniformity between spectra se-
verely limits the ability to estimate k3, and thus e
(which depends on k%), directly from the spectra.

The Batchelor spectrum is apparently a useful tool
to define the wavenumbers (near kz) where oceanic
dissipation is significant. For a given e, this sets the
smallest length scale that must be resolved to measure
X (cf. Gregg 1987). While the average spectra in cer-
tain oceanic regimes may approximate the Batchelor
spectrum, the variability between individual spectra
precludes matching individual spectra to the Batch-
elor form. Indeed, Gargett’s (1985) results suggest
that Batchelor’s universal constant g is actually vari-
able. Even when the diffusive range matches the
Batchelor form, g must be known before estimating
kz and thus e.

8. Conclusions

LAMP is an autonomous profiler capable of gath-
ering O(100) microtemperature profiles over a dura-
tion of several months. In its first deployment in May
1992 it collected 76 profiles to 350-m depth over ten
days.

The average thermal dissipation rate { X) was mea-

sured and the potential errors in this average examined. -

Imperfectly known probe time response makes {X)
uncertain by 15% of { X). Mean X was estimated using
four different estimators for the background temper-
ature { T, ) with results that differed by 3%. The pdf of
T, is approximately lognormal, with the highest devia-
tion occurring at the upper tail of the pdf. Using ap-
proximate lognormality to estimate confidence limits
for the deployment-average { X (as Baker and Gibson
1987) gives 95% limits of £4%. This shows that it is
feasible to sample X completely enough that statistical
uncertainty from local intermittency is relatively un-
important.

Two probes, separated horizontally by 0.18 m, re-
corded microtemperature. If X values are ignored when
the two probes disagree by a factor of 10, {X) is de-
creased by 1%-5%. Using the two probes to estimate
anisotropy shows that assuming isotropy overestimates
(X by less than ~30%. Since isotropy is based on
0.18-m scales, the actual error is likely much less than
30%. Isotropy does show some correlation with the Cox
number and a better correlation with the Cox number
formed from the local Thorpe gradient (denoted here
by the Cox-Thorpe number C7).

The experiment average dissipation is (X) = 1.2
X 1078 K? 57!, corresponding to a mean Cox number
of 98 and a vertical eddy diffusivity of K,y = 1.4 X 107>
m? s~'. Uncertainties from the probe response, an-
isotropy, and possible noise glitches (where both probes
disagree by a factor of 10) place loose error bounds of
+22% on K, completely outweighing the 4% sampling
uncertainty due to quasi-lognormal intermittency.
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More importantly, X decreases by 50% between the
first and second half of the deployment. This long-term
temporal variability (not to be confused with the in-
termittency that is quasi-lognormal) causes much more
uncertainty in { X) and Ky than statistical uncertainty
and estimation technique combined. The unknown is
whether this temporal variability is due to natural vari-
ance or sensor degradation. Ledwell et al. (1993) es-
timate the average K, over two consecutive six month
periods, finding K to increase by 60%. The LAMP’s
observed variability in (X is within bounds of what
is expected naturally. However, it could also arise from
continual fouling of both sensors over a few-days pe-
riod. Although the characteristic of the decrease of X
does not seem likely from fouling (see appendix), it is
still a possibility. Future calibration of the thermistor
transient response immediately after recovery would
at least give an indication of the amount of sensor deg-
radation. A system to clean the sensors between profiles
would be best. In situ calibration might be possible
with a stream of water heated by a high-frequency
pulsed source or by running the thermistor as a hot-
film.

The above estimate of K can be compared with
Ledwell et al. (1993), who find Ky = 1.1 X 10 > m? s~
based on the tracer’s diffusion over the initial six month
time period of the NATRE experiment. The LAMP
results are consistent with this, given the error bounds
for the microstructure analysis and the temporal vari-
ability of X over the ten-day deployment (as seen in
Fig. 12).

Normalizing spectra of T, gives an average that
agrees with Batchelor’s (1959) dissipative rolloff. A
viscous—-convective range is, however, found only for
the events with the highest Cox number. Variability of
individual spectra from the Batchelor form precludes
using an estimated kjp to infer e.

LAMP’s ability to autonomously collect temperature
microstructure over many profiles over a long time
allows an estimate of K that is constrained by instru-
mental uncertainty and estimator technique but not
statistical uncertainty from local intermittence. How-
ever, K- varies smoothly by a factor of 2 from the first
to the last half of the present ten-day observation. Long-
term deployments are needed to describe seasonal, and
other low-frequency, variability of the thermal dissi-
pation rate. Additionally, a seasonal average would al-
low a better comparison with the Gargett and Holloway
(1984) hypothesis of a depth-dependent vertical dif-
fusivity or other parameterizations of K. Perhaps the
biggest obstacle in interpreting a seasonal record from
LAMP is quantifying the amount of thermistor deg-
radation due to biological fouling.

