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ABSTRACT

At the northeast corner of Taiwan the direction of the continental slope isobaths changes rapidly relative to
the oncoming Kuroshio, so that the inertia of a small inshore fraction of this current causes it to cross the slope,
while the main branch follows the isobaths. It is suggested that the portion of the bifurcated current entering the
shelf displaces ambient water of relatively high potential vorticity as a countercurrent, which flows across the
slope. The vortex stretching and subsequent entrainment of this water into the main branch of the Kuroshio
increases its maximum cyclonic vorticity and helps to maintain the inshore shear of the western boundary current.
This idea is supported by simple initial value and steady-state models, and also by dye observations of the flow

from a source on the wall of a rotating tank.

1. Intreduction

The mean path of an inviscid barotropic boundary
current depends on its Rossby number and on the vari-
ation in bottom depth. When the latter is relatively
large, we know that a potential vorticity-conserving
current tends to follow curved isobaths, and when it is
small the current tends to flow in a straight path. When
the two factors are comparable, their competition can
result in the current splitting into two branches; one of
many examples is the Gulf Stream south of Newfound-
land (Warren 1969). More relevant to this study is the
Kuroshio at the northeast corner of Taiwan (Hsueh et
al. 1992), where the direction of the continental slope
isobaths changes rapidly relative to the oncoming west-
ern boundary current, so that an inshore portion of this
tends to flow across the continental slope and into the
East China Sea, where it eventually mixes. The main
(offshore) portion of the Kuroshio, however, follows
the curved continental slope northeastward.

This type of bifurcation will be studied theoretically
and experimentally, with special attention directed to
the entrainment of shelf/slope water in the main branch
that continues flowing along the continental slope. The
vortex stretching involved in this process may be im-
portant in generating and maintaining the inshore shear
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of western boundary currents (Stern 1991), as con-
trasted with a vorticity diffusion process acting at a (hy-
pothetical) no-slip vertical wall (e.g., Munk 1950).
The way in which the entrainment arises will first be
illustrated by considering an idealized (but dynami-
cally consistent) initial value problem (Fig. 1) in
which an inviscid semi-infinite half jet, containing only
anticyclonic relative vorticity, is incident on a shallow
shelf. As the blunt nose of the vorticity front bounding
the intrusion approaches the continental slope, it dis-
places a countercurrent in the exterior fluid. In the case
of a completely flat bottom (AH = 0) contour dynam-
ical calculations (Stern and Pratt 1985) show that as
this intrusion continues along the wall the nose pinches
off, tending to form an eddy with closed vorticity iso-
pleths; and behind this a new nose forms at the leading
edge of the wall current. For sufficiently small finite
AH and Coriolis parameter f, a kinematically similar
behavior is expected, modified by a small increase in
the anticyclonic vorticity as the current enters the shelf,
and by an increase in the near wall velocity. But for
larger (f, AH) a different and topographically con-
trolled regime is expected, in which only a fraction G
of the upstream transport (7,) enters the shelf, while
the remainder (1 — G) flows along the slope isobaths.
Since the resulting full jet must contain cyclonic vor-
ticity and since none of this exists upstream, it some-
how must be generated by the displacement of high
potential vorticity (f/H) shelf water into the deeper
region and subsequent merger of this water with that
portion of the upstream anticyclonic wall current that
bifurcates before the shelf. The same conclusion holds
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Fic. 1. Hlustration of the bifurcation—entrainment mechanism for a barotropic (western) wall
current in deep water (H + AH) that flows toward a shallow continental slope. (a) The upstream
anticyclonic half jet is bounded by a potential vorticity interface, the nose of which is initially far
from the slope isobaths (dashed lines). The potential vorticity isolines, initially coincident with the
isobaths, are deflected by the approaching nose, as indicated by one of these isolines (the solid
curve on the slope). (b) The current flowing along the wall increases its anticyclonic vorticity (as
indicated by ‘“—"") and increases in speed as it ascends the slope. The compensating offshore
displacements generate cyclonic (+) vorticity, which induces a velocity (v.) on the shear flow
interface. (c) A portion of this current can be drawn away from the wall to merge with the entrained
‘4" fluid to form a free jet, provided AH and f are sufficiently large (see text).

even if there is a transverse continental slope in the
upstream region of the laminar wall current, and thus
we see that entrainment is a kinematical necessity if
any portion of the half-jet flows along the slope. Note
that this entrainment need not occur for all (f, AH),
since another steady solution might exist in which the
entire current adheres to the wall for all y and merely
increases its anticyclonic vorticity as it crosses the
slope. Such a state is probably unrealizable for large
(f, AH) if the downstream basin is semienclosed (cf.
Fig. 3) with the sink located in the upstream basin.

