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Adaptive Fuzzy Control for a
Class of MIMO Nonlinear
Systems with Unknown

Dead-zones

ZHANG Tian-Ping1 YI Yang1

Abstract A design scheme of adaptive fuzzy controller for a

class of uncertain MIMO nonlinear systems with unknown dead-

zones and a triangular control structure is proposed in this pa-

per. The design is based on the principle of sliding mode control

and the property of Nussbaum function. The approach does not

require a priori knowledge of the signs of the control gains and

the upper bounds and lower bounds of dead-zone parameters to

be known a priori. By introducing the integral-type Lyapunov

function and adopting the adaptive compensation term of the

upper bound of the optimal approximation error and the dead-

zone disturbance, the closed-loop control system is proved to

be semi-globally stable in the sense that all signals involved are

bounded, with tracking errors converging to zero.

Key words Dead-zone, fuzzy control, adaptive control, sliding

mode control, Nussbaum function

1 Introduction

Dead-zone is one of the most important non-smooth non-

linearities in many industrial processes, which can severely

limit system performance. Thus the study of dead-zone

models involved has been of great interest to control re-

searchers for a long time[1∼5]. An immediate method for

the control of dead-zone is to construct an adaptive dead-

zone inverse[1,2]. Continuous and discrete-time adaptive

dead-zone inverses for linear systems with unmeasurable

dead-zone outputs were built, respectively. The work done

by [3] continued the above research and an asymptotically

adaptive cancellation of an unknown dead-zone achieved

under the condition that the output of a dead-zone was

measurable. In [4], giving a matching condition to the

reference model, an adaptive controller with an adaptive

dead-zone inverse has been introduced. In addition, a new

adaptive control approach was studied without construc-

ting the inverse of the dead-zone[5].

In recent years, the analytical study of adaptive nonlin-

ear control systems using universal function approximators

has received much attention[6∼13]. Typically, these meth-

ods use fuzzy logic systems and neural networks as approx-

imation models for the unknown nonlinearities. In [8], the

approach was able to avoid the requirement of the upper
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bound of the first time derivative of the control gain by

using integral Lyapunov function. The problem of adap-

tive control for a class of MIMO nonlinear systems with a

triangular structure in control inputs was discussed in [9].

Furthermore, two design schemes of adaptive controller for

SISO/MIMO uncertain nonlinear systems were proposed in

[11, 12], and ensured tracking error converged to zero. In

[13], the problem of direct adaptive fuzzy control was stud-

ied for a class of MIMO interconnected systems with known

gain signs and without dead-zone inputs. Nussbaum func-

tion was introduced in [14]. The Nussbaum gain technique

for coping with the unknown sign of the function control

gain was employed in [15].

In this paper, we consider a class of uncertain MIMO

nonlinear systems with both unknown dead-zones and un-

known gain signs. Based on the intuitive concept and the

piece-wise description of a dead-zone model, a robust adap-

tive sliding mode control is introduced. Compared with the

above mentioned references, our controller design approach

has four features: 1) The approach does not require the bor-

ders of dead-zone model parameters to be known; 2) Based

on the approximation capability of the fuzzy logic systems

and the property of Nussbaum function, the signs of the

function control gains may be unknown; 3) The adaptive

compensation term of the optimal approximation error is

adopted to minimize the influence of modeling error and

parameter estimation error and ensures that the tracking

errors converge to zero; and 4) Jittering can be eliminated

by smoothing out the discontinuous sign function.

2 Problem statement and basic assump-
tions

Consider a class of uncertain MIMO nonlinear systems

with dead-zones and a triangular control structure in the

following form.

