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Abstract. MAC algorithms can provide cryptographically secure authen-
tication services. One of the most popular algorithms in commercial appli-
cations is HMAC based on the hash functions MD5 or SHA-1. In the light
of new collision search methods for members of the MD4 family including
SHA-1, the security of HMAC based on these hash functions is reconsidered.
We present a new method to recover both the inner- and the outer key used
in HMAC when instantiated with a concrete hash function by observing
text/MAC pairs. In addition to collisions, also other non-random properties
of the hash function are used in this new attack. Among the examples of the
proposed method, the first theoretical full key recovery attack on NMAC-
MDS5 is presented. Other examples are distinguishing, forgery and partial or
full key recovery attacks on NMAC/HMAC-SHA-1 with a reduced number of
steps (up to 61 out of 80). This information about the new, reduced security
margin serves as an input to the selection of algorithms for authentication
purposes.

1 Introduction

Authentication services can be provided in a cryptographically secure way by us-
ing Message Authentication Codes (MACs). The two most popular algorithms in
commercial applications are variants of CBC-MAC based on 3-DES or AES, and
HMAC based on MD5 and SHA-1. NMAC and HMAC [1] are message authenti-
cation codes based on a hash function. HMAC has been included in standards like
ANSI, IETF, ISO, or FIPS. Commercial applications often use HMAC with SHA-1
as underlying hash function. After the recent collision attacks on MD5 [21] and
reduced versions of SHA-1 [20], the impact of new collision attacks on the secu-
rity of MAC constructions needs to be considered. This issue was already briefly
mentioned in [23] and the impact on early hash based MAC constructions like the
prefix-, suffix-, or envelope-method was informally discussed in [18]. Of particular
interest is the impact on HMAC, since e. g. NIST supports HMAC-SHA-1 even af-
ter 2010 [14], whereas support for SHA-1 as a hash function will be dropped. In
addition HMAC-SHA-1 is continued to be used in new designs and applications,
e.g. in [13].

The security proof of NMAC, HMAC and other constructions is based on some
assumptions about the pseudo-randomness of the underlying hash function, con-
cluding that collision resistance is not needed. On the other hand, earlier work [6,
9] suggests that collision attacks on the underlying hash function can be used to
weaken the security of HMAC when instantiated with a popular hash function. In
particular, distinguishing and forgery attacks, but as yet no full key recovery attacks
have been shown.

After introducing some terminology and technicalities related to probabilities in
Section 2, we present the two key points of this paper which are as follows.

* A shortened version of this paper appears in [17].



1. Previous work on the security of NMAC and HMAC [6, 9] against differential
attacks is based on the reuse of characteristics that were constructed in order
to mount collision attacks on the underlying hash function. This can lead to
optimistic conclusions on the security margin of NMAC and HMAC. We propose
a general framework for classifying the non-random properties of compression
functions in Section 3. In addition to putting the existing characteristics for
MD5, SHA-O0 and SHA-1 into this framework, we devise new characteristics
suitable for more efficient attacks than previously known on NMAC/HMAC
instantiated with reduced variants of SHA-1.

2. The ability to recover the secret key by using known text/MAC pairs is cer-

tainly the most dangerous attack in practice. Currently known methods for
NMAC/HMAC only allow to recover an inner key. This allows forgery attacks
but does not give an attacker the same possibilities as having the key (or equiv-
alent information).
We show a new key recovery attack which can recover the full key of NMAC (or
an equivalent information in the case of HMAC), hence have for the first time
the potential to use a substantially smaller amount of text/MAC pairs than
black-box attacks. The details depend on the hash function being used and are
discussed in Section 4. There we also give examples for full MD5 and reduced
SHA-1.

We summarize and discuss the impact of our results and the security margins
offered by HMAC when instantiated with popular hash functions in Section 5.
Conclusions and open problems are given in Section 6.