A more insightful dynamical explanation of the bi-
furcation can be obtained by considering the initial
state (Fig. 1) in which the potential vorticity iso-
pleths on the slope are assumed coincident with the
isobaths. The deflection of one of the isopleths at a
slightly later time (Fig. 1a) is indicated by the solid
curve, the inshore portion of which is deflected into
the shallow region by the advancing nose, thereby
generating anticyclonic (negative) relative vorticity.
The opposite deflection of the outer portion of the
isopleth generates cyclonic (positive) vorticity,
which induces an alongslope velocity v, on the up-
stream vorticity front (Fig. 1b). Depending on fand
H, this velocity may be sufficiently large to detach
the outer part of the upstream wall current, thereby
causing its anticyclonic vorticity to merge with the
cyclonic vorticity of the entrained shelf water. The
result is a free jet on the slope, containing equal
amounts of both vorticities, and flowing away from
the wall (Fig. 1c). This mechanistic argument sup-

plements the aforementioned kinematic constraint
and leads us to expect that bifurcation with entrain-
ment can occur for a more general upstream jet U(£)
having cyclonic inshore vorticity. In this case (Fig.
2) the displaced shelf water can increase the maxi-
mum cyclonic vorticity on the inshore side of the free
jet that follows the continental isobaths, thereby
helping to maintain the inshore shear against dissi-
pative influences farther downstream.

These dynamical assertions are testable in the con-
text of an initial value calculation (as subsequently dis-
cussed ) for an inviscid and piecewise uniform potential
vorticity model. Separation from a boundary can occur
in such models without allowing velocity discontinui-
ties (vortex sheets), provided the requisite amounts of
vorticity are available, as can be seen in the contour
dynamical calculation (Stern and Whitehead 1990) of
the two-dimensional flow of a jet around a curved wall.
But it is important to realize that the separation in that
case, as well as the classical (viscous) separation from
a nonrotating curved wall, is different from that in Figs.
1, 2, 3. In the former case the entire boundary layer is
removed from the wall as a result of adverse pressure
gradients, flow deceleration, and velocity reversal; in
the topographic problem, on the other hand, the invis-
cid effect accelerates the near-wall velocity (as previ-
ously mentioned), and therefore a finite portion of the
inshore jet (Fig. 2) remains on the wall, while the rest
separates by flowing along the slope topography. The
required vorticity comes from vortex stretching rather
than viscosity.
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FI1G. 2. A more realistic upstream boundary current U(£) with transport T, flows toward a slope
whose depth h(y) increases in the region from y = 0 to y = —W,. This slope width is assumed
sufficiently narrow so that the bifurcated current (7)) lies entirely in deep water. The cross-slope flow
(T},) is assumed to displace an equal volume (T,) of initially resting shelf water as a countercurrent
across the slope, where it merges with 7, to form a free jet with velocity u(y) farther downstream.
The separating streamline originates at £ = £, and is at y = —y, in the free jet. Neither the eastern
wall of the semienclosed shelf nor the sink (in deep water) is shown (but see Fig. 3).

The previous initial value arguments do not indicate
how a steady narrow countercurrent can be maintained
after the nose of the intruding wall current extends far
downstream from the slope. Of course, if the down-
stream basin (Figs. 2, 3) is enclosed on three sides,
then the portion (7,,) of U(&) that crosses the slope on
the wall must at all times produce an equal and opposite
cross-slope flow, which exits the upstream basin at
some sink (not shown in Fig. 2). But it is not obvious
that this counterflow occurs in the vicinity of the bi-
furcation point (Fig. 2) as a strong narrow current,
rather than as a broad weak flow occuring over the
entire span of the slope region. This important®quali-
tative assumption will be addressed (section 5) by a
laboratory experiment.

In the steady-state theory of section 2 this assump-
tion is made, in addition to the assumption that laminar
slope jet u(y) results from the merger of the counter-
current with the bifurcated branch ( T,) of the upstream

current (Fig. 2). The two end states can be related by
mass and potential vorticity conservation to determine
u(y) as a functional of U(¢), without the need to con-
sider the detailed dynamics of the intervening region
where the separation occurs.

Support for the validity and realizability of the main
assumption concerning the countercurrent is obtained
from a qualitative laboratory experiment (section 5)
similar to the one by Spitz and Nof (1990), except that
their slope topography consisted of a discontinuous
step, while we use a ‘‘narrow’’ slope that is sufficiently
wide to justify shallow-water theory, to eliminate free
viscous shear layers, and to conserve potential vor-
ticity.

It is convenient to refer to the geometry of the system
in Figs. 1 and 2 as ‘‘western boundary step-up,’” since
the fluid is assumed to be rotating in the Northern
Hemisphere (counterclockwise) sense, and since the
bottom elevation increases in the direction of the
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boundary current. The dynamical significance of this
geometry lies in the fact that the topographic signal
wave generated by a current impinging on the slope is
directed (westward) opposite to u(y). While these
waves are not explicit in our steady theory, we believe
they may play an important role in obtaining such a
state from an initial value problem. [See Johnson’s
(1985) linear theory for the influence of the topo-
graphic Rossby wave direction on the flow from a
source to a sink.] The lab experiment requires that the
source for producing a wall current be placed on the
eastern boundary, and therefore a ‘‘step down’’ slope
was used to prevent the topographic waves propagating
ahead of the (westward flowing) slope current. The
theory for this geometry (section 2b) is basically sim-
ilar to the western boundary case.

The theory of section 2 applies to a continental slope
that is sufficiently narrow so that it is entirely crossed
by some of the entrained fluid, and the oceanographi-
cally interesting case of a ‘‘wide’’ slope is discussed
in section 3. Section 4 shows how our theory can be
extended to the simplest baroclinic problem, namely a
““11/p-layer’’ density model.

