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PCR vAlgorithm for the Parallel Computation of
‘the Solution of a Class of Singular Equations*
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Abstract This paper presents a new highly parallel algorithm for computing the
solution of a class of singular equations Az =35(A € ', Ind{A) =k,b € R(A*)). By
this algorithm the soluticn = = A.bis obtained inZ = (1 + 2 + Mog,k 1) (1 + log,n)
+ a(logy(z — 7+ 1) -+ 4) steps with p = 2a(n — 1) processors.
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1 Introduction

Let A € R:**,b € R*. Then the unique solution 2 = A7 '5 of the nonsingular equation

Az =D (1.1)
is given, componentwise, by
z; = detA;/detA,;,(i = 1,2,...,n) (1.2)
where
a, @y v ap, a4y by ay Ay,
a a .o a a “es ay;.. b a,; .os a
App=a= "7 A= | poe e * L a.
a, a,, - a, Qg v e by a4y v a,,
and A,(¢ =1,2,... ,n 4 |) are all identical, except in one column. (1. 2) is called Cramer's Rule.

Cramer's Rule is abandoned due to its inefficiency on serial processors. A highly parallel al-
gorithm for the solution £ = A~'d of the nonsingular equation (1. 1) is presented in [1]. This al-
gorithm- is called the Parallel Cramer's Rule (PCR). An elimination method akin to that used in
Gaussian Elimination (GE) is used in the PCR Algorithm.

M. K. Sridharl¥ shows that PCR Algorthm obtains solution in n steps with no more than 2n
(n—1) processors. The parallelism in the algorithm is analysed under the assumption of an un-

bounded parallel computational model and issues relating to interprocessor communication and
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task scheduling have not been considered.

The PCR Algorithm was tested by a number of systems of linear equations and was found to
exhibit stability and accuracy identical to Parallel Gaussian Elimination (PGE) 7, Since the
PCR Algorithm provides approximately twice the speedup over the PGE with only twice the
number of processors, it offers exciting possibilitie§ for VLSI implementation as well as MIMD
parallel processing structures.

In [9], G.R. Wang gave a PCR algorithm for the parallel computation of the minimum-
norm least-squares solution of inconsistent linear equations Az = b,4 € R**,b & Z(A).

~Let A € R***. The smallest nonnegative integer k such that
v rank A* = rankA**! a.49
is called the index of A, and is denoted by Ind (A} .
The concept of the Drazin inverse is defined as fcllows:
Let A € PY* with ni(4) =k, and X € R*** be such that
ALY = A*, XAX = X, AX = XA. (1.5)
Then X is called the Drazin inverse of A, and is denoted by X == A,;. In particular, when Ind(4)
= 1, the matrix X satisfying (1. 5) is called the group inverse of 4 , and is denoted by X = A",

A, has the following propertyt!.

Lemma 1 LetA € R** with Ind(4) =%k,l = %. Then
(DR = RUA),N(,) = N4);
ORMUDPNMUY =Ry

D44 =44, = Priapvuy = P‘R(A’).N(A‘)l

(4) A, = A (AZT)YDO AL (AZHHYD € (42+1) (1),

2 Algorithm
Let A € R***. For a given b € R*, find a vector z € R(A*) such that
Az = b (Ind(4) = k). 2.1
We see that the above problem has a unique solution®, which is
xz = A;b. 2.2)

Forany A € R***,z € R*,A(i — x) denotes the matrix obtained by replacing the i-th col-
umn of A with z . R(A) and N (A4) denote the range and the null space of 4.

Cramer's Rule for computing the unique solution of (2. 1) is given in [8].

Theorem 1 Let A € R*** with Ind(A) =k , rankA* =r <n,and letU , VT € R3¢
be matrices whose columns form the basis for N (4*) and N[ (4*)T] respectively. Then the u-

nique solution z of (2. 1) is given, componentwise, by

z; = detD;/detD, ,, (G=1,2,...,n) 2.3
where
rA lﬂ rA (t—b) U-l
D,,=D = D, = 2.4
i v o] lvi—o0) ol 2.0

and ¢ = A,b satisfies
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z € R(A*) ,N(V) = R(A*). 2.5
By (2.5), we have
, Ve = 0. (2.6)
It follows from (2. 6) that the unique solution z of (2. 1) satisfies ’
o) T[] o
v ol lo] ~ lol
This is a nonsignular linear equation. If we also use the PCR Algorithm to compute the solution
of (2.7), then the steps and the number of the processors depend or. the order 2z -7 o% the coef-
ficient matrix of (2. 7). When n >>> r, the cost will be expensive. A condensed Cranter's Rule
for the unique solution of (2.1) is presented as followst’l
Theorem 2 Let A € R*** withInd{A4) ==k , rank A* == »-Ta ,b € R*, and V € R*&"

be a matrix whose columns form the basis for N[ (4%}, We define

B=vyv" (2.8)
The solution 2 of tie nonsingular equation
‘ (ATA + B)X = ATp 2.9
is the unique‘solut'ion of (2.1). Let
C =A"A + B € R***, d = Arb € R (2.10)
Then x is given, componentwise, by
z; = detC;/detC,, (G=1,2,...,n), ‘ 2,11)
where
n Gz "t Cu L R S B ST W S S LU W
Copy = C = Ca Cap . Oy , C, = Cn v G by Cpuyy oy
Ca Gz v G Ca Gy &, G vt G

(2.12)

Proof See [7].