8
>>>>>>>>>>>><
>>>>>>>>>>>>:

ẋ1j = x1,j+1, j = 1, · · · , n1 − 1

ẋ1n1 = f1(xxx) + b11(xxx1)w1(t)

ẋij = xi,j+1, j = 1, · · · , ni − 1

ẋini = fi(xxx) + bi1(xxx)w1(t) + bi2(xxx)w2(t)

+ · · ·+ bi,i−1(xxx)wi−1(t)

+bii(xxx1,xxx2, · · · ,xxxi)wi(t), i = 2, · · · , m

y1 = x11, · · · , ym = xm1

(1)

where xxx =
`
xxxT

1 ,xxxT
2 , · · · ,xxxT

m

´T ∈ Rn is the state vec-

tor, xxxi = (xi1, · · · , xini)
T, n =

mP
i=1

ni; wi(t) ∈ R

is the output of the dead-zone model with the in-

put vi(t) ∈ R, yi ∈ R denotes the system out-

put; f1(xxx), · · · , fm(xxx) are the unknown continuous func-

tions; b11(xxx1), b21(xxx), b22(x̄xx2), · · · , bm1(xxx), · · · , bm,m−1(xxx),

bmm(x̄xxm) are the unknown control gains, x̄xxi =

(xxxT
1 ,xxxT

2 , · · · ,xxxT
i )T.

The dead-zone model with input vi(t) and output wi(t)

is described as follows.

wi(t) = Di(vi(t))

=

8
><
>:

kir(vi(t)− bir), for vi(t) ≥ bir

0, for bil < vi(t) < bir

kil(vi(t)− bil), for vi(t) ≤ bil

(2)

The key features of dead-zone in the control problem inves-

tigated in this paper are

Assumption 1. The dead-zone output wi(t) is not

available for measurement.

Assumption 2. The dead-zone slopes in positive and

negative regions are the same, kir = kil = ki.

Assumption 3. The dead-zone parameters bir, bil, ki

are unknown bounded constants, but their signs are known,

i.e. bir > 0, bil < 0 and ki > 0.

Based on the above features, we can redefine dead-zone

model as
wi(t) = Di(vi(t)) = kivi(t) + di(vi(t)) (3)

where

di(vi(t)) =

8
><
>:

−kibir, for vi(t) ≥ bir

−kivi(t), for bil < vi(t) < bir

−kibil, for vi(t) ≤ bil

(4)

and |di(vi(t))| ≤ p∗i , p∗i is an unknown positive constant.

The control objective is to force the system output yi

to follow the specified desired trajectory yid. Define xid, ei

and the filtered tracking error si as

xxxid = (yid, ẏid, · · · , y
(ni−1)
id )T

ei = xxxi − xxxid = (ei1, ei2, · · · , eini)
T

si = (
d

dt
+ λi)

ni−1ei1 =

ni−1X
j=1

cijeij + eini (5)

where cij = Cj−1
ni−1λ

ni−j
i , j = 1, · · · , ni − 1, λi > 0 is a

positive constant, specified by the designer.

From (1), (3), and (5), we obtain

8
>>><
>>>:

ṡ1 = f1(xxx) + γ1 + b11(xxx1)k1v1(t) + b11(xxx1)d1(v1(t))

ṡi = fi(xxx) +
i−1P
j=1

bij(xxx)Dj(vj) + γi + bii(x̄xxi)kivi(t)

+bii(x̄xxi)di(vi(t)), i = 2, · · · , m

(6)

where γi =
ni−1P
j=1

cijei,j+1 − y
(ni)
id .

In order to design a stable adaptive fuzzy control, we

make the following assumptions.

Assumption 4. 0 < bi0 ≤ |bii(x̄xxi)| ≤ bi1.

Assumption 5. (x̄xxT
id, y

(ni)
id )T ∈ Ωid ⊂ Rni+1,

where bi0 and bi1 are known constants; Ωid is a known

bounded compact set; i = 1, · · · , m.

In order to cope with the unknown control gain sign,

the Nussbaum gain technique is employed in this paper. A

function N(ς) is called a Nussbaum -type function if it has

the following properties.

1) lim
s→+∞

sup 1
s

R s

0
N(ς)dς = +∞; and
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2) lim
s→+∞

inf 1
s

R s

0
N(ς)dς = −∞

For clarity, the even Nussbaum function N(ς) =

eς2 cos((π/2)ς) is used throughout the paper.