The reader is referred to a review by lerly (1990)
for more general aspects of oceanic boundary currents,
their separation, and numerical computation; additional
laboratory experiments appear in Klinger (1993).

2. Narrow slope solutions
a. Western boundary step-up

The depth h(y) of the slope in Fig. 2 equals H at y
= 0 and increases to H + AH aty = —W,.. The latter
is taken to be sufficiently small so that the separating
streamline located at £ = £ in the upstream flow
[U(£)]1s located at y = —y, < —W,, in the slope jet
flow u(y). As previously mentioned, we assume that
the fraction G = T,/T, of the upstream transport that
crosses the slope displaces an equal amount (7, = T,)
of (initially) resting shelf water back across the slope.
In the steady laminar region, assumed farther down-
stream, this displaced water has the uniform potential
vorticity (f — u,)/h(y) = f/H. On the other side (y
=< —Y,) of the separating streamline, potential vorticity
and mass conservation in this region of uniform depth
are satisfied by making u(y) in y << —y, congruent to
U(§) in £ > &,. Thus, corresponding velocities are
equal, and the transports are equal, or

—Yo T b
L u(y)dy = 10 = L Ue)de, (2.1)

u(—yo) = U(&). (2.2)
If h(y) is a piecewise linear function of y, that is,
(2.3a)
(2.3b)

h(y)=H—-sy 0=y=-W,,
s =AH/Wy, = eHIW,, €¢= AH/H,
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then the vorticity equation in 0 > y > —y, becomes

—fsy/H,
—u, =
i’ fe ~Wez=y=—Yyo,

O=y=—-W,

and since u(0) = O the solution is
fsy*I2H,
u(y) =

u(—Wy) — fe(y + W), =Wy = yo = —y,.
(2.4b)
From the first of these equations and (2.3b) we obtain
u(—Wy) = feW, /2, (2.5a)

and the second equation in (2.4b) then becomes
u(—yo) = ¢f (yo — Wy/2), (2.5b)
_ u(—yo) 4 W, _ u(—yo) + u(—Wy)
= T 2 of '

Another equation connecting the unknowns y, and
u(—y,) comes from the following consideration of the
transport balance. When the entrained transport,

(2.5¢)

f° €y
T.==— | dyH[1-=
2, Wy

H+ AH

+ — 5 [u(=Wg) + u(—=y0)1(yo — Wy),

is simplified using (2.5a,c), the result is

_feHW 3 (4
T(_~__—8‘ 3+€

H+ AH
T W) ~ W),
_H+AH , (H + AH)ef W3
L= WOt i+ (2.6)

The total transport T, = f: déU(€) is then obtained by
adding (2.6) to T, (2.1), and by using (2.2) we obtain
the final result

Uz(gx) ffW i _ s
2 THmaro - f Ue)de.  (27)

For any given U(¢) this can be solved for £, and G
can then be obtained as the ratio of (2.7) to T.

This narrow slope solution is only valid if yo > Wy,
where the value of y, obtained from (2.2), (2.5¢) is

U
_UE) W

ef 2

and therefore the validity condition becomes

Wi UK
2 < e

Yo

(2.8)
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FiG. 3. The eastern boundary current [U(£)] version of Fig. 2 in
which the current flows from a source on the shallow shelf into a
deep downstream basin. As in the laboratory experiment, the sink is
on Ehe western wall of the shallow basin.

This is also not satisfied in the interesting case of a
shallow shelf; that is, H — 0, or ¢ = AH/H — o, which
will be discussed in the ‘‘wide’’ slope solution of sec-
tion 3. When (2.8) is satisfied, the second term in (2.7)
is an insignificant fraction (1/12) of the first term. A
- sketch of (2.7) for U(Q) = 0 indicates one solution
(&) if U'(0)/f > ¢, and otherwise there may be two
(or no) solutions depending on the detailed U(£).

b. Eastern boundary step-down

Although no new ideas appear in this geometry (Fig.
3), it is relevant to the experiment in section 5 and to
the comparison with the theory of Spitz and Nof
(1990), which did not take entrainment into account. -

The following notation is the same as in subsection
2a, except that it is now convenient to denote the up-
stream depth by H — AH < H, where H is the down-
stream depth, and

AH
0<e=2"D2 <.
“TH

The difference in the range of € here and in section 2a
is indicative of the significant dissimilarity between
step-up and step-down topography. Our notational
change makes the line by line derivation for the sepa-
rating streamline (£, < O, in Fig. 3) almost identical

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 25

(except for some sign changes) with section 2a, so that
repetition is unnecessary, and the final result is

U*(&) fWi [°
2f T 2d(1-e) L dgu(€), (£ <0) (29)
o) We UE)  We
Yo = 7 T2 g to oW (2.10)
W UK
2 ST (2.102)

A graphical sketch of the solution of (2.9) for £, in Fig.
4a indicates that a bifurcated solution exists for all
Uit Wil — &) 'ef/24 < T,.

