α 能谱法测定²⁴¹Am(n, γ)²⁴²Am^{g,m}的反应分支比

倪建忠,代义华,张海涛,鲁 檑,施艳梅,常永福

(西北核技术研究所,陕西西安 710024)

摘要:研究建立了 1 种利用 α 能谱测定²⁴¹ Am(n, γ)²⁴² Am^g¹^m</sup>的反应分支比 K_1 和 K_2 的方法。利用 ²⁴² Am^m 与²⁴² Am^g 半衰期差别很大的特点,分两次测量²⁴¹ Am 辐照样品中的²⁴² Cm 含量,分别推算²⁴² Am^g 与²⁴² Am^m 的生成量,从而得到 K_1 和 K_2 。实际分析了某反应堆辐照的样品,测得了该反应堆中子能谱 对应的 K_1 和 K_2 值。 关键词:²⁴¹ Am;中子俘获反应;分支比; α 能谱法

中图分类号:O571.4 **文献标识码:**A **文章编号:**1000-6931(2007)06-0671-03

Determination of Branching Ratio of ${}^{241}Am(n,\gamma){}^{242}Am^{g,m}$ With α -Spectrometry

NI Jian-zhong, DAI Yi-hua, ZHANG Hai-tao, LU Lei, SHI Yan-mei, CHANG Yong-fu (Northwest Institute of Nuclear Technology, Xi'an 710024, China)

Abstract: A method to determine the branching ratio K_1 and K_2 of ²⁴¹ Am(n, γ)²⁴² Am^{g,m} with α -spectrometry was established. Based on the fact that the half-life of ²⁴² Am^m and ²⁴² Am^g are quite different, the ²⁴² Cm activity of sample irradiated in a reactor was measured at two different moments, then the production amount of ²⁴² Am^g and ²⁴² Am^m during irradiation was calculated, finally the K_1 and K_2 were obtained.

Key words: ²⁴¹Am; neutron capture reaction; branching ratio; α -spectrometry

²⁴¹Am 发生中子俘获反应生成²⁴²Am^g 的同时,还会生成激发态的²⁴²Am^m。反应及产物的 衰变示于图 1。

 241 Am(n, γ)²⁴²Am^{g,m}反应分支比 K_1 和 K_2 随 入射中子的能量而变化。R. M. Harbour^[1]、Y. Shinohara^[2]分别于 1973 年和 1997 年测量了 K_1 和 K_2 (表1)。目前,国内尚未进行有关²⁴¹Am(n, γ)²⁴²Am^{g,m}反应分支比的测定工作。

本工作研究建立 1 种利用 α 能谱同位素稀释法测定 K_1 和 K_2 的方法,并获得某反应堆中 子能谱对应的 K_1 和 K_2 。 ²⁴¹Am(432.2 a)(n, γ) K_2 ²⁴²Am^m(141 a) K_1 1.T.99.52% ²⁴²Am^g(16.02 h) $E.C.K_4=0.173$ ²⁴²Pu(3.73×10⁵ a) $K_3=0.827$ ²⁴²Cm(162.8 d) α 100% ²³⁸Pu(87.7 a)

图 1 ²⁴¹ Am(n,γ)反应及其产物的衰变 Fig. 1 Reaction of ²⁴¹ Am(n,γ) and its products

收稿日期:2006-08-01;修回日期:2006-09-20

作者简介:倪建忠(1968—),男,山西榆次人,研究员,博士研究生,核测试分析专业

表 1
241
 Am $(n, \gamma)^{242}$ Am^{e,m}反应比 K_1 和 K_2 的文献值
Table 1 K_1 and K_2 values

of ²⁴¹ Am $(n, \gamma)^{242}$ Am^{g, m} from references

作者	年代	中子能量	K_1	K_2
R. M. Harbour	1973	热	0.899	0.101
		超热	0.865	0.135
Y. Shinohara	1997	热	0.924	0.076

1 原理

²⁴² Am^m 与²⁴² Am^g 的半衰期差异大,分别为 141 a 和 16.02 h。在²⁴¹ Am 俘获中子生成
²⁴² Am后,在较短的时间内,²⁴² Am^g 很快衰变 成²⁴² Cm,而²⁴² Am^m 几乎不衰变。这时,称取部 分样品,放化分离出²⁴² Cm,并进行测量,即可推算 出反应中²⁴² Am^g 的生成量。