Using Cramer's Rule to (2. 9), we obtain (2. 11) immediately.

By Theorem 2, a highly parallel algorithm for the unique solution of (2. 1) is given as fol-
lows.

We assume, for the convenience of exposition, that the orders of the linear equations can be
expressed asn = 2/, where lis an integer. Later, we shall see that the algorithm is valid for arbi-
trary n .

First of all, we need an algorithm for computing the basis of N (4) [?

A matrix II € R***is said to be in Hermite echelon form if its elements & satisfy the follow-
ing conditions ;

(D hy = 0,i>j.

(2) hy;is either O or 1. .

(3) ifth; = Othenhy = 0 forevery k, | < k < m.
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(4) it hy = 1then k,; = O for every k %~ ¢.

For a given matrix A € R***, the Hermite echelon form I 4 obtained by row reducing 4 is u-
nique; N{A) = N1 ,) = R(I — H,) and a basis for N (4) is the set of non-zero columns of 7
—H,. ‘

Algorithm 1 Let A € R***, This algorithm computes U € R2X*~" whose columns form the
basis for N (4) .

(1) Row reduce A to its Hermite echelon form I7 4.

(2) FormI — II ; , and select the non-zero columns Uy, + + +U,—, Zrom this matrix, 7/ =
Uy ugse e sUgey).

The following is the PCR Algorithm for comuating the unigue ssiation of (2. 1). Notation.
I'x7 is the integer such that e =X [zl <z 4 1; 1% is ihe integer such thatz — 1 < 2 1 < =,

Algorthm 2 Let A S E*>**with Ind(4) = k,rankA* = r <x,b € R*. This algorithm com-
putes z = A,b.

e)) éompute d = A%b in parallel.

(2) Compute € = AT A in parallel.

(3) Compute A% in parallel. (w = log,k1)

(4) Use Algorithm 1 to compﬁ;e v = (¥;,035.+. »0,,) Whose colulms form the basis for

N[(A%)7]in parallel. (see Lemma 1(1))
(5)Compute C<C + VV7Tin parallel.
(6)Form L-form and R-form matrices
LC =@ :0C), RC = (C:d)
LC and RC differ only in the position of the d vector, which appears on the left-hand in LC and on
the right-hand side in BRC .
We shall triangulate LC in parallel by sub(racting fractions of the pivotal column from c,, as

the first pivot, until all rows to the left of pivot ¢, (¥ = #/2 + 1) have been reduced to zero.

rd, en Ct Crage C1,a/241 Ci,n

1.0 — a2 Cajz " Cajgasz Cajrasztl Ca/2n
0 0 0 Ca/z4+1.a/241 " Caj241a
L 0 0 0 0 Con

And we shall traiangulate RC in parallel by subtracting fractions of the pivotal row from
rowstbelow this row, starting from c¢,; as the first pivot until pivot ¢, (k = n/2) is reached, leaving

a submatrix of order (n/2) X (a/2 4+ 1) below this pivotal row.
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fen €2 CLape C1a/2+1 o €1 . d;.
0 cx = Cap C2,a/2+1 C2.a d;
RC — o “ Cupuasz Cafraszdl " Caza d.
0 Cajz1m/z41 " Caz+1a @apt1
Lo 0 Cara/2in Cam d, |

In either case these operations are of the general form
) G Ciy; — C;kcxj/cu
(7) Form new L -form and R -form submatzices «f crder (/2) > (n/Z + 1) in LC and RC
that have not beeh triangulated.

[y ey = Can] Caszttaszdl 0 Capdla sz
LLC = { i e e |, RRC =.

l-l"‘;/Z c-/Z.l b C-/z.-/:J I— cu.-/2+1 b Cuyn d- J

and form two corresponding L -form and R -form matrices
en vt Cez 4 Cajz41  Casz4raz41 " Cajztla
RLC = ’V -I , LRC = [ _l
[-01/2.1 *t Cufzar2 d-/zJ L d, Ca.n/z+1 et G -'
As before, LLC,LRC,RLC and RRC are triangulated in parallel.
Form new L -form and R -form submatrices LLLC, LLRC, RRLC and RRRC of order
(n/4) X (n/4+ 1)in LLC, LRC, RLC and RRC that have not been triangulated and form four
corresponding L -form and R -form matrices RLLC, RLRC, LRLC and LRRC .