A more explicit result will be obtained for a trian-
gular shaped U(&) (Fig. 4b) whose inner width a is
tentatively assumed to be smaller than the distance ||
of the separating streamline from the wall. It is con-
venient to use x = W, + £ as a new coordinate, where
W, is the total width of U(x). Then U(0) = U(W,)
=0,and U(x) = {xin 0 < x < W, — a, where { is
the uniform vorticity in the cyclonic part of the up-
stream jet. Then (2.9) can be rewritten as

U2 Wo
V) = | v, @1
2¢f %
where
2 fWi
- . 2.12
Y S -9 (2.12)
a)
A
@ @ . U7(§) +stW2
® 2 24(1-€)

0
®@: [ave

1 &

Y

Es &0
b)
AU
1
o@/p :
p 1
|
| 1 ? >
x=0 ‘ Xq x=W,
E.F'wo §=()

FiG. 4. (a) Sketch of the solution (2.9) for the separating streamline
position &,. (b) The triangular velocity profile used to compute G
= T,/T, in (2.15). The separating streamline is assumed (and subse-
quently verified)tobe at £ = —x, < —a < 0.
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Since U(x,) = {x,, and since we assumed

a<W,— x, (2.13)
then the value of the integral in (2.11) is
1
> Wal§(Wo — @)1 = 5 x[Lx1.
Therefore, the solution of (2.11) is
2w f1G AN
2= Wo(W, — l-——H1+=] .
x = Wolo “)[ Wo(Wo — a)]( ef)
(2.14)

For sufficiently small Wy, (or w)x? > 0, and for suffi-
ciently small a/W,, the value of x, is independent of a
and still finite, so that (2.13) is satisfied; this verifies
that the inner part of the upstream boundary current
does not separate but continues into the downstream
basin.
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From (2.14)and G =1 — (T, - T,)/To =1 — T,/
T, we obtain

7%, (Ex,)
G=l-——7"F—"—"—,
sWolC(Wo — a)]
_ 2w3ef? .
G = [1 + ————_Wo(Wo = a)Cz](l +¢f /07" (2.15)
1
G= m/—c‘ . (2.16)

The lower bound in (2.16) occurs when Wy, or (2.12),
is sufficiently small so that the term containing w? in
(2.15) is negligible compared to unity, and this bound
shows the expected decrease in cross-slope transport as
the Rossby number ({/f) decreases and as ¢ increases.
In general, however, G is expected to vary in a more
complicated way, depending on the shape of U(§).
The maximum e¢ = 1 occurs for fixed H — AH when
H — o and AH — «. These values anda = 0, Wy, = 0
pertain to the simple half-jet model of Spitz and Nof

[ L [//////////////////A/////////////////////M\/

shelf depth = H

]

1 >

\\\\\\\\\S5&\\\\\\\\\\\\\\IX\\\\\\XX\\\\\\\\\\\\\\\\

[, '

depth =H + AH

FiG. 5. The wide slope model in which the entrained transport T, lies entirely on the slope.
The calculation (section 3) is for an upstream current with uniform relative vorticity.
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(1990); they also assume that no part of their upstream
current crosses the escarpment (G = 0) and that the
velocity discontinuity [in u(y)] exists there. In our Eq.
(2.12), e = 1 with W, — 0 gives a singular limit, but
there is a parametric range W % < O(1 — ¢), where w
is finite, and consequently G > 0 in (2.15). Although
the wall velocities must be vanishingly small in the
deep (H — =) downstream basin, we conclude that the
volume transport is finite, and this produces a finite
counterflow across the escarpment, where it is en-
trained.

3. Wide continental shelf, western boundary step-up

The solution (2.7) is inapplicable when (2.8) is not
satisfied, and this may occur either when W, becomes
large, or when the shelf depth (H) becomes small. In
that case the amount of entrained water is so small that
no part of it is able to cross the entire slope, and all of
it is confined to a region near the top, as sketched in
Fig. 5. We shall show that the small volume of en-
trained shelf water forms an ‘‘inertial boundary layer’’
whose large cyclonic vorticity enables the velocity to
vanish on the inshore side of the continental slope;
herein lies the oceanographic interest in this case.

For simplicity the following analysis is again re-
stricted to an upstream half jet U(£) = {(W, — &) with
uniform anticyclonic vorticity £ in 0 < £ < W,. The
slope width W, is now assumed to be sufficiently large
so that not only the separating streamline (y = —y,
> —W,) but also the entire bifurcating branch (—y,
>y > —W) lies entirely on the slope (Fig. 5). This
branch is therefore no longer congruent to U(), be-
cause of the topographic modification of its vorticity.
The slope depth A(y) is again taken to be linear in y
< Q; that is, '

h(y) = H + Ah(y), Ah(y) = —sy,
AH AH
e pu— f— 1
Tw, " w G-D

so that the relative vorticity of the entrained fluid in O
>y > —y,is — fsy/H and the velocity is again given
by
_ 5
u(y) = ol
In the region y < —y, of uniform potential vorticity (f
— {)/(H + AH), the relative vorticity is

A
—@=E—h(~y—)(f——€)—f.