Lemma 1[15]. Let V (·), ς(·) be smooth functions de-

fined on [0, tf ) with V (t) ≥ 0, ∀t ∈ [0, tf ), and N(·) be

an even smooth Nussbaum-type function. If the following

inequality holds.

V (t) ≤ c0 +

Z t

0

(gN(ς) + 1)ς̇dτ, ∀t ∈ [0, tf ) (7)

where g is a nonzero constant and c0 represents some suit-

able constant, then V (t), ς(t),
R t

0
(gN(ς) + 1)ς̇dτ must be

bounded on [0, tf ).

3 Adaptive fuzzy controller design and
stability analysis

3.1 Discontinuous adaptive control law and stability
analysis

Let

hi(zzzi) =

fi(xxx) +
i−1P
j=1

bij(xxx)Dj(vj)

|bii(x̄xxi)|

+
1

si

Z si

0

n
σ[

i−1X
j=1

njX

k=1

∂
˛̨
b−1
ii (x̄xx+

i , σ + βi)
˛̨

∂xjk
xj,k+1

+

ni−1X

k=1

∂
˛̨
b−1
ii (x̄xx+

i , σ + βi)
˛̨

∂xik
xi,k+1]

+
γi

|bii(x̄
+
i , σ + βi)

o
dσ (8)

where zzzi = (xxxT, si, γi, βi, v1, · · · , vi−1)
T, βi = y

(ni−1)
id −

ni−1P
j=1

cijeij , xj,nj+1 = ẋjnj , j = 1, · · · , i − 1. Define the

compact sets Ωz1 and Ωzi as follows.

Ωz1 =
n

(xxxT, s1, γ1, β1)
T| xxxj ∈ Ωµj ,

j = 1, · · · , m, x̄xxid ∈ Ωid

o

Ωzi =
n

(xxxT, si, γi, βi, v1, · · · , vi−1)
T| xxxj ∈ Ωµj ,

j = 1, · · · , m, x̄xxkd ∈ Ωkd, k = 1, · · · , i
o

where Ωµi will be defined later in Theorem 1, i = 1, · · · , m.

Let hi(zzzi, θθθi) be the approximation of the second type of

fuzzy systems on the compact set Ωzi to hi(zzzi), i.e.

hi(zzzi, θθθi) =

MiP
l=1

yl
i

n+i+2Q
j=1

exp(− (zij−al
ij)2

(bl
ij)2+b0

)

MiP
l=1

[
n+i+2Q

j=1

exp(− (zij−al
ij)2

(bl
ij)2+b0

)]

(9)

θθθi = (y1
i , · · · , yMi

i , b1
1i, · · · , b1

n+i+2,i, · · · , bMi
1i , · · · , bMi

n+i+2,i,

a1
1i, · · · , a1

n+i+2, i, · · · , aMi
1i , · · · , aMi

n+i+2, i)
T is the ad-

justable parameter vector. Mi is the number of fuzzy

rules, b0 is a positive constant specified by the designer.

Let

Ωi = {θθθi| ‖θθθi‖ ≤ Mθi}
θθθ∗i = arg min

θθθi∈Ωi

[ sup
zzzi∈Ωzi

|hi(zzzi, θθθi)− hi(zzzi)|] (10)

where Mθi is a positive constant, θ̂θθi(t) ∈ Ωi is the esti-

mate of θθθ∗i at time t. Using the Taylor series expansion of

hi(zzzi, θθθ
∗
i ) around θ̂i(t), we have

hi(zzzi, θθθ
∗
i )− hi(zzzi, θ̂θθi)

= (θθθ∗i − θ̂θθi)
T ∂hi(zzzi, θ̂θθi)

∂θ̂θθi

+ O(‖θ̃θθi‖2) (11)

where θ̃θθi(t) = θθθ∗i − θ̂θθi. Let

δi = max
zzzi∈Ωzi

,θ̂θθi∈Ωi

[|O(‖θ̃θθi‖2) + hi(zzzi)− hi(zzzi, θθθ
∗
i )|] (12)

then δi(i = 1, · · · , m) are the unknown bounded constants.

