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ABSTRACT

The restratification of a mixed layer with horizontal density gradients above a stratified layer is considered.
Solutions are obtained on the assumption that the width across this front is much larger than the local radius of

deformation v Abh/|f | based on the buoyancy change across the front Ab, mean mixed layer depth %, and the
Coriolis parameter f, where b is defined as —g(p — po)/ po. but the fractional change in the mixed layer depth
is not required to be small. For an initially quiescent mixed layer, created by homogenizing a fluid of constant
stratification to a depth that varies horizontally, the isopycnals in the mixed layer tilt about their intersections
with the top surface in the adjusted state, and the base of the mixed layer flattens slightly in the frontal region.
Other cases considered include mixed layer fronts with initial momentum out of geostrophic balance, created
by vertical mixing of a layer with horizontal gradients previously in thermal wind balance. For a wide front, the
isopycnals pivot about the middepth for this case. In all cases, for a wide front, the new vertical buoyancy
gradient is M*/f?, where M* = |b,| is the magnitude of the horizontal buoyancy gradient, and the Richardson
number of the adjusted state is 1, as in an earlier constant depth case.

1. Introduction

Surface layer restratification in a one-dimensional
mixed layer model can occur only by an increase in
buoyancy by surface processes (such as insolation or
precipitation). In the real ocean, horizontal density gra-
dients found in mixed layers created by impulsive mix-
ing by storms can also lead to restratification. In the
absence of external forcing leading to further mixing,
this new stratification can inhibit further mixing, but
the associated velocity shear perhaps could destabilize
the flow leading to more mixing. Tandon and Garrett
(1994) derived the scaling for the restratification and
the Richardson number distribution in a constant depth
surface layer. Here our aim is to eliminate the unreal-
istic assumption of a constant depth, and to solve for
the adjusted state for several realistic initial conditions,
in both horizontal buoyancy gradients and mixed layer
depth variations.

Our aim is to include and improve the representation
of the restratification process in currently used mixed
layer models. As Young (1994) points out, models that
are vertically averaged but horizontally inhomoge-
neous typically discard the depth-dependent part of the
horizontal pressure gradient by assuming that it is bal-
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anced precisely by the Reynolds stress terms. These
models do not resolve the vertical velocity shear or
permit restratification of the surface layer. Ripa (1993)
has shown that such averaged systems conserve mo-
mentum and energy, but not potential vorticity. Young
(1994) proposes a subinertial approximation model
that incorporates velocity shear and the dynamical ef-
fects of horizontal gradients in density, but assumes a
large jump in density across the base of the mixed layer.

In this paper, we examine the restratification in the
mixed layer following a single mixing event. Gur treat-
ment here differs from our earlier note (Tandon and
Garrett 1994 ) in that the mixed layer is allowed to vary
in depth, and is coupled to the dynamics at the inter-
face, and thus to the stratified layer below.

The problem is considered two-dimensional, in the
sense that variables are independent of the variable y
along the storm track, and three idealized but plausible
initial conditions are presented. The first case, labeled
I, assumes that a rotating stratified layer at rest with
constant stratification N is homogenized in the vertical
by a mixing event, which creates a surface mixed layer
that is deeper on one side than the other (Fig. 1). Case
Il assumes a layer with both horizontal and vertical
buoyancy gradients, initially in thermal wind balance
with isopycnals having the same slope, which is ho-
mogenized to a constant depth in momentum and den-
sity (Fig. 2). Case III assumes a frontal system initially
in thermal wind balance (e.g., Samelson 1993, though
we assume different expressions for the basic state),
which is homogenized to a constant depth in momen-
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FiG. 1. Case I. An initially stratified layer with buoyancy frequency N before (a) and after (b) an impulsive mixing event.

tum and density (Fig. 3). Cases II and III may be ex-
tended to allow for variable mixed layer depth after
mixing, but we assume constant depth initially for sim-
plicity. It is also possible to incorporate partial homog-
enization in the mixed layer, but this brings in extra
parameters (Tandon and Garrett 1994), and does not
introduce much new understanding of the problem, and
so is not considered here.

2. Formulation
a. Casel

Consider a rotating, stratified layer with buoyancy
frequency N. The top of the layer is taken to be at z
= (. At time ¢ = 0, this stratified layer is assumed to
be mixed by an impulsive event, with the creation of a
well-mixed layer above the remaining stratified layer.
The stratified layer is assumed to be initially at rest, and
the impulsive mixing is assumed not to impart any mo-
mentum but to homogenize the buoyancy field verti-
cally. (We relax this assumption later in cases II and
III and consider situations with initial momentum in
the mixed layer.) One side of this layer is assumed to
mix deeper than the other, and is therefore denser. A
frontal region of a variable mixed layer depth connects
the two sides. The situation is illustrated in Fig. 1, with
the depth of the mixed layer prescribed by z = —h(x).
The buoyancy in the mixed layer is therefore

b(x) = — %Nzh(x) (1)
and in the layer below
b(z) = N*z. (2)

The buoyancy jump at the base of the mixed layer is
N?h(x)/2, and the buoyancy change across the front is
N>Ah/2, where Ah is the change in the mixed layer
depth across the front. [In the appendix we consider

the situation where the horizontal buoyancy gradients
and mixed layer depth do not have this simple rela-
tion (1).]