Since no velocity discontinuity is permitted in our
piecewise uniform potential vorticity model, u(—W)
= 0 is the boundary condition, and (3.3a) yields

(3.2)

(3.3a)

_ fAH + CH s(f = D& = W?)
v =g ian VYWt TS m i an
~ (3.3b)
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The equality of (3.3b) and (3.2) aty = —y, gives one
equation

fsy3  (fAH + (H)

2H - Hinm W

S0 e
2a oW

for the two unknowns (y,, W), and when this equation
is simplified using the nondimensional quantities,

n=y/W, «k=2H/sW, (3.4a)
R=C/f, e=AH/H, (3.4b)
we obtain
2n = -k + [K*+4(k = (1 = R)(e + R)H)]'".
: (3.5)

A second equation relating the two unknowns comes
from the transport relation 7y = T, + T,, where

- [ w@-smer  ce
T, 1(™, . [fAH+UH
7 —ff_w dy(H sy)[———H+AH v+ W)
S = DG = W)
2(H + AH) ] - GB7D

When these integrals are computed and nondimension-
alized, the transport relation becomes

L7, )

f o2 \3 7
2 2 377
L RAWT (24 22
1+e k) 2 3k |
s -RW' T z? Z_’_Z_4 "
2(1 +€) 2 3 k|’
(3.8)
where it is understood here that the bracketed quantity
evaluated at Z = — 7 is to be subtracted from its value

at Z = —1. Equations (3.5), (3.8) determine 7, k (or
Yo, W), and G = Tb/TO = TC/T().

Rather than give a complete discussion of the result,
attention is directed to the interesting H — O limit, with
fixed W, s, and R. Then (3.4a,b) give k > 0, € = ©,
and the limit of (4.5)is = [k — (1 — R)/e]"* or

Yo_ o _(2H\"/(, _(A-RW
wo T \sw 2W,

Since W < W, (Fig. 5), it follows that y, = O(H''?)
— 0, and h(—y,) — H = O(H"?). Since this is still
much larger than #(0) = H, it follows that a very large
(fH™""?) cyclonic shear exists within the small interval

172
) -0. (39)
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FiG. 6. Bifurcation and entrainment in the upper layer of a two-layer fluid in which the dense
bottom layer is deep and resting. The calculations (section 4) are for a ‘‘very narrow’’ slope width,
here shown as a discontinuity at y = 0. (a) Top view of current profiles. (b) Vertical section
upstream showing the upper-layer fluid of density p. (c) Vertical section of bifurcated jet looking

upstream.

0 > y > —y,. With the exception of this novel kind of
inertial boundary layer, the flow along the northern
boundary is the same as would occur if 2(0) = 0 (i.e.,
no shelf). It is the small amount of entrained fluid,
however, that brings the inshore velocity [#(y)] to zero
on the shelf of finite depth. It would be interesting to
see the influence of this shelf on a simple barotropic
model of a global ocean circulation model.

If the value of W computed above is not less than
W, a third case arises in which part of the bifurcated
current lies in the deep basin (H + AH), and part lies
on the slope. The former has vorticity —, the latter
has vorticity (3.3a), and Eq. (3.2) is still the velocity
in the entrained cyclonic layer 0 > y > —y,. The three
layers must be joined by equating velocities at their
edges, and it seems reasonably clear that when H — 0
a cyclonic inertial boundary layer will still appear.

4. Baroclinic bifurcation

To illustrate the generalizability of the entrainment
effect to baroclinic boundary currents we shall briefly
consider the simplest case of a 11/2-layer model (Fig.
6). In addition, the width of the continental slope at y

= 0 is assumed to be very narrow (cf. W, — 0 in
section 2), and the shelf depth H is assumed to be
less than the minimum upstream thickness (7,) of the
upper layer, which has density p and velocity U(&).
The underlying water of density p + Ap is assumed
to be at rest, so that the upstream geostrophic balance
requires U(€) = (g*/f)0n/d¢, where g* = gAplp
and 7(&) is the layer thickness. A fraction G = T,/
T, of the light fluid continues along the wall and into
the shelf, where it displaces an equal volume (7,
= T,) of initially resting shelf water as a countercur-
rent across y = 0. The high potential vorticity col-
umns stretch and merge at y = —y, with the bifur-
cated current (7,) to form a steady laminar jet u(y)
= —g*/fOh/0y, with u = 0 fory = 0.

If £ = &, denotes the upstream position of the sep-
arating streamline passing through y = —y,, then
mass and potential vorticity conservation are satis-
fiedif n(£) in € > &, is congruent to A(y)iny < —yy,
and therefore

(&) = h(=y), U(&) =u(=y). (4.1)

Since only finite vorticity can be generated in Fig. 6,
the geostrophic velocity u = —(g*)(f)0h/3dy is con-
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tinuous across y = 0, and since u = 0 for y > 0, we
_obtain

Oh(0-)

=0, (4.2
By )
as one boundary condition. The second one
h(0) = no (4.3)

follows from the equality of the total upstream geo-
strophic transport g*/2 f( H} — n3) and the total trans-
port g*/2f [H3 — h*(0)] of u(y).