A disappointing afternote: LAMP was lost on an
eight-month mission during the second half of
NATRE. It apparently failed to surface at mission’s
end, perhaps because of a pump part found faulty in
a number of other ALACE instruments. This under-
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scores the risk of using an autonomous instrument that
must be weighted against the potential reward of a long-
term microstructure record.
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APPENDIX
Thermistor Performance and Noise Analysis
a. Analysis of sensor fouling

On recovery from the May 1992 deployment, one
sensor had some biofouling at the base of the therm-
istor. Inspection of T, variance levels between sensors,
averaged for depths > 200 m for each profile, shows
that after profile 26, variance of sensor 2 falls to 65%
of the sensor 1 value (Fig. 12). Frequency spectra for
both probes are averaged over z > 200 m for each
profile, with spectra compared before and after profile
26. The change in response of sensor 2, as compared
to sensor 1, is similar to a single-pole filter with a —3
dB point at 8 Hz (Fig. Al). If the attenuation was due
to a uniform layer of contaminant, its thickness would
be L = (kt)'/? =[x/ (2%f)]"/?, where « is the contam-
inant thermal diffusivity and f is the e-folding fre-
quency. Taking « equal to that of water and f= 8 Hz
yields a thickness L of order 0.05 mm. Fouling by such
a small thickness seems reasonable.

The question arises if sensor 1 was also fouled at the
same time, and whether the resulting degradation could
be responsible for the long-term temporal variability
of X as seen in Fig. 12. The ratio of X, /X; in Fig. 12
appears as a step function, implying that only one large
fouling event occurred. If other fouling took place, it
was either of smaller magnitude, or affected both sen-
sors to the same extent. Unfortunately, the natural
variability in X makes detecting small fouling events
difficult. The major decrease in X; occurs between pro-
files 26 and 38, equal to a 36-hour period, and does
not appear as a step function, indicating either multiple
fouling or true natural variability. One can play devil’s
advocate and suggest both sensors fouled at the same
time. If the peak of X, near profile 35 is matched to
the peak near profile 20, the resulting time series would
still appear reasonable, implying that X; could have
been simultaneously fouled, with its level decreased by
30%. Potentially at least half the long-term temporal
variance may be due to simultaneous fouling during
profile 26.

We cannot ascertain if the drop in X for the second
half of the cruise is due to oceanic variability or fouling.
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However, we can discuss the probability of both sensors
fouling versus just one.

Possible sources for fouling include jellyfish and
zooplankton. Some types of zooplankton construct a
mucus-based feeding structure, complete with intake
screens and an internal filtering system. Barham (1979)
notes that these structures, commonly referred to as
“houses,” can be an order of magnitude larger than
the animal itself. Barham observed giant larvacean
houses of order 70-100 cm diameter in eastern Pacific
coastal waters, although Alldredge and Silver (1988)
note that the most common house size is 0.1-2 cm in
diameter. They further discuss that individual zoo-
plankton can produce and discard upward of 4-16
houses a day (the house is abandoned when the filters
become clogged), taking up to six days before the house
disintegrates (Davoll and Silver 1986). Therefore one
animal could potentially be responsible for 100 houses,
ten times the size of the creature, in the water column
at any one time. Given that these are a mucus-based
structure, they are perfect for fouling thermistors. They
also have the potential size to foul both sensors si-
multaneously.

The probability of both sensors fouling versus one
will be modeled as follows. Let a be the diameter of
the plankter, of which there are n(a) plankton within
a horizontal cross section with diameter D, which en-
compasses both probes. The probability of one plankter
of size a hitting either probe can be given as a ratio of
cross-sectional areas:

ps(a) = 2(a ~ 0.5)2/D?,

a>05cm. (Al)

The minimum cutoff at 0.5 cm represents the base
diameter of the sensor, with the assumption that
smaller particles will not foul the probe, but will tend
to follow the laminar flow to either side of the probe.
The multiplication of 2 is due to having two probes in
the volume. The probability of any a-sized particle hit-
ting the probe is simply PS(a) = n(a)ps(a). Likewise,
for simultaneous fouling of both probes to occur, we
have

PD(a) = n(a)(a — 18)%/D?,

a> 18 cm, (A2)

where 18 cm is the separation between probes. The
exclusive set of when only one probe is fouled (but not
both) for a > 18 cm is given by PS(a) — PD(a). Once
n(a) is modeled, PS(a), PD(a) can be integrated to
give the probability of single probe fouling versus both.