Since the surface layer is not in geostrophic balance,
the denser fluid in the mixed layer would tend to tilt
isopycnals toward the lighter side, suggesting a ten-
dency to increase the slope of the interface at z
= —h(x), though this tendency is opposed by the lower
stratified layer. We ask whether the interface steepens
or flattens in the geostrophically adjusted steady state
and seek to determine the restratification in the mixed
layer, and compare it with the results for a mixed layer
of constant depth (Tandon and Garrett 1994).

We consider the dynamical balance of the geostroph-
ically adjusted steady state and relate it to the initial
position of fluid particles in the mixed layer. This La-
grangian approach was first formulated by Ou (1984)
and is extended here to include the dynamics in the
stratified layer and at the interface.

We will derive equations for the final position (£, §)
of the particle in terms of its initial position (x, z). The
continuity equation throughout the fluid may be written
in terms of the Jacobian of the transformation as

ngz - Esz =1 (3)

We also note that by writing x = x(¢, {) and differ-
entiating with respect to x and z, -

xbe+x 8 =1, x& +xL =0 4)
Solving these for x, and x; and using (3) we obtain
X =G, xg=—¢&. (5)
Similarly, by starting with z(&, {), we have
ze=—8, z=¢&. (6)

Also, throughout the fluid, integration of the X-mo-
mentum equation gives
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FiG. 2. Case II. (a) The initial state has both horizontal and vertical gradients, but is in thermal wind balance.
(b) The isopycnals after an impulsive mixing event.

v=—f(§{—x) 7
and thermal wind balance in the adjusted state requires
for = b (8)

Substituting (7) for the left-hand side of (8) and ex-
panding the right-hand side,

fixg = bx + bz

(9)

Using (5) and (6) and noting that b, = 0 in the
surface layer and b, = 0, b, = N? in the stratified layer
(9) gives

bx
gz = _FCZ (10)

in the surface layer [as derived by Ou (1984)], and

NZ
£ = 7 & (11)
in the stratified layer.

In the above formulation, the initial state is related
to the final state via the time-integrated v-momentum
equation (7), rather than by the potential vorticity con-
servation equation, as is usually done in geostrophic
adjustment problems (Gill 1982). It can be easily ver-
ified, however, that potential vorticity is conserved
since in the final state, PV = (v, + f)by — vcb
=fb,(xz; — xc2¢) = fb,, which is the initial PV,
where we have used the inverse of the continuity equa-
tion (3).

In the final state, the thermal wind balance is satisfied
across the interface; that is, Margules’ relation holds.
At the point (£, {) on the interface and using super-
scripts ~ and " to denote properties just below and just
above the interface, respectively, this relation can be
written as

FINE L) = (& T =[6(&, L) - B DS (12)
= [b(£, — h(X)) — b(X, — h(X))]S, (13)

since the particles originally at z = —h(x) are assumed
to stay on the interface. Here S denotes the slope at the
interface. We note that £ and ¥ differ, as the displace-
ments above and below the interface to the final posi-
tion ¢ are different (Fig. 4).

Using v = — f(§ — x) for both layers, (13) becomes

fAE-%) = Nz[h(i) - %h(f)]S. (14)

The slope S can be calculated in terms of variables
above or below. Using variables for the surface layer,

» dC
S=—= s (15)
d€ 7=—h(X)
& — hd;
=== 16
& — h; (16)

b. Nondimensionalization

_ The parameters of interest in the problem are N, f,
h, Ah, and L, the width of the front. Additional param-
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FiG. 3. Case III. (a) The initial state is a frontal system in thermal wind balance and with constant stratification away from the front.
(b) The isopycnals after an impulsive mixing event.

eters would result with different initial conditions for
the velocity and buoyancy.

For the prototype problem, we choose the buoyancy
b to be scaled by N°h and x and £ to be scaled by
Nh/f, while z and { are scaled by h, and v by Nh. The
resulting nondimensional parameters are then

AR

6—7, (17)
Nh

e—f—L, (18)

where 6 represents the nondimensional change in the
mixed layer depth across the front, and 1/¢ is the non-
dimensional width of the front. In the solutions that
follow, the parameter 6 is O(1), while the front is as-
sumed to be wide so that € is a small parameter.

3. Solution for case 1

a. Solution

The continuity equation for the mixed and stratified
layers have the same form as their dimensional version

(%,-H(£)) (£)

(&,-H(®) I
(£¢)

FiG. 4. Schematic showing displacements and nomenclature for
the particles above and below the interface.