2 Characteristics and probabilities

2.1 Terminology from differential cryptanalysis

Differential cryptanalysis was originally invented to attack DES and other block
ciphers [3]. The key concept behind a differential attack is the definition of a char-
acteristic. Considering two inputs to the same cryptographic primitive, a charac-
teristic is defined as the sequence of differences between the intermediate results
occurring at corresponding times during the processing of these two inputs. The
power of the method lies in the fact that it is possible to predict the differences of
intermediate variables without specifying the actual input values. For linear func-
tions, the output difference is fully determined by the input difference. For nonlinear
functions, it is possible to predict the output difference with a certain probability.

The probability of a characteristic is defined as the fraction of the input pairs
that exhibits the differences of the characteristic. These input pairs are called the
right pairs. In a differential attack, the cryptanalyst first tries to define a char-
acteristic with a high probability. Subsequently, the cryptanalyst searches for one
or more right pairs. The complexity of the search is related to the probability of
the characteristic, but there are some fine points to consider. The most important
characteristics are those it is the easiest to find a right pair for.

In order to be of use in a collision attack on a hash function, a characteristic needs
to result in output difference zero. In key recovery attacks also other characteristics
can be of use, provided that their probability is high enough.

In a related-key differential attack, also characteristics with differences in the
key input of the cryptographic primitive are allowed. This often allows to construct
characteristics with a higher probability, but the attack scenario becomes less real-
istic.

2.2 Easy relations

One approach to estimate the complexity of the search for a message pair is to
count the total number of conditions, as is done by Kim et al. However, when



the message is under full control of the attacker, optimizations are possible. It
was already observed in the early analysis of SHA [5] that some conditions can
be expressed as linear relations between the message bits. When considering only
messages that satisfy these relations, the probability of a characteristic increases.
In the remainder of this paper, we will unless noted otherwise quote the increased
probability of a characteristic, 4. e. for messages that satisfy these linear relations
between message bits (easy relations). We will use M to express this set of easy
relations.

The increase is significant, as can be illustrated by considering the different step
transformations in the compression function of SHA-1. Characteristics for SHA-1 are
built up of disturbances and their corresponding local collisions. Their probability
and hence their contribution to the data complexity of attacks devised later on in the
paper depends on the bit position in the word and the steps they cover. The reason is
that the 3-input Boolean function f being used in the step transformation of SHA-
1 changes with every round (group of 20 steps). Table 1 illustrates the different
cases. The column ‘total’ refers to the number of conditions in the case where no
relations between message bits are assumed. For all steps and for all bit positions
it is possible to improve the results by fixing some relations between message bits
(shown in column ‘reduced’). The number of linear relations between message bits
is actually the difference between both numbers. Note that Table 1 is simplified in
the sense that local collisions at the border between rounds are not considered. A
more comprehensive table is given in the Appendix in Tables 11 and 12. Also note
that the position of local collisions relative to each other can either improve the
overall probability or lead to impossible differentials. Examples of these effects are
in detail discussed in [11]. In the attacks presented in this paper, these effects on
the probability of the characteristics are taken into consideration.

Table 1. Number of conditions for a local collision. Note that the given figures only hold
if the five steps after the disturbance are within the same round.

bit position function|total|reduced
0,2,...,25,27,....30] fir | 9 5
1 fir 6 5
26 fir 8 5
31 e |7 4
0,2,...,25,27,...,30| fxor | 6 4
1 fxor 3 2
26 fxor 5 4
31 fxor 4 3
0,2,...,25,27,...,30| fumas 9 4
1 favag 6 4
26 fvag 8 4
31 fmag 7 4

For example, we can increase the probability of the 34-step SHA-1 characteristic
as presented in [9] from 2752 to 2731, See Table 6 for details.

