Atomic Energy Science and Technology

Sep. 2000

测量环境中痕量放射性氙的能谱符合法

张圈世、阎春光、贾怀茂

(西北核技术研究所, 陕西 西安 710024)

摘要:研究了一种可同时测量环境大气中痕量放射性氙的新方法: - 能谱符合法。利用不同能量 窗域的 射线脉冲或内转换电子作为门控信号,和与之相应的 射线能谱或特征 X 射线能谱相符 合,可同时高灵敏度地测量环境大气中 133 Xe^{m} 和 135 Xe 等氙核的放射性活度。测量本底较常规方法降低了 $3 \sim 4$ 个量级。

关键词:环境监测:放射性氙: - 符合法

中图分类号:X837

文献标识码:A

文章编号:1000-6931(2000)S0-0027-03

对环境大气中放射性气体氙的监测,不仅需要测量痕量氙的放射性活度,更重要的是获得 氙的各放射性核素间的比率。目前,无论是用高能量分辨率的低能 谱仪,还是其它低水平测量系统,同时测量痕量放射性气体氙都是很困难的。为此,本工作研究可同时测量多种痕量氙的放射性核素的新方法:一能谱符合法。

1 方法原理

在环境大气放射性气体氙的监测中,感兴趣的核素是¹³¹ Xe^m、¹³³ Xe^m和¹³⁵ Xe,表 1列出了它们的有关核参数。通过 射线或内转换电子与 射线或 X 射线间的符合,有可能对这4 个核素同时进行测量,且使本底干扰大为降低,方法将具有高灵敏度和良好选择性。

表 1 4 个放射性氙的某些核参数

Table 1 Nuclear data of the interested radioxenons

		射线		X射线		射线 ¹⁾		内转换电子			
核素	$T_{1/2}$	能量/	发射几	能量/	发射几	能量/	发射几	能量/	发射几	235U	239Pu
		keV	率/ %	keV	率/ %	keV	率/ %	keV	率/ %	链产额 独立产额	链产额 独立产额
131 Xe $^{\mathrm{m}}$	11.93 d	163.9	1.96	30	54.05			129	60.7	0.035 1.7 x 10 ⁻⁶	0.043 4.1 ×10 - 6
¹³³ Xe	5.25 d	81.0	37.0	31	48.9	346	99.0	45	54	6.73 0.001 5	6.89 0.0017
133 Xe $^{\mathrm{m}}$	2.19 d	233.2	10.3	30	56.3			199	63.1	0.20 0.0047	0. 24 0. 044
¹³⁵ Xe	9.14 h	249.8	90.0	31	5.2	905	97.0	214	5.7	6.67 0.12	7.43 0.36

注:1) 射线能量为最大能量

2) 裂变谱中子诱发裂变产额

收稿日期:1999-12-11;修回日期:2000-03-05

作者简介:张圈世(1962 --),男,陕西武功人,副研究员,硕士,实验核物理专业

从表 1 所列数据可获得测量中的符合关系为:对 131 Xe $^{\rm m}$,30 keV 的 X 射线与 129 keV 的内转换电子符合;对 133 Xe $^{\rm m}$,81 keV 的 射线与 $E_{\rm max}=346$ keV 的 射线符合,31 keV 的 X 射线与 45 keV 的内转换电子及 $E_{\rm max}=346$ keV 的 射线符合;对 133 Xe $^{\rm m}$,30 keV 的 X 射线与 199 keV的内转换电子符合;对 135 Xe ,250 keV 的 射线与 $E_{\rm max}=905$ keV 的 射线符合。