(3). In nondimensional terms, b(x) = —3h(x) in the
mixed layer and b(z) = z in the stratified layer. The
top boundary is taken to be a rigid lid so that

{(x,0)=0 (19)

and there are no displacements of the particles far away
in the geostrophically adjusted state; that is,

§(x, —0) =x, (20)
C(x, —») =gz, (21)
{(x, z) = x, (22)
{(x>, z) = 2. (23)

In the surface layer, the nondimensional thermal
wind equation (10) becomes

é-z = - sz' (24)

~ As shown by Ou (1984), (24) and (3) can be inte-

grated to give :

£(x, 2) = A(x) - bL(x, 2), (25)
C(x, z) = B YA = 2bu (26)

by ’

where the minus sign in front of the square root is taken
to satisfy (23). Here (25) and (26) constitute the so-
lution in the mixed layer in terms of A (x), which needs
to be determined from the matching conditions at the
interface and the solution below.

The nondimensional governing equations of the
stratified lower layer are
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ész - EZCX =1, (27)

and, from (11),

& =0 (28)

Equations (27) and (28) are not directly integrable for
the new position £ and { in the lower layer, so we re-
formulate the problem in terms of the horizontal dis-
placements

$(x,2) =€ —x (29)
and vertical displacements
p(x,2) =0 -z (30)

in the upper and lower layers. The displacements in the
lower layer now satisfy the equations

b = ¢, (31)
ll’z = _¢x + ¢x‘l’z - ¢zl/’xa (32)

which are nonlinear in ¢ and . We note that the linear
parts represent Cauchy—Riemann conditions for i
and ¢. When linearized, the Lagrangian displace-
ments ¢ and ¢, in dimensional form, both satisfy the
quasigeostrophic Laplacian equation f20,,(¢, W)
+ N720.($, ¥) = 0.

The Margules relation ( 13) at the interface takes the
form

f—f= [h(i)—%h(f)]ﬁ, (33)

where

S _ lpx_ hx(l + ll’z)

5= 1+ ¢x - hx¢z (34)
evaluated at £ = —h(£).

In the surface layer the solution in terms of the dis-
placements is

¢ = C(x) — b(z + ¢), (35)

1+C.— W1+ C)?—2b.z
= b — Z,

where the unknown function A (x) has been replaced
by the new unknown function C(x) such that C(x)
=A(x) — x.

We will now solve for the displacements invoking
the ‘‘wide-front’’ approximation e < 1, which will be
justified later in terms of observations. Progress can be
made without this approximation using the semigeo-
strophic approach (Gill 1981), but this makes the prob-
lem quite complicated due to Margules’s condition at
the interface and is not pursued here. The depth of the
mixed layer is given by A(x) = 1 + §H(ex), and an-
ticipating that the displacements will also vary over the
longer scale ¢ ~', we use multiple scale expansions in

W (36)
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x, with x and ex as the new length scales. Then, for
example, h(x, ex) = h(ex) = 1 + 6H(ex) and A,
= e6H', where the prime represents derivative with re-
spect to €x.

Boundary conditions (20) and (22) applied to (35)
with the wide-front condition suggest that C = C(ex)
and is O(1) or smaller. From (35) and (36) then, the
displacements vary over € ', so that ¢ = ¢(ex, z) and
Y = Y(ex, z), and have no far-field variation.

Since b, and C, are both O(e¢) (or smaller), (36)
shows that ¢ is also O(e). In fact, expanding (35) and
(36) in powers of ¢ gives the displacements in the up-
per layer as

$(ex,2) = C+ 2 e6H'z+ O(?)  (37)
Y(ex,z) = —eC'z + O(e?). (38)
The restratification in the final state is
by = b.xg (39)
=—-b,, (40)
using (5) and (29), and 41)

= bi[1 + O(e)],

using (37). Thus, in dimensional terms N? = (M*/
FHI1 + O(e)] showing that the new stratification is
the same as in the constant depth problem ( Tandon and
Garrett 1994). For the displacements, the lowest-order
solutions are now known except for the depth-indepen-
dent part C(ex), which remains to be determined from
the solution below and the matching conditions at the
interface.