It has been generally observed that biomass is ap-
proximately logarithmically distributed in weight w,
(i.e., Rodriguez and Mullin 1986), such that biomass
dB(w) = Aw™!dw, represents the amount of total bio-
mass from particles of weight w + dw/2. The number
of individuals can be approximated as n{(w) = dB/w
= Aw~2dw. The individual weight will be modeled as
a sphere (w ~ a?), giving an estimated particle distri-
bution n(a) = Coa *da.
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We will consider Barham’s (1979) observation of
100-cm houses as typical of the largest size expected,
setting dma = (50, 100, 200) cm for the upper limit
on the integration of (A1)-(A2). The analytical so-
lutions yield single probe fouling occurring (265, 127,
94) times more often for g, = (50, 100, 200) cm.
From Fig. 12, there is only one obvious instance where
single fouling occurred, with the mucus sticking for the
rest of the deployment. The odds of this one fouling
event hitting both sensors versus only one would appear
low, on the order of 1%.

The model is questionable since it is not clear what
species are even present at the LAMP site. The dom-
inant species at time of deployment may not follow
the logarithmic biomass distribution (i.e., if most of
the individuals are juveniles). Furthermore, the species
might tend to aggregate such that the horizontal cross
section of the school leads to increased likelihood of
dual fouling. Or perhaps the larger houses/jellyfish are
more “sticky” and therefore more likely to create a
long-lasting fouling problem.

Besides the individual fouling events which can oc-
cur, there may be long-term degradation (i.e., algae
growth on the thermistor). This should affect both
sensors equally, appearing as a long-term trend to lower
values. Between profiles 35 and 50, X,/X, decreases,
suggesting sensor 1 is degrading (Fig. 12), perhaps the
result of multiple fouling or growth on that sensor.
However, this is probably an artifact of the observed
lower X values. Since the sensor s/n 2 response suffers
at high frequencies (Fig. Al), it will underestimate
more severely high X events, where there is more vari-
ance at high wavenumbers. Likewise, during small X
values, which primarily only have variance in low
wavenumbers, sensor 2 will be in better agreement with
sensor 1.

Approaches must be considered to identify both
long-term degradation and discrete fouling episodes.
Thermistor sensors should be immediately inspected
after recovery. Probe time response should be measured
before cleaning the sensor, allowing pre- and postcal-
ibration comparison. Cleaning of the sensors during
deployment could be done with a pumped jet of water,
say at the end of each profile, although it is not clear
whether this by itself would be adequate. Perhaps one
can make the water jet’s high-frequency characteristics
reproducible enough to allow comparison of the sen-
sor’s high-frequency response between profiles. This
might be done with a pulsed heater in the jet. Likewise,
running the thermistor as a hot-film at the end of each
profile may yield a quantitative estimate of the amount
of fouling,

b. Noise removal scheme

Spectra of T, are contaminated by noise at high fre-
quencies. To investigate the characteristics of this noise,
spectra are computed over 2-m scales (2048 data points
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FI1G. Al. Average spectra were computed for both sensors for each
profile for z > 200 m. The ratio of these spectra represents a com-
parison of the frequency response between both probes. Change in
response of probe 2 compared to probe 1 is averaged over all profiles
after profile 26, where it is now attenuated at high frequencies (solid
line). Behavior is similar to a single-pole filter with a —3 dB point at
8 Hz (dashed line).

Fourier transformed, spectra averaged over 16 succes-
sive estimates in frequency ). For each profile, the min-
imum, average, and maximum spectral density values
are calculated for z > 200 m. These are averaged over
the 76 profiles (Fig. A2). All spectra fall into the noise
floor before reaching the Nyquist frequency of 30 Hz.
The sharp spectral rolloff is due to both the dissipative
nature of the ocean and the response of the thermistor.

The contribution of noise to T, is removed by only
integrating 7, spectra out to the noise floor. For each
individual spectrum, it is necessary to determine when
the spectrum falls into the noise. The shape of the noise
floor is modeled from the minimum spectrum (Fig.
A2). The noise floor level is set to the expected upper
limit. This is estimated by the value of the maximum
spectrum at the highest frequencies (Fig. A2). Thus,
the modeled noise floor represents the upper bound of
the measured noise. When an individual spectrum falls
below this noise level, the remaining high-frequency
spectral values are set to zero. The lower frequencies
are corrected for probe response, and the spectrum is
integrated to give the estimate of 7'2.