将剩余样品妥善保存数年,由²⁴² Am^g 衰变 生成的²⁴² Cm 已全部衰变成²³⁸ Pu,而²⁴² Am^m 通 过递次衰变生成²⁴² Cm,该衰变链处于长期平 衡,此时,样品中的²⁴² Cm 来自于²⁴² Am^m,这时, 测量样品的²⁴² Cm 含量,即可推算出辐照结束 时刻²⁴² Am^m 的生成量。

由先后两次分别测得的²⁴² Am^g 与²⁴² Am^m, 即可计算 K_1 和 K_2 ,有:

$$\begin{cases}
K_2/K_1 \\
K_1 + K_2
\end{cases} = R_{m/g}$$
(1)

其中, $R_{m/g}$ 为辐照结束时刻²⁴² Am^m 和²⁴² Am^g 的 原子核数比。

由式(1)解得:

$$\begin{cases} K_{1} = \frac{1}{1 + R_{m/g}} \\ K_{2} = \frac{R_{m/g}}{1 + R_{m/g}} \end{cases}$$
(2)

按照不确定度传递律可得:

$$\begin{cases} u_{K_1,r} = K_2 u_{R_{m/g},r} \\ u_{K_2,r} = K_1 u_{R_{m/g},r} \end{cases}$$
(3)

其中: $u_{K_1,r}$ 、 $u_{K_2,r}$ 分别为 K_1 和 K_2 的相对标准 不确定度: $u_{R_m/a}$,r为 $R_{m/a}$ 的相对标准不确定度。

2 实验

1996 年 7 月 1 日,在反应堆上辐照 100 mg 纯度为 99.9%的²⁴¹ Am,放置 30 d 后,称取部分 样品,加入²⁴⁴ Cm 稀释剂,经放化流程分离提纯 出 Cm,采用 α 能谱同位素稀释法测定出样品 中²⁴² Cm的含量为 1 281 Bq/g(1±1.4%),推算 出辐照结束时刻²⁴² Am^g 的生成量(以原子个数 计)为 3.570 8×10¹⁰ g⁻¹(1±1.4%)。

2006 年 1 月,利用 α 能谱同位素稀释法再 次分析该辐照样品中²⁴² Cm 的含量,并推算得 到辐照结束时刻²⁴² Am^m 的生成量。

1996 年和 2006 年两次分析的实验过程是 相同的,均利用²⁴⁴ Cm 作稀释剂,通过在半导体 α 谱仪上测定²⁴² Cm 和²⁴⁴ Cm 的比值得到样品 中²⁴² Cm 的含量。

2006年的实验分析过程详情如下。

2.1 ²⁴⁴Cm 稀释剂的标定

²⁴⁴ Cm 稀释剂标定在本实验室的 $2_{\pi \alpha}$ 栅网 电离室上进行。把²⁴⁴ Cm 溶液滴在玻璃底衬 上,制成待测源。6 个玻璃片源的比活度标定 结果列于表 2,不确定度分析列于表 3。

表 2 ²⁴⁴Cm 溶液比活度标定结果

 Table 2
 Activity of ²⁴⁴ Cm solution

源号	质量 /mg	$a(^{244}{ m Cm})/({ m Bq} \cdot { m g}^{-1})$
1 #	87.26	1 799.5
2 #	68.26	1 788.2
3 #	48.05	1 788.2
4 #	144.52	1 786.8
5 #	78.37	1 783.8
6 #	79.2	11 797.3
		(1 790.6)