From equations (37) and (38), and using h = 1
+ 0H(ex), we can now evaluate the interface slope as

S=—eSH' + O(€?). (42)
The Margules relation (33) now becomes
X—%= [% + 6H(ex) — %5}1(@2)]
X (—ebH') + O(e?). (43)

This shows that ¥ — £ is O(¢), so that to O(e?),
H(eX) may be replaced by H(e£) in (43) and

£—f= —%eéH’(l + 6H) + O(e?), (44)

where H, H' are in terms of eX£.
Since the fluid particles at £ and X are at £ in the
adjusted state (Fig. 4),

<

=«

RSy

E3

+ + &, (45)
o+ + 2, (46)

[ N
il
¢
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or
& — SH(X) = § — SH(X). (47)
Rewriting (44) in terms of displacements by using (45)
B, —h(¥)) = $(£, ~h(%))
| + 1 e6H'(1 + 6H) + O(e?). (48)

Using (37) for 3) the O(¢) contributions cancel out!
We are now left with

¢ = C(eX) + 0(€?). (49)
Similarly, using (47),
§(x, —h(X)) = (£, —h(£))
+ 6H(ex) — 6H(ex), (50)
= eC'(1 + 6H) + O(€?). (51)

We have now derived the forcing (horizontal and
vertical displacements ) given by (49) and (51) that the
lower layer is subjected to by the upper layer in terms
of the unknown function C(e£).

The governing equations are coupled for ¢ and ¢ in
the layer below and need to be solved to find the so-
lution and C. In the stratified layer, ¢ and s are coupled
by the governing equations, due to the forcing by the
top layer, (49) and (51).

It is easy to see that there are no displacements ¢

and ¢ for large z in the stratified layer for this problem.
Thus the relevant scale at which displacements occur
is yz, where vy = y(e) signifies the ‘‘depth of influ-
ence.”’ Substitution in the governing equations then im-
plies that v = € under the wide-front assumption. This
assumption also linearizes the governing equations, im-
plying that ¢ and ¢ are mutually orthogonal and are
Laplacian to the lowest order.
_ Now, the forcing condition in ¢, (51), implies that
¢ has to be O(e) or smaller at the interface. Since ¢
satisfies Laplace’s equation in the lower layer, ¢ must
be O(e) or smaller everywhere. Also, ¢ must be the
same order as ¢ in the region of interest, from (49),
and hence, C must be O(¢) or smaller; that is,

C(ex) = €Ci(eX) + €2Cy(eX) + O(e®). (52)

We can repeat this argument once again since s is now
forced at O(e?) from (51) and (52), and so in the
stratified layer ¢, and hence C(e£), must arise at
0(e?), or

C(ef) = €2Cy(ex) + O(e™)! (53)

We can pursue these expansions at the next order to
show that ¢ arises at O(e?) due to a forcing indepen-
dent of C at the interface, or ¢y can be determined by
solving

U + Y = 0 (54)
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subject to the boundary condition that at the interface
Z=—[1 + 6H(ex)], from (38) and (47),

W(ex) = — i €26(1 + 6H)*H"

—%852}1'2(1 + 6H). (55)

Again, ¢ arising at O(e?) can then be determined from
Cauchy—Riemann conditions to within a constant
which can be determined by far-field conditions. Hence
by using (49) C,(eX) can be determined.

The process above can now be used to determine the
solutions to higher order, but what is remarkable is that
we now know the solutions to the lowest order. From
(37) and (53) the solution at the lowest order in the
mixed layer is

blex, 7) = % SH'z, (56)
and from (36) and (53),
Y(ex, z) = — ‘1‘626H"zz. (57)

The stratified layer below has horizontal and vertical
displacements at O(e?), and therefore the lower layer
remains quiescent at the lowest order. This solution is
sketched in Fig. 5. To the lowest order, the isopycnals
just tilt in the horizontal, pivoted about the top surface,
and there is no vertical displacement at O(e). The in-
terface flattens in the central region, changing its depth
by O(e?), and the vertical displacements at this order
arise to satisfy continuity. [For instance, it is easy to
check that [° ¢(0, z)dz = —eSH' (0)/4 = [°_ ¥(x, z
= —1).] Also, the top surface is a constant pressure
surface to O(e), unlike the adjustment problem in Ou
(1984), where the middepth surface in the geostroph-
ically adjusted state turns out to be a constant pressure
surface. Since C is O(e?), the mixed layer restratifi-
cation for this case in (41) is the same to the next order;
that is, by = b2/f* + O(e*).

b. Energetics

The fraction of the available potential energy in the
mixed layer that is radiated away is found using the
lowest-order solutions. We essentially follow Ou
(1986). The top surface is considered to be rigid lid
and so does not contribute to the change in the available
potential energy.

In dimensional terms, from (56) and (57) of the pre-
vious section,

Nh2hz

¢ = (58)

1
2

b= = NR R (59)
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FiG. 5. Solution for case I. The interface flattens in the central region and isopycnals tilt with the top surface as a pivot surface.

where N = Nh/f is the radius of deformation. From
(55), the vertical displacement at the interface in the
stratified layer is

J(x, —h) = = s R (hhe + 2hh2). (60)
Further, the total change in the potential energy is
APE = f i fow pobpdxdz (61)
and the change in the kinetic energy is

AKE = % f fQ povdzdx,

where p, is a reference density.
The potential energy released in the mixed layer dur-
ing the adjustment process to O(¢) is given by

APE, = pof fO bydxdz
—oo ¥ —h(x)

L
24

(62)

(63)

= — poN?AZh 2 f i hhtdx (64)

- — époNz)\zﬁ_zf R2h*dx.  (65)

Note that the particles on the denser side in the surface
layer move upward, and those on the less dense side

move downward, thus raising the potential energy in
the surface layer and giving APE, < 0.
The gain in kinetic energy after reaching the adjusted
steady state is
AKE = %po f2 f

b dzdx (66)

—h(x)

= lposzfﬁf h2h3dx,

24 (67)

where we have neglected the kinetic energy in the strat-
ified layer, since it is O(€?*) whereas (65) and (67) are
O(¢) to the lowest order.