In the region 0 = y = —y, of uniform potential vor-
ticity [(f — du/dy)/h(y) = f/H], we have

&g 5

dy*  g*H  g*’ @4
and the solution satisfying (4.2), (4.3) is
h(y) = H + (—H + np) cosh(y/\), (4.5a)
u(y) = - )_’X( -H + 170) sinh(y/\), (4.5b)
= (g*H/f*)"2. (4.5¢)
The matching conditions (4.1) then yield
(&) =H+ (—H + mo)a, (4.6a)
U = fk( H + no)(a® - 1)”2 (4.6b)
where
a = cosh(ye/\). (4.6¢)
Elimination of a gives a single equation,
'g*(—H+no)]2[<n(£s)—H>2 ]
U*(&) = -11,
(&) [ X o — H
(4.7a)

for &, in terms of the given upstream state U(&) = g*/
fdn/d¢g. The fraction (G = T./T),) of the total transport
flowing on the shelf can then be computed from

(&) — b
T

G =
H3 -

(4.7v)

For further discussion we consider an upstream flow
with uniform potential vorticity f/H,, in which case

&) = Hy = (Hy —mo)e™™,  (48a)
v = -g(—(*%(ﬁ e ¢, (4.8b)
UGE) = g—g—;—f&u . (480)
Ay = (g—;f—z)m (4.8d)
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Instead of solving (4.7) for £, it is simpler to use (4.8c)
to eliminate U(&,) and to use (4.6a) to eliminate n(&,).
The resulting equation for a or for the separating
streamline (i.e., yg) is

2 (~H+ @ - 1)

=[{H,— H—a(—H +ny)1>. (4.9)

As in the barotropic problem, the solution for the
shallow shelf (H/n, < 1) is of particular interest and,
when H— 0, Eq. (5.9) requires a — 1. When the power
series

- O(HIne)*  (4.10)

is substituted ‘into (4.9), the leading terms in the ex-
pansion give

a=1+a(H/n) + -

1 H2 T]())
a=-|—+—] -1 4.11
2 ( m T, (4.11)
By substituting this and
2 2
a—1=-cosh(y,/\) — 1 =2yg—0£g
into (4.10), we get the asymptotic solution
Yo H -
(g*nolfz)l/z = — (H, — no) (Hamo) 12
' “+O(HIne)* (4.12)

for the small thickness y, = O(H) of the cyclonic in-
ertial boundary layer. Inside this layer Eq. (4.5b) gives
Ou _ g*no _
S

This demonstrates the large shear that can be generated
on the inshore side of the free jet.

e, (4.13)

5. Laboratory experiment on eastern boundary
step-down

The source—sink laboratory experiment (Figs. 7a, 8)
used to test the qualitative entrainment assumption con-
sisted of an ‘‘inner’’ tank (53 X 53 cm) containing a
Plexiglass shelf (16.5 cm wide) and a slope (17 cm
wide), tape-hinged together so that different AH val-
ues could be easily obtained. A spillway on the western
side of the shallow shelf served as a distributed sink for
the overflow into an ‘‘outer’’ tank, and this provided a
constant free-surface height (H = 20 cm) for the work-
ing fluid. Without this sink the slowly rising water level
produced unwanted large-scale gyres on the shelf and
in deep water, but with the sink the net flux of water
across the shelf and into the deep semienclosed basin
in Fig. 8 vanishes at all times. The eastern boundary
current emerged from a 3.5-cm wide sandstone and
glass block (originally designed as an air diffuser for
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FIG. 7. (a) Schematic diagram of the experiment for the runs in Table 1, showing the dyed (stipled) fluid emerging from a source on the
“‘eastern’’ wall of an inner tank. A free overflow (distributed sink) occurs on the wall of this, which is located at the western boundary shelf.
(b) Hand-drawn tracings from the video screen of a thymol blue line emitted from a wire electrode placed along and above the top of the
slope in run 56 with € = 0.52, f = 1.5 s™'; the times are 20 s, 40 s, 1 min, 1 min 20 s after the source flow was initiated. The dye lines reveal
the entrance of the wall jet into deep water and the adjacent countercurrent of deep water flowing onto the shelf; westward of this the dye
line remains undeflected. The question marks and dashed lines indicate diffuse and hard to locate portions of the dye. (c) Same as (b) except
for f = 2.5 s™' (run 57). The tank geometry in Figs. 5b,c differs from the main runs (Table 1, Fig. 8) insofar as the sink occurs along the
entire western wall. (d) The flooding fraction F, (5.1) obtained from Table 1 is plotted for six different rotation rates as a function of e.

fish tanks), which was covered with metal tapes on
three sides in order to force the current out on the side
facing the slope. A continuous closed circuit flow of
distilled water from the sink (outer tank) to the source
was maintained by a peristaltic pump (an ordinary
pump introduced temperature variations sufficient to
produce nonbarotropic flow). The thymol blue tech-
nique was used to dye the flow emerging from the
source (Fig. 8) and also to produce thin dye lines (Figs.

7b,c) from wire electrodes strung across various parts
and depths of the tank. This dye marking procedure
enabled us to verify the barotropic structure and to de-
termine how entrainment into the bifurcated jet oc-
curred. The entire apparatus was covered with Plexi-
glas and photographed from above by a zoom lens cam-
era whose video tapes could be subsequently analyzed.