图 1 为用内径约 1 cm、壁厚约 1 mm 的圆柱 形塑料闪烁探测器获得的上述 4 种放射性核素 的两维双能量关系图。

探测器对 射线能量分辨率不高,且 谱是连续谱,两维谱呈长吊形椭圆状。若采用对 射线能量分辨率较高的低温 Si 探测器和对 射线

能量分辨率高的 HPGe 探测器代替 NaI 探测器,分析灵敏度将大为提高。

由图 1 和表 1 可知:核素¹³¹ Xe^m 、¹³³ Xe^m 均有内转换电子与 30 ~ 31 keV 的 X 射线符合模式。这几个核素同时测量时,不可能区分单个核素对测得的 X 射线谱的贡献份额,但 ¹³¹ Xe 的贡献量可通过它发射的 81 keV 射线与 $E_{max}=346$ keV 的 射线符合获得。由表 1 所列产额数据可知:¹³¹ Xe^m 的产生量很小,产额明显低于¹³³ Xe^m ,这为分开¹³¹ Xe^m 和¹³³ Xe^m 提供了可能。

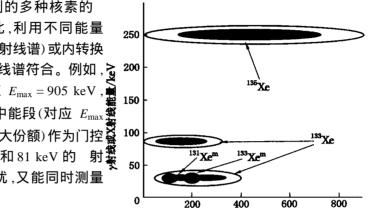


图 1 氙的 4 种放射性核素两维双能量关系图 Fig. 1 Two-dimensional energy-energy correlation for the interested radioxenons

β射线或内转换电子能量/keV

2 测量装置

测量装置示意图示于图 2。

在图 2 的测量系统中,或内转换电子 或 X 射线探测器是关键部分。 探测器应具有一定的能量特性,并可根据不同的应用目的来选择,道的放大器应具能量线性,甄别器可进行能量窗域选择。 射线在气体中的自吸收严重,探测器不宜太大。为提高测量效率,可采用多个 射线探测器和 2 个 5 英寸 Na I 探测器。

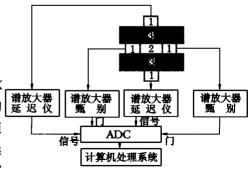


图 2 能谱符合法测量装置示意图

Fig. 2 Sketch of - energy coincidence method
1 — 光电倍增管/ 前放;2 — 密封式 探测器;
3 — HPGe 或 Na I 探测器

3 测量结果

图 3(a) 示出了用该方法实际测量某地空气样品获得的放射性氙的能谱图 ;图 3(b) 是环境空气样品的本底谱。由图可知 :采用 - 能谱符合后 ,本底降低了 $3 \sim 4$ 个量级 ,30 keV 的 X 射线和 133 Xe 发射的 81 keV 射线以及 135 Xe 发射的 250 keV 射线均能定量分析。 135 Xe 半衰期短 ,用常规法从未测到过环境大气中 135 Xe 的 250 keV 射线。在未符合的本底谱(图 3(b))中 ,基本上无法分析测量结果 ,而在符合谱中 ,则能对 30 keV X 射线和 133 Xe 发射的 81 keV 射线进行定量分析。

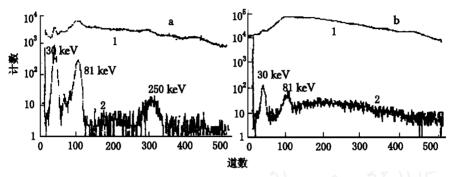


图 3 空气样品放射性氙的能谱(a)和本底谱(b)

Fig. 3 Spectra of xenon sample (a) and background (b) of ambient air

1 ——未符合谱;2 ——符合谱

4 结论

- 能谱符合法可同时测量环境大气中痕量放射性氙,本底较之常规 谱分析降低 3~4 个量级,最佳探测灵敏度可达 mBq/ m³量级,该方法必将在野外现场监测中发挥重要作用。

- Energy Coincidence Method for Radioxenon in Ambient Air

ZHANG Quan-shi, YAN Chun-guang, JIA Huai-mao

(Northwest Institute of Nuclear Technology, P. O. Box 69-17, Xi 'an 710024, China)

Abstract Based on the coincidence of the pulse or internal conversion electron in different energy window as a gate signal with their related -ray or characteristic X-ray, a new method are studied in order to determine simultaneously interested radioxenon in ambient air. The background count with this method is $3 \sim 4$ orders of magnitude lower than that with normal spectrometer method, and the optimal detection limit with a order of mBg/m³ can be reached.

Key words: environment monitoring; radioxenon; - coincidence