In the stratified layer, the potential energy change is
given by

© —h(x)
APE, = poN? f f 2pdxdz. (68)

The double integral above can be evaluated by in-
tegrating twice wrt z,

=] —h(x) 00
f f apdxd =%f F(x, —h)h%dx

*© % —h{x)
+ %J‘ Jiz(x’ _h)h%dx + %J‘ J- lpzzzSdde.
(69)

The first term on the rhs of (69) is O(¢), the second
is O(e?), and the third term is O(e*) as shown below.
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Using (54) and reordering the limits of integration,
the third term on the rhs of (69) is

| o
—f p z° f Y dxdz
x{h)

h
sy
- Lps
Joan].

Hmin
hmax
=0~ [ Ly, ceny, myan,
Fmin

which is O(e€?) as ¢ is O(€?) and Ay, = h(+%) and
hmin = h( —OO) .

To leading order, therefore, the change in potential
energy in the stratified layer using (60) is

Yodxdh (70)

(71)

APE, = %pozv2 J: F(x, —h)h2dx (72)

= - .;.,,ONZVZ-Z( f hoh dx
- 2f h§h3dx> (73)

= 2 PN f _hihdx. (74)

Thus, to leading order, of the available potential en-
ergy released in the stratified layer, two-thirds is used
to raise the potential energy of the surface layer, one-
sixth remains as kinetic energy, and one-sixth is radi-
ated away as inertial waves. Of the total available po-
tential energy change in both layers, one-half remains
as the kinetic energy and one-half radiates away.

Note that the higher-order contributions to the en-
ergy occur both due to higher-order terms in ¢ and ¢
(above and below ) and due to interfacial displacement
terms (changing domain).

Our estimates show that this adjustment process is
not a significant source of internal waves for small val-
ues of the deformation radius A. The potential energy
radiated per unit distance in y as inertial waves away
from the region of-adjustment is (1/24)p,N°\*h~>
X 7. h2h*dx, of the order (1/24) poef 2\*h6>. With &
=1, A =4 km (and L = 20 km so that e = 0.2), f
=10"*s~', and A = 100 m, this potential energy ra-
diation is about 5 X 10°> J m~'. If this happens in only
three inertial periods, over the frontal width of 20 km,
but with average spacing between fronts of 100 km, the
downward energy flux is of the order 3 X 107> W m 2,
which is small compared with various estimates (Ol-
bers 1983) that show the energy flux associated with
internal waves is of the order 1 X 107> W m™2,

4. Solutions for cases IT and III

The mixed layer base for the initial condition is taken
to be fixed at z = —h, though variations in depth can
be treated as in case 1. The profiles of velocity v(x, z)
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before the storm is assumed to be in thermal wind bal-
ance with the profile b(x, z) for cases II and III. We
denote the variables with subscript 1 for the mixed
layer and subscript 2 for the stratified layer below. We
do not use these subscripts on the displacements ¢ and
¥, as it is clear in the remaining section which layer is
being considered. Impulsive mixing is assumed to ho-
mogenize the velocity and buoyancy fields vertically in
the mixed layer to depth /, and the homogenized values
after the event are called v, (x) and b, (x), respectively.

The buoyancy is nondimensionalized by the hori-
zontal buoyancy difference Ab across the layer. The x
and £ coordinates are scaled by A = VAbh/f, z and {
by h, and velocities by f \. The frontal-width parameter
is now

e=~—Abh=§, (75)
fL L

where L is the width of the front, and we assume that
this is a small parameter. The width parameter ¢, de-
fined for cases II and III in (75), differs from our def-
inition (18) for case I by a factor V672, but 6 is o(l),
so the two definitions are equivalent.