Note that no estimate of the noise floor is removed.
The modeled noise floor is simply used to define when
an individual spectrum is in the noise. This biases X
in two ways. The cutoff throws away both signal and
noise at higher frequencies, thus underestimating total
variance. Additionally, the lower frequencies just before
the cutoff have no noise removed, such that they over-
estimate the variance. A cutoff frequency is used here
instead of trying to remove the noise floor to avoid
potentially large noise problems at high frequencies.
This arises when the probe time response correction is
made, which can significantly amplify noise at the
highest frequencies (gain due to probe response is ~15
at 30 Hz).
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F1G. A2. Average spectrum of T, is computed over all profiles for
z > 200 m (solid line). The maximum and minimum spectral values
for each profile are also averaged over all profiles (dashed lines). The
profile-averaged minimum spectrum is used to model the shape of
the noise floor (dash-dot), with its level set by the maximum spectrum
level, effectively setting the upper limit of the noise floor. For sim-
plicity, the noise floor is modeled as a constant level for /> 15 Hz.
When an individual spectrum falls below the modeled noise floor,
all higher frequencies are considered to have low signal-to-noise, and
their spectral levels are set to zero. Thus 72 variance is estimated
using only the lower wavenumbers, where there is good signal-to-
noise. Given the average fall rate of 6 cm s™', f'= 6 Hz is equivalent
to k = 100 cpm.

Fortunately, since most spectra exhibit exponential
decay before falling into the noise floor, the present
noise removal technique does not severely effect the
results. Using the (minimum, average, maximum)
spectra in Fig. A2, variance is estimated by subtracting
the modeled noise floor, with a level set to match the
spectrum at high frequencies. Probe response correc-
tions are then made over all frequencies. The new X
estimates increase for the (minimum, average, maxi-
mum) spectra by (3%, 1%, 1%) respectively. Since { X)
is determined by the large X values, the pertinent cor-
rections are for the average and maximum spectra.
Therefore, the present technique of noise removal may
lead to 1% underestimate of true {X).

The noise removal scheme also affects the probability
distribution function of X. Given the proximity of the
distribution to lognormal (Fig. 10), it is important to
clarify how much the noise correction influences the
shape of the pdf. The data is reprocessed in two different
ways. The modeled noise floor level is increased by 2,
such that corrected spectra fall into this higher noise
level sooner. Less of the spectrum is used to estimate
X, and so X now have lower values. The second ap-
proach is to remove no noise at all. To avoid amplifying
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noise at high frequencies, no correction for probe time
response is made. The results of these two approaches
can be considered as error bounds on the cdf and imply
that for X < 3 X 107! (where X has low SNR) the cdf
is significantly influenced by the noise correction
scheme (Fig. A3).

The effect of the noise correction scheme has been
further tested by modeling the input signal and noise.
The temperature spectrum is modeled using the
Batchelor spectrum for each realization. The level of
X (whose value is used to set e and k) is given both a
lognormal and cut-of-lognormal distribution (Davis
1994c¢). Added noise is modeled as a white spectrum,
with a level matching observations at high frequencies
(Fig. A2). The model’s spectral shape is the Batchelor
spectrum combined with the white-noise floor. The re-
sultant X is estimated in similar manners as above: No
noise is removed; and when the combined spectrum
approaches the noise floor, all higher wavenumbers are
ignored (Fig. A4). When no noise is removed, the re-
sultant cdf has no values with X < 5 X 10~!!. However,
the effect of the noise removal appears to have little
impact on changing the true cdf at low X. This is due
to the exponential decay of the Batchelor spectrum:
Noise will only have a significant effect on the spectrum
when the peak spectral value and the noise floor are
similar levels. This never occurs with the present model.
The implication is that the observed low-valued X
spectra have a broader shape than the Batchelor spec-
trum, and thus at low SNR are more influenced on
how the noise is subtracted.
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F1G. A3. The cdf of X, is shown as computed in Fig. 10 (O), with
removing no noise (+) and removing twice the original noise (X).
Since removing no noise also does not attempt to do the probe re-
sponse correction, high X values (with large high-frequency variance)
are biased low, resulting in its cdf being shifted to the left of the other
two at large X.
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F1G. A4. Chi modeled as a Batchelor spectrum with added white
noise. The variance in the Batchelor spectrum is modeled with both
a lognormal (straight line) and cut-of-lognormal distribution (upper
curve). The cdf is computed with no noise present (solid line), with
noise present but not removed (+), and noise removed when the
spectral level reaches the estimated noise floor ().