Although the source discharge was kept constant, the
jet on the shelf contained strong two-dimensional dis-
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turbances (obscured in Fig. 8 because of the dye);
these are similar to the eddies in the flat-bottom exper-
iment of Stern and Whitehead (1990), but they inten-
sify on crossing the slope. Thirty seconds after starting
the pump (the first frame in Fig. 8), the leading edge
of the wall current has just passed the slope and entered
the deep basin; the developing bifurcation can be seen
in the countercurrent emerging from the shelf break.
The next frame shows more clearly the dyed part of the
bifurcating free jet inclined at a small angle relative to
the shelf break. Meanwhile, the nose of the wall current
propagates into the deep basin with decreasing speed,
and in some runs it appears to stagnate before reaching
the ‘‘north’’ wall, suggesting that dissipative effects are
important in this region (see the conclusions).

Dye lines (such as those traced in Figs. 7b,c) emitted
from the wire electrodes confirmed the foregoing pic-
ture by revealing both the wall current and the adjacent
countercurrent. The latter clearly emerges from the
deeper regions, crosses the slope, and enters the shelf,
where it merges with the bifurcated current (see Fig.
8). This strong countercurrent is one of two possible
ways in which the mass budget of the semienclosed
deep basin can be satisfied, the other way being by a
broad and weak current extending over the entire slope;
but there was no indication of the latter in careful visual
observations of the dye line patterns. One reason seems
to be that the large AH precludes a weak flow across
the isobaths. On the other hand, the narrow counterflow
might be continually generated at the base of the slope
by the potential vorticity front at the leading edge of
successive eddies embedded in the wall current; each
one of these might produce a displacement similar to
the ‘‘nose’’ in Fig. 3. The curves in Figs. 7b,c are trac-
ings of the dye lines on the video screen recorded in
earlier runs than in Table 1, where the conditions were
similar, except that the wall was of uniform height
along the entire western boundary, so that a possible
sink existed in the deep basin as well as in the shallow
-one (Table 1). But the qualitative nature of the thymol
blue lines was the same in all of our runs.

Although the experiment was not designed to obtain
quantitative velocities, a qualitative measure of the rel-
ative flux of fluid across the slope was obtained as fol-
lows. The visible areas and the volumes Qg.,(?),
Qaner(?) of the dyed fluid in each basin (Fig. 8) were
measured from planimetered traces of the continuous
videotape. Volumes obtained every minute for a min-
imum of 3 min (which was approximately the time for
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the eastern boundary current to reach the north wall)
were fitted by regression lines, which determined a
“flooding fraction’’:

F, = Qdecp
e Qdcep + Qshclf ’

where the dot indicates a time derivative. These Q dif-
fer substantially from the volume fluxes (7') because
eddy diffusion in each branch increases the visible dye
volume. (At the end of one complete run the total vis-
ible volume of dye was four times the total volume
flux!) Nevertheless, the diffusion rate should have
some correlation with the volume flux rate, and the val-
ues of (5.1) in Table 1 provide a qualitative measure
of the bifurcation. Although a detailed comparison of
F, with (2.15) is unwarranted, the bound (2.16) is
listed in the last column of Table 1 and is seen to be
systematically lower than F,. The plot of all F,, (Fig.
7d) reflects the expected decrease of cross-slope trans-
port with increasing topography (¢). In all of the runs
(Table 1) the source flow rate (T,), the distance (15
cm) of the source from the shelf break, and the free-
surface height (H = 20 cm) were held constant; the
only variable parameters were f, ¢, H — AH, and the
horizontal extent W,, of the slope. The ‘‘maximum’’ jet
velocity U, was determined from the average propa-
gation of the dyed nose (Fig. 8) on the shelf, and a
nominal width W, was determined from U,, H — AH,
and T, for an assumed parabolic velocity profile, rather
than from the highly variable dye widths. Perhaps the
most significant quantitative conclusion from Table 1
occurs for the group of four points (e = 0.15) for which
F, = 1 and for which it is certain that all of the wall
current enters the deep basin. These points correspond
to the smallest ¢ in the group, which supports the earlier
suggestion of nonunique statistically steady states and
the existence of threshold values of (e, f) below which
the realized current remains entirely on the wall, that
is, no bifurcation occurs.

We also note that the entire bifurcated jet in Fig. 8
drifts onto the shelf, where the depth is uniform,
whereas in the theory (Fig. 3) part of the jet lies on the
topographic slope. Although the theory could be made
to conform with this observation by setting u(—Wy)
= 0in Fig. 3 and re-solving, such an ad hoc adjustment
seems unwarranted because other physical effects, such
as Ekman friction, are probably responsible for the
downstream evolution of the jet on the shelf in Fig. 8.

(5.1)

FiG. 8. The thymol blue dyed current emerging from a source on the shelf of the eastern boundary and flowing toward a slope (indicated
by the two arrowhead markings on the first frame). Run 72, ¢ = 0.42, f = 2.057"; see Table 1. The first frame (top, left) is at ¢ = 30 s after
initiating the flow; the next two are at 60 and 120 s, respectively, and the frame on the bottom right is at ¢+ = 180 s. The bifurcating jet
contains water originating in the deep basin (as well as directly from the source) as is verified by the dye line tracings (Figs. 7b,c). The
boundary current on the wall contains two-dimensional disturbances that are masked by the dye, but are revealed by other techniques (not

shown here).