For illustration, case II can be assumed to have a

profile for the nondimensional buoyancy of the form

b(x,z) = —%[tanhe <x—§>] (76)
and for case III, assuming that N*h = Ab,
b(J.c, Z)=2z— % [tanh(ex)]e?. 77

These profiles are schematically shown in Figs. 2 and
3. For case II, 0b,/0x and 0b,/9z in the initially un-
disturbed lower layer are related by the scaled slope s
of the isopycnals, which is taken to be O(1). There-
fore, b,/ 0z is O(¢) in the lower layer for case II. For
case III, 0b,/ 9z is O(1) in the lower layer.' The profiles
in the mixed layer after mixing can be found by depth
averaging (76) and (77) from z = —1 to z = 0. In the
lower layer, Ri = 1/¢ for case II, while it is 1/¢? in
case IIL

The form of the continuity equation (3) remains the
same. Using nondimensional versions of (5) and (8)
and the integrated x-momentum equation,

v=v(x) — f(§ — x), (78)
the dimensionless thermal wind equation is
_‘52(1 + le) = b1x§2' (79)

This can be integrated over z as before, and as in Ou
(1984), to give

' We assume here that 2 — 3 is larger than O(e).
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A(x) — b.§

&x,2) = -

, (80)

and after substituting this into (3) and integrating,

—E+VE*+2F(1 +v,) %

C(x,2) = 7 ,  (81)
where

E=A.(1+v,) — Av,, (82)

F=bw, = (1 +v,)b,. (83)

We can again write A(x) = x + C(ex) with C no larger
than O(1) as before, and with primes denoting differ-
entiation with ex, we get

E=1+¢C' +v)])+ O(e?)
F=—¢%,

(84)
(85)

and hence F(1 + v,,)°z/E? is O(e?). We can now ex-

pand (80) and (81) to get

H(x,2) = C(x)(1 — ev)) — evix — ebiz + O(e?)
(86)

U(x,z) =e(vi — C')z. (87)

It is clear that, in the final state in dimensional form,
bt

by =b,xg=—bp,=— +0(’). (88)

Hence, dimensionally the restratification is M ‘If% to

the lowest order as before; the unknown function C is

only a function of ex.

We now consider the dynamics in the lower layer to
complete the solution for the displacements to the low-
est order. The alongfront momentum equation can be
integrated as before to give at the interface

(60 =u (X, —1) - (&, -1), (89)
3(&, ) = v, —1) — &, —1), (90)

so that the Margules relation at the interface can be
written to give

v (X, =1) — v (£, —1) + ¢(F, —1) — $(x, —1)
= [b,(£) — b, (D)1, (91)

where § is the slope at the interface at position (&, {).
From (16), to the lowest order in ¢, S is €2(C" — v|
if the mixed layer depth is taken to be initially uniform.
Thus to O(e), the coupling at the interface is

é—d=uv(£ —1,0) —v(% —1,0). (92)

In both cases H and Ill £ — ¥ = ¢ — ¢ is O(¢) from
the rhs of (92). Thus (92) becomes
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é—P=u(£-1,t=0)

— (£, —1,t=0) + 0(e?), (93)

= Vjump(£) + O(€?), (94)

where vj,m, (£) is the initial velocity difference between
the bottom of the mixed layer and top of the stratified
layer. This is O(¢) for both cases II and ilI. If the slope
of the mixed layer changes slowly as in case I, the
coupling condition above can be modified by the ad-
dition of the term —[b,(£) — b,(X)]0h/0x to the rhs
of (91).

Now, as in case I, we consider the dynamics in the
lower layer. The continuity equation for the stratified
layer, written in terms of the isopycnal displacement
fields ¢ and ¢ is, as before,

¢x + (l’z - ¢z¢x + ¢x¢z =0. (95)

In the lower layer, we can use nondimensional ver-
sions of (8), fi,, = b,,, and v = v, — f(£ — x) with (5)
and (6) to yield the thermal wind balance in terms of
the displacements as

b, Ob, v,

5 (& w+&%¢@+m)a<%
In case I, this reduces to ¢, = ¢,, and in the stratified
layer the displacements ¢ and  are both O(¢?) in the
horizontal and vertical. However, since the dynamics
in the lower layer may not reduce to a Laplacian in
cases II and I, the displacements ¢ and ¢ below can
arise at different orders in e. Thus we formally expand
the displacements as

& = do(ex, 6z) + ed(ex, 6z7) + d¢ps(ex, 6z) + -+ -
(97)

¥ = o(ex, 6z) + e lex, 87) + Sifs(ex, 62) + - -,
(98)

where the subscripts ¢, 8, etc. refer to the successive
terms in the expansion (and not to derivatives with re-
spect to them). We can formally expand these using
multiple spatial scales in both x and z directions and
use the far-field boundary conditions to do the problem
rigorously, but for brevity we will omit the details and
present only the results.

To lowest order from the continuity equation, ¢ and
& are of the same order. Recall that for case 11, b,, and
b,, are both O(¢), whereas for case III, b,, is O(¢) and
b,, is O(1). Using the thermal wind equation we see
that a balance to lowest order is possible in case II only
if b, balances ¢,, or

§=¢" (99)

so that ¢, is O(e'/?) smaller than . In case III, with
b,, of O(1), the dominant balance implies § = €. In
physical terms this suggests that the isopycnals are
more constrained in the horizontal in case II than in
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case III; that is, the domain of influence in the vertical
in the stratified layer is deeper for case II. The condition
that the vertical displacement ¢ is assumed to be con-
tinuous at the interface leads to the results that for case
IL, ¢ is at most O(e) and so ¢ is at most O(e'), and
for case III, both ¢ and ¢ are at most O(¢).