Considering the following control law.

vi(t) = N(ςi)[ki0si + hi(zzzi, θ̂θθi) + ε̂isgn(si)] (13)

ς̇i = ki0s
2
i + hi(zzzi, θ̂θθi)si + ε̂i |si| (14)

where N(ςi) = eς2i cos ((π/2)ςi), ki0 is a positive constant,

θ̂θθi, ε̂i are the estimates of θ∗i and εi = δi + p∗i at time t.

Adopt the following adaptive laws.

˙̂
θθθi =

8
>>>>>><
>>>>>>:

ηi1si
∂hi(zzzi,θ̂θθi)

∂θ̂i
, if ‖θ̂θθi‖ < Mθi or ‖θ̂θθi‖ = Mθi

and siθ̂θθ
T

i
∂hi(zzzi,θ̂θθi)

∂θ̂θθi
≤ 0

ηi1si
∂hi(zzzi,θ̂θθi)

∂θ̂θθi
− ηi1si

θ̂θθiθ̂θθ
T
i

‖θ̂θθi‖2
∂hi(zzzi,θ̂θθi)

∂θ̂θθi
,

if ‖θ̂θθi‖ = Mθθθi
and siθ̂θθ

T

i
∂hi(zzzi,θ̂θθi)

∂θ̂θθi
> 0

(15)

˙̂εi = ηi2|si| (16)

where ηi1 and ηi2 are strictly positive constants which de-

termine the adaptive rate.

Define a smooth scalar function as follows.

Vsi =

Z si

0

σ

|bii(x̄xx
+
i , σ + βi)|

dσ (17)

where x̄xx+
i = (xxxT

1 , · · · ,xxxT
i−1, xi1, xi2, · · · , xi,ni−1)

T.

By second mean value theorem for Integrals, Vsi can

be rewritten as Vsi = s2
i /2|bii(x̄xx

+
i , λissi + βi)| with λis ∈

(0, 1). Because 0 < bi0 ≤ |bii(x̄xxi)|, it is shown that Vsi is

positive definitive with respect to si. Differentiating Vsi(t)

with respect to time t, applying (6), Assumptions 2 and 3,

we obtain

V̇si =
si

|bii(x̄xxi)| ṡi +

Z si

0

σ
h i−1X

j=1

niX

k=1

∂|b−1
ii (x̄xx+

i , σ + βi)|
∂xjk

×xj,k+1 +

ni−1X

k=1

∂|b−1
ii (x̄xx+

i , σ + βi)|
∂xik

xi,k+1

i
dσ

− γisi

|bii(x̄xxi)| + γi

Z si

0

|b−1
ii (x̄xx+

i , σ + βi)|dσ

≤ si
bii(x̄xxi)

|bii(x̄xxi)|kivi + sihi(zzzi) + |si|p∗i (18)
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Theorem 1. Consider the MIMO nonlinear systems

(1) with the control law defined by (13) and (14). Let the

parameter vector θ̂θθi, ε̂i be adjusted by the adaptation laws

determined by (15) and (16), and let Assumptions 1–5 be

true. Then,

1) if θ̂θθi(0) ∈ Ωi, then ‖θ̂θθi(t)‖ ≤ Mθi , ∀t ≥ 0;

2) the overall closed-loop control system is semi-globally

stable in the sense that all the closed-loop signals are

bounded, and the state vector xxxi ∈ Ωµi = {xxxi(t)| |eij(t)| ≤
2j−1λj−ni

i µi, j = 1, · · · , ni, x̄xxid ∈ Ωid}, t ≥ Ti;

3) lim
t→∞

si = 0, i.e. lim
t→∞

ei1 = 0,

where µi =
q

2bi1 supt≥0 Vi(t), Ti = (ni − 1)/λi.

Proof. 1) Let Vi0(t) = (1/2)θ̂θθ
T

i θ̂θθi. Similar to the analysis

in [7], we can know that if θ̂θθi(0) ∈ Ωi, then ‖θ̂θθi(t)‖ ≤
Mθi , ∀t ≥ 0.