3130

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 25

TasLE 1. Experimental conditions for runs in which the sink was confined to the western wall of the shelf. The symbol F,, is the volume
fraction of the dye (Fig. 8) that occupies the deep basin after flowing across the slope (see text). The last column is the estimated lower

bound (2.16) for G.

W* Wo
Shelf Slope Flow Current

Run height width rate Uo width AN
no (cm) (cm) € f ) (ml s)™! Fy (cm s)™! (cm) 2U,
64 5.8 20 0.28 25 5.7 0.74 0.50 25 36
65 5.8 20 0.28 3.0 57 0.62 0.36 2.5 26
66 58 20 0.28 35 5.7 0.70 0.33 25 21
67 5.8 2.0 0.28 20 57 0.68 0.36 1.5 46
68 5.8 2.0 0.28 1.5 5.7 0.73 043 1.5 58
69 5.8 2.0 0.28 1.0 5.7 0.80 0.40 2.0 59
70 8.6 35 0.42 1.0 5.7 0.80 0.68 1.5 68
71 8.6 35 042 1.5 5.7 0.66 0.72 1.5 60
72 8.6 35 0.42 2.0 5.7 0.64 0.72 1.5 53
73 8.6 35 042 25 5.7 0.69 0.56 1.7 39
74 8.6 35 0.42 3.0 5.7 0.56 0.68 20 35
75 8.6 35 0.42 3.5 5.7 041 0.61 1.5 36
76 10.6 4.0 0.52 1.0 5.7 0.55 0.61 4.0 38
77 10.6 4.0 0.52 1.5 5.7 0.80 0.72 20 48
78 10.6 4.0 0.52 20 5.7 0.45 0.72 20 41
79 10.6 4.0 0.52 25 5.7 0.56 0.72 2.0 36
80 10.6 4.0 0.52 3.0 5.7 0.44 0.76 20 33
81 10.6 4.0 0.52 35 5.7 0.39 0.65 25 22
82 3.1 0.8 0.15 1.0 57 1.00 0.29 2.0 66
83 3.1 0.8 0.15 1.5 5.7 1.00 0.29 1.5 63
84 3.1 0.8 0.15 20 5.7 1.00 0.27 1.5 55
85 3.1 0.8 0.15 2.5 5.7 1.00 0.27 1.5 49
86 3.1 0.8 0.15 30 5.7 0.74 0.26 1.5 44
87 3.1 0.8 0.15 35 5.7 0.70 0.27 13 44
88 3.1 0.8 0.15 4.0 57 0.65 0.24 1.5 .35

The main purpose of the experiment has been served
by merely confirming the kinematical picture of the
bifurcation and entrainment.

6. Conclusions

The bifurcation process discussed herein is one way
in which a western boundary current can generate large
inshore shear by entraining high potential vorticity wa-
ter on the continental slope or shelf. This idea is sup-
ported by a qualitative laboratory experiment and by a
steady-state barotropic model whose topographic vari-
ation is sufficient to ensure that at least some of the
upstream current follows the slope isobaths. These
studies show that the inshore flow that enters the down-
stream basin displaces a narrow countercurrent across
the isobaths, where it merges with the bifurcated branch
of the upstream flow.

For an arbitrary upstream current U(§) incident on
a narrow shelf the location (&) of the separating
streamline is given by (2.7) or (2.9), and this deter-
mines the transport fraction G crossing the slope. Part
of the upstream current always remains on the wall
[(2.13)-(2.15)], unlike the situation in classical
boundary layer separation at a curved wall. The inter-
esting feature emphasized in the wide slope model
(section 3) and the baroclinic model (section 4) is the

large shear in the inshore inertial boundary layer as-
sociated with a shallow shelf.

The main qualitative aspects of separation, bifurca-
tion, and entrainment are revealed by dye observations
in the source—sink experiment. These show (Fig. 8) a
branch of the upstream current separating from the wall
near the slope, and our visual observations of the thy-
mol blue dye lines emitted from wire electrodes show
(Figs. 7b,c) that the entrained countercurrent emerges
from the downstream edge of the slope and then flows
cross slope into the upstream basin. From the video-
tapes it appears that this countercurrent is either statis-
tically steady or slowly varying and is forced by the
potential vorticity front at the leading edge of eddies in
the wall current as they intensify on the slope and prop-
agate downstream (where they ultimately decay).

Of the many differences between the experiment
and the theory, the most accessible one is the Fp = 1
dye observations (runs 82—85 in Table 1) that un-
ambiguously indicate finite threshold values of (f,
AH) below which bifurcation is not realized (G
= 1). This is related to the apparent nonuniqueness
of the class of steady solutions; it is a simple matter
to obtain a downstream solution on the wall with G
= 1 (no bifurcation). But the interesting theoretical
problem is the determination of the critical value of
(f, AH) at which some bifurcation occurs. This ques-
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tion, as well as others related to the validity of our
qualitative assumptions (e.g., Fig. 1), might be ad-
dressed by extending contour dynamical initial value
calculation of the intrusion of a semiinfinite wall jet
(Stern and Pratt 1985) using the Green’s functions
appropriate to a piecewise uniform topography (Bid-
lot and Stern 1994).
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