The above scaling effectively decouples the Mar-
gules’ relation at the lowest order up to O(e) for case
I, and

C = Viump + €] — €b] + O(€?),  (100)
which leads to
€(C' = V) = fymp + €2x07 — €2b7 + O(€*). (101)

The rhs of (101) is O(€?). With (87), this implies that
([I i is O(€?); hence for case II, ¢ is O(e*°). How
is case III different? For case III, we can use (94) and
(86) to write

— ¢(ef) + 0(€?), (102)

where ¢(ex) has been expanded in terms of e£. Again,
in case III

e(C' — V) = Wjymp + 2107 — €2b" — e’ + O(eY),
(103)
in which the rhs terms are all O(e?). Thus for case III,

¢ = is O(€?); hence ¢ is 0(62) Thus the soluuon
for ¢ for both cases II and III is given by

& = Vump(£) — bi(1 + 2) + O(e?).  (104)

Also, ¢ occurs in the mixed layer at O(e?). To get the
solution for ¢ in the mixed layer to O(e?), we can
either include O(€?) terms in (87) or use continuity to
get

C = Vpymp + €XV| — €b]

¥ = 2Bree = Viump,) + 5 brut® + O(eY). (105)
Notice that C enters in cases II and III at O(¢) in con-
trast with case I where it occurs at O(e?). At the in-
terface, the displacement at € is given by ¢ = —b'/2
+ V{ump, Where both terms on the rhs have opposing
tendencies as far as the deepening and/or rising of the
interface is concerned and the result depends on the
assumed profile for the initial conditions. Again, we
can check for continuity, for example, f_ #(0, z)dz
= oy (0) — 1/251,(0) = J°, Y(x, z = ~1). For case
II, with profile (76) and with scaled slope s of O(1),
the displacement of the interface occurs at O(e*).
In case III, with the profile before mixing given by
(77), the interface is displaced by € sechZex tanhex[ (1
— e #/B%— (1 + e #)/(28)], which shallows on the
more buoyant side and deepens on the heavier side. For
small 8 it occurs at O(€?3).

The displacements in the mixed layer for cases II and
III are now given by (104) and (105). These lowest-
order solutions are schematically sketched in Fig. 6.
The pivoting surface is given by
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7= —1 + Jum (106)
blx
for both cases II and III, and
Zyr = = 5 + O(€) (107)

for case II, where (107) has been derived by recogniz-
ing that from the thermal wind relation [0 — v,(X)]
= by, and Vjyp(£) = —v,(X)/2 to the lowest order.
Therefore, to this order, for case II, the isopycnals are
just pivoted at middepth and undergo horizontal dis-
placements of O(¢) about this pivot location. In case
oL, z = —1 + 1/8 — e7P/(1 — e7*), which is
~1/2 — /12 for small S. In Ou (1984), the pivoting
surface is at middepth to the lowest order, but with
initial conditions at rest.

The restratification in cases II and III tends to restore
the original tilted position of the isopycnals, but only
partially. For example, in case II to restore the isopyc-
nals the displacement needed at z = —1 is 1/2s where
s, which is O(1), is the scaled slope before mixing,
whereas after the adjustment, the isopycnals have
moved only by a distance b,,/2.

In all cases, there is a pivoting surface in the adjusted
state at which there are no horizontal displacements,
but this pivot surface is not the same as the surface on
which there are no horizontal pressure gradients ini-
tially (after mixing). This is due to radiation of inertial
waves; the final pivot surface cannot be predicted with-
out solving for the adjusted state.

5. Discussion and conclusions

¢ The mixed layer restratification is given for this
wide-front problem by b, = —b,@, = bZ/f?, or with
2 = | bX | ’
M4
7
This simple scaling can thus be employed in GCMs
with stratification-dependent parameterizations, partic-
ularly in frontal regions.
e To the lowest order, Ri = 1, so the restratification
and Ri are the same to the lowest order as for the con-

stant-depth problem (Tandon and Garrett 1994).
¢ The major assumption in this study is that of a

wide front [or € = VAbh/(fL) is small]. This is not a
very restrictive condition. In FASINEX (Weller 1991),
temperature variations of 1 K were seen over 20 km,
andwitha =2 X 10™*K™', f=10"*s"',and A = 100
m, we have ¢ = 0.2. For the shelf—slope front shown
in Fig. 10 of Ou (1984) (adapted from Marra et al.
1982), the overall variation is 0.4 kg m— over 30 km,
and with f=9 X 107° s~ this also gives ¢ = 0.2. For
stronger and narrower fronts, € can be larger, as in Fig.
5a of Samelson and Paulson (1988), where the tem-

N2 = (108)
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Case 11 | f/2

7

Case III
f/2

FiG. 6. Lowest-order solutions for isopycnal displacements for cases II and IIL
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perature changes by 1.6 K over 5.7 km, with f = 7.3
x 107> 57! (near 30°N) and A = 30 m so that, with «
=2.6 X 107 K™', e = 0.85. Certainly, as € approaches
1, the results are not strictly valid, but calculations
show that the metric for restratification (108) still gives
the right order of magnitude results for the last ex-
ample.