2) Define the Lyapunov function candidate

Vi(t) = Vsi(t) +
1

2ηi1
θ̃θθ

T

i θ̃θθi +
1

2ηi2
ε̃2

i (19)

Differentiating Vi(t) with respect to time t, we have

V̇i(t) = V̇si(t) +
1

ηi1
θ̃θθ

T

i (− ˙̂
θθθi) +

1

ηi2
ε̃i(− ˙̂εi)

Substituting (18) into the above equation, we obtain

V̇i(t) ≤ bii(x̄xxi)

|bii(x̄xxi)|kiN(ςi)ς̇i + ς̇i − ki0s
2
i

+Iisiθ̃θθ
T

i
θ̂θθiθ̂θθ

T

i

‖θ̂θθi‖2
∂hi(zzzi, θ̂θθi)

∂θ̂θθi

(20)

where Ii = 0(1), if the first (second) condition of (15)

is true. If the second condition of (15) is true, then

siθ̂θθ
T

i
∂hi(zzzi,θ̂θθi)

∂θ̂θθi
> 0, and θ̃θθ

T

i θ̂θθi = 1
2
[‖θθθ∗i ‖2 − ‖θ̂θθi‖2 −

‖θθθ∗i − θ̂θθi‖2] < 0. Therefore, we have

V̇i(t) ≤ −ki0s
2
i +

bii(x̄xxi)

|bii(x̄xxi)|kiN(ςi)ς̇i + ς̇i (21)

Integrating (21) over [0, t], we have

Vi(t) ≤ Vi(t) +

Z t

0

ki0s
2
i dτ

≤ Vi(0) +

Z t

0

(
bii(x̄xxi)

|bii(x̄xxi)|kiN(ςi)ς̇i + ς̇i)dτ (22)

According to Lemma 1, we have Vi(t),
R t

0

bii(x̄xxi)
|bii(x̄xxi)|N(ςi)ς̇i

+ς̇i)dτ, ςi(t) are bounded in [0, tf ). Similar to the discus-

sion in [15], we know that the above conclusion is true for

tf = +∞. Therefore, si, ε̃i ∈ L∞. According to (19) and

Assumption 4, we have that s2
i ≤ 2bi1Vsi(t) ≤ 2bi1Vi(t) ≤

µ2
i . Similar to the discussion in [8], the conclusion is true.

3) From (22), it is easy to show that
R +∞
0

s2
i dt exxxists.

Using (5), (6) and (13), we have that ṡi ∈ L∞. Therefore,

using the Barbalat′s Lemma, we have lim
t→+∞

si = 0. ¤
3.2 Continuous adaptive control law and stability anal-

ysis

Define

si∆ = si − ϕisat(si(t)/ϕi) (23)

where saturation function sat(y) is defined as: sat(y) = y, if

|y| ≤ 1; sat(y) = sgn(y), if |y| > 1, ϕi is a positive constant

representing the width of the boundary. Let

hi(zi) =

fi(xxx) +
i−1P
j=1

bij(xxx)Dj(vj)

|bii(x̄xxi)|

+
1

si∆

Z si∆

0

n
σ
h i−1X

j=1

njX

k=1

∂|b−1
ii (x̄xx+

i , σ + βi)|
∂xxxjk

×xxxj,k+1 +

ni−1X

k=1

∂
˛̨
b−1
ii (x̄xx+

i , σ + βi)
˛̨

∂xxxik
xxxi,k+1

i

+
γi

|bii(x̄xx
+
i , σ + βi)|

o
dσ

where βi = y
(ni−1)
id −

ni−1P
j=1

cijeij + ϕisat(si(t)/ϕi), zzzi =

(xxxT, si∆, γi, βi, v1, · · · , vi−1)
T. Therefore, si∆ + βi = si +

y
(ni−1)
id −

ni−1P
j=1

cijeij = xxxini .