The algoithm therefore recursively doubles the number of submatrices, halving their order in

e s e

every step. Since, by our assumption; = = 2!, at the 1-1 step, we form a submatrices of order 2
X 3.
(8) n submatrices of order 2 X 3 are triangulated in parallél. We take c;and d;from the above
2 submatrices of order 2 X 3. Then
z; = d;[c; G=1,2,...,n).
Example Let

0 0
0 0 1 . 0 \
A= € R4, Ind(4) = 2,rank(4?) = 2,b = € R4,
00 0 , 0
0 0
0
(1) d= A" = ,
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0 0
0 00 O
(2) ¢ =44 = ,
0 01 0
0 0
0 0
(3)/12—0000
oo 0 o
0 0
0 o] o
01 0 ol 10
(4)(‘42)1:‘42:]1;1211_-”42: o WV == N
, 0010’ lo 1
0 o o LooJ
m o o o
| C 1 00
(5) C+C -+ VVT = ,
00 2 0
0 0
1 0 0 1 0 0
0010 0 0010 0
(6)L0= —> s
o0 0 2 0 000 2 0
0 0 0 0 0 O
0 0 0 1
01 0 0 0
RC = ,
00 2 0 0
0 0 1
n 1 0 o 2 0
7) LLC = , LRC = ,
i o o 1 1o 1
1 0 1] 2 0]

0
PEO= o 1 o "™ T o 1 4

Bz, =1/1=1,2,=0/1=0,z=0/2=0,2,=1/1=1.
3 Complexity

In this section, we discuss the parallel arithemtic complexity of the PCR Algorithm for com-
puting the unique solution of (2. 1).

Theorem 3 By the PCR Algorithm, the unique solution of (2. 1) is obtained in7 = (1 +
log;m)(1 + n + nllog,k 1) + n(log,(n — 7 + 1) + 4) steps with = 2a(n — 1) processors.

Proof (1) Parallel computation of d = A”b takes T, = 1 + log,n steps and p, = n.? proces-

sors.
(2) Parallel computation of A74 takes T, = n(1 + log,n) steps and p, = n? processors.

(3) Parallel computation of A% takes T3 = [log,kTn (1 + log,n) steps and p; = 1% proces-
sars. (w = [log,k 1)

(4) Parallel computation of V takes T, = 2z steps and no more than p, = (n — 1)% proces-
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sors.

(5) Parallel computation of C<C + VV7takes Ts =a (1l + log,(n —r 4+ 1)) steps and ps =
a(s — r + 1) processors.

(6)— (7) Recursive parallel triangulation of L -form and B -form matrices takesTg =2 — 1
steps and pg = 22(n — 1) processorsf*l.

(8) Parallel computation ofz; = d;/c;(: =1,2,... ,n) takes T; = 1 steps and p; = & proces-
sors.

7 : .
Thus T = ET,- = (1 +logm)(1 + n 4+ allog,k 1) + a(log,(n — 7 4- 1) + 4) steps and

G=D
p = maxp; = 2a(a — 1.

Note. The recursive technique in stops (67— {7) of the PCR Algorithm can be represented

by a binary tree shown in Fig. i. '

B level 0
/-LC::\/ S \\ZRC level 1
LLO. '\‘/RLC\\ f}zﬁ ©RRC level 2
P - - .
LLLC RLLC LRLC RRLC LLRC RLRC LRRC RRRC level 3
' ; ' level 4
L2 JE ZE 2N 2N 2N 2 2 2R A L2 2R A
z, z, Tajp Taszht z, .z,
‘ ' Fig. 1

Here each node represents the task unit defined in step (6)— (7). "All tasks at one level can
performed in parallel’®). Since, by our assumption, # = 2!, there are log,n = I levels in the tree.

If we relax the assumption that n = 2! and choose an arbitrary # , we observe taat recursiv’e_a
doubling can still take place. However, the orders of the submatrices will have to be carefully
taken into account due to the possibility of there being odd and even ordered matrices produced
from an odd matrix. Naturally, the tree becomes unsymmetrical.

The case for an arbitrary = is illustrated with = = 5in Fig. 2. Let LC and R€ be 5 X 6 matri-
ces, LLC and RLC be 3 X 4 matrix, RRCand LRC be 2 X 3 matrix. Then the tree becomes un-

symmetrical.

BRL2AN - ‘ fevel 0
© 5X5
ALC RC. | level 1
T 5X6 BX 6
LLC. RLC LRC RRC level 2
3X4 . 3x4 2X%x3 2x3 '
LLLC  RLLC ‘ ' ' level 3
2X3 2X3 i
¥ v
z, TR T z, zg level 4

Fig. 2
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In general, if there exists a submatrix of order 3 X 4 at the log,n 1 — llevel, then triangula-
tion requires one additional level where two 2 X '3 submatrices are formed out of the above subma-
trix. Each of these produces two solutions. Hence, when = is arbitrary, the number of steps re-
mains # .

The problem relating to pivoting in the PCR Algorithm is discussed in [4]. It is omitted
here.

Remark If 4 is nonsingular, the conclusion reduces to the results in [4].
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