» If we assume that throughout this geostrophic ad-
justment the Richardson number across the base of the
mixed layer is maintained constant (Price et al. 1986),
then we can derive an expression for thickness of the
transition layer. For all cases the velocity difference
across the interface is of the order ¢f\. For cases I and
I, bjymp is of the order Ab (assuming b.h is of order
Ab in case IIT), then the transition layer thickness is
O(e’h), which is small. For case II, the velocity jump
is still ¢f\, but the buoyancy jump at the base of the
mixed layer is O(eAb) [e.g., in (76)] and therefore the
transition layer thickness is O(eh). [Note that this re-
sult is valid for scaled slope s in case II assumed to be
O(1). We expect case II to become more like case III
for small s, since v, Will remain small and the buoy-
ancy jump will increase, so the transition layer thick-
ness will be smaller for small s.] In all three cases the
transition layer thickness is small, so the metric for res-
tratification and Ri = 1 probably carry over to realistic
conditions.

* Young (1994) considers a mixed layer model for-
mulation that incorporates dynamics due to horizontal
buoyancy gradients. In his model, the vertical homo-
geneity is restored by intermittent mixing events, and
the momentum and density relax to their averaged val-
ues in between these events. In this paper, the horizon-
tal gradients in the mixed layer result in dynamics at
an order lower than the quasigeostrophic approach. The
resulting subinertial dynamics and its instabilities are
considered in Young (1994) and Young and Chen
(1994).

If the relaxation times of momentum and density are
taken to be the same, then the restratification achieved
in this paper and in Young (1994) are the same. How-
ever, Young’s formulation assumes that the difference
in the mixed layer depth across the front is small and
that the mixed layer overlies a much denser homoge-
neous layer such that the buoyancy difference in the
horizontal is much smaller than the buoyancy jump in
the vertical, at the base of the mixed layer. With a finite
change in the mixed layer depth and with the buoyancy
difference in the horizontal the same as that at the
mixed layer base, the results are similar (our formula-
tion is for the inviscid restratification after a single
event). Thus, it may be possible to reconsider the dy-
namics in the mixed layer for an ensemble of events as
in Young (1994 ) but with finite variations in the mixed
layer depth and a buoyancy jump at the base of the
mixed layer of the same order as the buoyancy differ-
ence in the horizontal, with the mixed layer overlying
a stratified layer.
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e We have shown that Ri is O(1) in the mixed layer.
It would be interesting to examine whether this system
is baroclinically unstable. Stone (1970) shows that for
0.25 < Ri < 0.95, symmetric instabilities are most un-
stable and for Ri > 0.95 conventional Eady instability
( which exists for Ri > 0.86, e.g., Pedlosky 1987) dom-
inates. Thus we expect that the region of maximum
horizontal gradients may be particularly susceptible to
the nongeostrophic symmetric instability. The effect of
nonuniform velocity shear (and presence of an inflec-
tion point in it) may enhance these instabilities. In a
previous treatment of instabilities of a mixed layer front
via a continuously stratified model (Samelson 1993)
symmetric instabilities have not been considered. We
plan to consider these, but the analysis is beyond the
scope of the present paper.
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APPENDIX
Case I with Arbitrary b(x) in the Mixed Layer

Consider the mixed layer in case I to have an arbi-
trary buoyancy initial distribution that slowly varies
across the front; that is, b = b(ex) [unrelated to A(x)]
in the mixed layer, and b = N’z below.

Following the nondimensionalization and the pro-

cedure for case I results in
C(eX) = —[bh + h(h + b,)]. (109)

The solution for displacements in the mixed layer is
then

¢ = —b,(z + h) — hh, - bh,,
¢ =z[b,h + b + hy(b+ h)

(110)

+ h(b+ b1+ 7 b2 (111)

For instance, if we consider a modification of the prob-
lem in Ou (1984), where instead of a rigid bottom we
consider the mixed layer overlying a stratified layer,
then h, = 0, ¢ = —b,(z + h) and the isopycnals are
pivoted at the interface. The top surface has no vertical
displacements, but has maximum horizontal displace-
ments. In the final state, ¢ = zb.h + 1/4b..z° and there-
fore, the interface deepens on the denser side and rises
on the lighter side.
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