Considering the following control law.

vi(t) = N(ςi)[ki0si∆ + hi(zzzi, θ̂θθi) + ε̂isat(si/ϕi)](24)

ς̇i = ki0s
2
i∆ + hi(zzzi, θ̂θθi)si∆ + ε̂isi∆sat(si/ϕi)(25)

Adopt the following adaptive laws.

˙̂
θθθi =

8
>>>>>><
>>>>>>:

ηi1si∆
∂hi(zzzi,θ̂θθi)

∂θ̂θθi
, if ‖θ̂θθi‖ < Mθθθi

or ‖θ̂θθi‖ = Mθθθi

and si∆θ̂θθ
T

i
∂hi(zzzi,θ̂θθi)

∂θ̂θθi
≤ 0

ηi1si∆
∂hi(zzzi,θ̂θθi)

∂θ̂θθi
− ηi1si∆

θ̂θθiθ̂θθ
T
i

‖θ̂θθi‖2
∂hi(zzzi,θ̂θθi)

∂θ̂θθi
,

if ‖θ̂θθi‖ = Mθθθi
and si∆θ̂θθ

T

i
∂hi(zzzi,θ̂θθi)

∂θ̂θθi
> 0

(26)

˙̂εi = ηi2|si∆| (27)

where ηi1 and ηi2 are strictly positive constants which de-

termine the adaptive rate.

Theorem 2. Consider the MIMO nonlinear systems

(1) with the control law defined by (24) and (25). Let the

parameter vector θ̂θθi, ε̂i be adjusted by the adaptation laws

determined by (26) and (27), and let Assumptions 1–5 be

true. Then,

1) if θ̂θθi(0) ∈ Ωi, then ‖θ̂θθi(t)‖ ≤ Mθθθi
, ∀t ≥ 0;

2) the overall closed-loop control system is semi-globally

stable in the sense that all the closed–loop signals are

bounded, and the state vector xxxi ∈ Ωµi = {xxxi(t)| |eij(t)| ≤
2j−1λj−ni

i µi, j = 1, · · · , ni, x̄xxid ∈ Ωid}, t ≥ Ti;

3) lim
t→∞

si∆ = 0,

where µi =
q

ϕi + 2bi1 supt≥0 Vi∆(t), Ti = (n− 1)/λi.

Proof. 1) Similar to the proof in [7], it is easy to show

that the conclusion 1) is true.

2) Define the Lyapunov function candidate

Vi∆(t) =

Z si∆

0

σ˛̨
bii(x̄xx

+
i , σ + βi)

˛̨dσ +
1

2ηi1
θ̃θθ

T

i θ̃θθi +
1

2ηi2
ε̃2

i

(28)

If |si| ≤ ϕi, then V̇i∆ = 0; if |si| > ϕi, then si∆ = si(t) −
ϕisgn(si) and ṡi∆(t) = ṡi(t). Similar to the calculations in
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(18) and (20), and using (24)-(27), we have

V̇i∆(t) ≤ −ki0s
2
i∆ +

bii(x̄xxi)

|bii(x̄xxi)|kiN(ςi)ς̇i + ς̇i (29)

Therefore,

Vi∆(t) ≤ Vi∆(0) +

Z t

0

(
bii(x̄xxi)

|bii(x̄xxi)|kiN(ςi)ς̇i + ς̇i)dτ (30)

Similar to the proof of Theorem 1, it is easy to show that

the conclusion ii is true.

3) Similar to the proof of Theorem 1, it is easy to show

that lim
t→∞

si∆ = 0.

In order to save space, simulation results are omitted.¤

4 Conclusions
Two adaptive fuzzy control schemes have been presented

for a class of uncertain MIMO nonlinear systems with

unknown dead-zones and a triangular control structure.

Based on the intuitive concept and piece-wise description

of dead-zone model and the principle of sliding mode con-

trol, the developed controller can guarantee that all signals

involved are semi-globally uniformly ultimately bounded

and the tracking errors asymptotically converge to zero.

By smoothing out the discontinuous sign function, the jit-

tering in practice can be eliminated.
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