注:括号内为平均值

表 3 ²⁴⁴Cm 溶液比活度的不确定度

Table 3 Uncertainty of the activity of ²⁴⁴Cm solution

不确定度分量	相对不确定度/%
A 类	0.35
B 类称重分量	0.1
B 类自吸收和反散射校正重分量	0.5
合成标准不确定度	0.62

样品中²⁴² Cm 含量低,向样品中加入的稀 释剂量又不能太强,为此,对²⁴⁴ Cm 稀释剂分两 次进行稀释(表 4)。

表 4 ²⁴⁴Cm 溶液的稀释

Table 4 Dilution of ²⁴⁴Cm solution

稀释	$a(母液)/(Bq \cdot g^{-1})$	a(稀释后)/(Bq・g ⁻¹)
第1次	1 791	87.20
第 2次	87.20	4.23

2.2 测量源制备

将²⁴⁴ Cm 稀释剂溶液加入样品中,并用 HNO₃ 溶液溶解样品,将溶液用 CL-P204M 萃 淋树脂柱纯化。解析液蒸干后,用 0.1 mol/L (NH₄)₂S₂O₈-0.1 mol/L HNO₃ 溶解,将 Am(Ⅲ)氧化到 Am(V),再经 CL-P204M 萃淋 树脂柱进行 Am、Cm 分离,解析得到纯 Cm 溶 液,以不锈钢片为底衬,用电沉积法制成测量 源。

2.3 样品中²⁴²Cm 含量的测定

用 ORTEC PLUS 半导体 α 谱仪测量 ²⁴²Cm和²⁴⁴Cm的 α 放射性比 $R_{2/4}(\alpha)$,探头面积 150 mm²,能量分辨率(FWHM)约为 20 keV。 样品中²⁴²Cm 含量低,经 72 h测量,²⁴²Cm 能峰 计数达到 10 450 个。测得的能谱如图 2 所示。 测量数据列于表 5,其中,²⁴²Am^m 含量已推算 到样品辐照时刻(1996 年 7 月 1 日)。

Fig. 2 Spectra of ²⁴²Cm and ²⁴⁴Cm

 Table 5
 ²⁴² Am^m content in measured sample

样品量/g	²⁴⁴ Cm 加入量/g	$R_{2/4}(\alpha)$	²⁴² Cm 比活度/ ²⁴² Am ^m (Bq•g ⁻¹) 含量/g ⁻¹
0.049 5	0.055 3	0.181 5	0.857 7 6.954 1×10^{9}

注:²⁴²Am^m 含量以原子个数计

样品中²⁴² Cm 含量的测量不确定度主要来 源包括²⁴⁴ Cm 稀释剂、半导体 α 谱仪测定 ²⁴² Cm/²⁴⁴ Cm比值的不确定度(表 6)。

表 6 样品中²⁴²Cm 含量的不确定度

Table 6 Uncertainty of ²⁴²Cm content

不确定度分量	相对不确定度/%
²⁴⁴ Cm 稀释剂	0.62
²⁴² Cm/ ²⁴⁴ Cm 比值	1.0
合成标准不确定度	1.2

²⁴² Am^m 的生成量由样品中²⁴² Cm 含量通过 衰变规律推算得到,半衰期、分支比等核参数的 不确定度可忽略。于是,²⁴² Am^m 生成量的不确 定度即为²⁴² Cm 含量的不确定度。

在辐照结束时刻,²⁴²Am^m 的生成量(以原 子个数计)为 $6.954 \ 1 \times 10^9 \ g^{-1}(1 \pm 1.2\%)$ 。

3 K_1 和 K_2 的计算

由两次分析结果得 $R_{m/g} = 0.1947(1 \pm 11.8\%)$ 。代入式(2)、(3),计算得到 $K_1 = 0.837(1\pm0.3\%), K_2 = 0.163(1\pm1.5\%)$ 。

4 结论

本工作研究建立了利用 α 能谱同位素稀释 法测量²⁴¹ Am $(n, \gamma)^{242}$ Am^{g,m} 反应的分支比 K_1 和 K_2 的方法。利用²⁴² Am^m 与²⁴² Am^g 半衰期的 大差异,分两次测量²⁴¹ Am 辐照样品中的²⁴² Cm 含量,分别推算²⁴² Am^g 与²⁴² Am^m 的生成量,从 而测得 K_1 和 K_2 。

分析样品在反应堆上辐照获得,测得的 K_1 和 K_2 值与该堆的中子能量有关。如采用不同 能量的单能中子源照射²⁴¹ Am,利用本工作提 供的方法进行样品分析,则可得到 K_1 和 K_2 随 中子能量的变化关系。

参考文献:

- HARBOUR R M, MACMURDO K W, Mc-CROSSON F J. Themal-neutron capture cross section and resonance integrals of americium-241
 [J]. Nucl Sci Eng, 1973, 50: 364-369.
- SHINOHARA Y. Radiochemical determination of neutrue capture cross section of ²⁴¹Am[J]. Nucl Sci Technol, 1997, 34:613.