It is of interest to explore other potential distributions
of X. Assume that there is 3D turbulence that exhibits
a lognormal distribution and has the magnitude of its
gradient, G = |VT). Davis (1994¢) shows that any one
component of the gradient (say 7,) is not lognormally
distributed, but rather has a distribution he names cut-
of-lognormal (Fig. AS).

Furthermore, since X is estimated by averaging 7'2
over some depth range Az, the resultant X is the average
of N independent values of a cut-of-lognormal distri-
bution. Therefore, the 0.5-m X distribution should be
neither lognormal nor cut-of-lognormal. Following
Davis (1994c¢), cdfs are computed for N = 1, 2, 4, and
8 (Fig. AS). The values of the mean and variance of
X are allowed to vary such that the cdf at large X
matches the observed shape in Fig. 10. The measured
distribution qualitatively matches well to either the
lognormal distribution with N = 1 or the cut-of-log-
normal distribution with N = 2-4. Due to averaging
in depth, the ability to detect a cut-of-lognormal vari-
able from a lognormal one is lost.

¢. Estimate of probe time response

Probe response has been modeled as a double-pole
filter with a —3 dB point at frequency f; by Gregg and
Meagher (1980) and Vachon and Lueck (1984). Both
investigators found f, to be dependent on fall rate U.
Vachon and Lueck investigated the same type of
thermistor as used on LAMP (Thermometrics FP07),
such that their results are more relevant. They con-
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cluded that f; = 2.5U"/? (units of U: cm s, > Hz),
resulting in f. = 6.1 Hz for the average LAMP fall rate
of 6 cm s™'. Individual probe response will depend
upon the thickness of the glass coating during con-
struction.

Lab tests have been conducted by dropping LAMP’s
probes through a temperature step and computing the
resultant frequency response. Apparatus includes an
8-cm diameter vertical tube sealed with a thin rubber

-membrane at the lower end. The tube is filled with
warm water and then partially lowered into a tank of
cold water, thus forming the temperature step. Within
30 s after the membrane is in contact with the lower
surface, the probe is dropped at the appropriate fall
rate (6 cm s~'). Small needles in front of, and to the
side of the probe ( ~1 c¢cm), break the membrane, and
the probe samples the interface. This simplistic tech-
nique requires little setup time and cost overhead but
produces marginal results due to variability in the in-
terface, depending on how the membrane breaks. Of
50 profiles, only 12 displayed a relatively smooth, sin-
gle-step interface, yielding 6 usable drops for each
probe.

Probe response is compared with a theoretical step
response that has thermally diffused across the mem-
brane for the ~30 s before the probe is dropped. Av-

- erage frequency response for probe s/n 1 (Fig. A6) is

similar to a double-pole filter with average /. = 8.3 Hz,
varying from 6.5 to 10.8 Hz for the 6 individual good
drops. Wide variability of /. indicates the unreliability
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FIG. AS. The cdf of X is shown assuming both a lognormal distri-
bution (set of curves on the right) and a cut-of-lognormal distribution.
The cdf is computed assuming that N independent values of X are
averaged over each 0.5 m measured estimate (N = 1, 2, 4, and 8, as
marked). Mean and variance of each distribution is allowed to vary
to produce the best fit for large X, thus agreeing with the measured
cdf of x (Fig. 10). The distribution models are based on Davis (1994b).
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F1G. A6. Average frequency response for temperature probe s/n 1
(solid line) is compared with a double-pole filter with . = 8.3 Hz
(dashed line). Results are from lab measurements of the probe to a
step response.

of this technique. Deviation from a double-pole filter
is most likely due to incorrectly modeling the true in-
terface. Probe s/n 2 results are similar, with an average
f> = 9.2 Hz. Probes s/n 1 and 2 are the same sensors
used on LAMP during the May 1992 deployment.

Resulting error in X depends upon the individual
spectral shape. Using the cruise-averaged spectrum in
Fig. A2, varying f. by (6.5/10.8) Hz causes X to in-
crease /decrease by (10/8)%. Likewise, using the max-
imum spectral level (Fig. A2), X varies by 12%-16%.
Since (X)) is determined by the high-variance events,
the latter numbers are more applicable. Based on the
wide spread in X from the lab measurements (which
are inherently noisy due to the technique employed),
<x> may vary by as much as +15% due to incorrect
modeling of the probe time response.
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