2.3 Multiple characteristics in one differential

To obtain better estimates for the complexity of the search phase, we can add
up the probabilities of all characteristics that contribute to the same differential.
Mendel et al. derive an analytical formula taking into account the effect of multiple
characteristics based on a study of carry effects [11]. Tables 11 and 12 give an
overview for the case of independent local collisions. As an example consider the
forgery attack on 37-step HMAC-SHA-1 given in Table 4. By considering the better



lower bounds using the methods described above, we expect the forgery attack to
be successful already after about 2%° instead of 267 chosen messages.

3 New characteristics

In this section, we first categorize the known characteristics over the compression
function of hash functions. We classify the characteristics into 6 different types,
depending on whether the differences in the inputs h;, m; and the output h;y; are
equal to zero or not. Table 2 presents an overview of the different types and concrete
examples from the literature.

Table 2. Types of characteristics. ‘Y’ indicates a non-zero difference, ‘N’ indicates ‘no
difference’.

Type| h: m; hi+1| Examples from literature
2 N Y N |MD4 [19,23]; SHA-0, [5,22]
3 INY Y MD5 [21]; SHA-1 [2,20]
4 |Y N N MDS5 [7]

5 |Y N Y reduced SHA-1 [10]
6 |Y Y N MD5 [21]; SHA-1 [2,20]
7 1Y Y Y

To illustrate the connection between this classification and traditional nomen-
clature [12], we give some examples. A 1-block collision attack on the hash function
can be constructed by using a type 2 characteristic for the compression function.
An n-block collision attack on a hash function can be constructed by using a type
3 characteristic on the first block, a type 6 characteristic on the last block, and
type 7 characteristics on the n — 2 remaining blocks. Of course we can’t use just
any set of such characteristics: the input difference in the chaining variable h of the
characteristic in one block needs to match the output difference of the characteristic
in the previous block. A 1-block pseudo-collision can be constructed using a type 4
or type 6 characteristic. Similarly, we can use a type 5 or type 7 characteristic in
the first block of an n-block pseudo-collision.

In the setting of NMAC/HMAC, many of the characteristics mentioned in Ta-
ble 2 can not be used. On reason is that their probability is too low (e.g. type 6
characteristics for MD5 and SHA-1). Another reason is that for type 3 or type 7
characteristics to be useful additional restrictions on the message difference m; need
to be obeyed. Section 4.2 will cover this issue. Hence the known type 3 character-
istics are ruled out as well. The remaining type 2 or type 4 characteristics can be
used to draw some conclusions about the security margin offered by a particular
hash functions when used in HMAC/NMAC. However, we argue that this gives too
optimistic conclusions. We use SHA-1 as an example, where a 34-step characteris-
tics is the longest useful characteristics in the literature on collision search. Table 3
gives an overview of new characteristics over the compression function of SHA-1.
We developed efficient search algorithms to find them. They are based on meth-
ods developed in [15], with the improvement that exact probabilities as described
in [4,11] instead of Hamming weights are used to prune and rank them. In Ta-
ble 3, pchar gives the probability of the characteristic with the highest probability.
Additionally, the probabilities pq;g include the improvements from considering also
less-probable characteristics with the same input and output differences, assuming
these less-probable characteristics to be independent.

For a characteristic through the compression function of SHA-1 to be of use
the probability needs to be significantly higher than 2716°. The reason for including
characteristics of the same type but with less steps is that some attacks require char-
acteristics with probability higher than 278%. The new 50-step type 3 characteristic



Table 3. Newly presented characteristics over the compression function of SHA-1.

Type # steps Dchar Paift details

2 34 27°T 27705 Table 6
37 2—66 2763.96 Table 7
50 2772 2772 Table 8
53 279 279911 Taple 9
61 27101 979911 maple 10

DN W N

given in this paper is an extension of the 43-step characteristic used in [9]. Note also
that this is the only characteristic where the characteristics starts at step 0. It is
an open problem to find characteristics with high probability spanning more steps
including the first steps. Automated approaches to construct characteristics that
consider non-linear effects in an efficient way [4] might serve as important building
blocks.

4 New key recovery method for NMAC

Let h(iv,m) denote the application of an iterative hash function h on message input
m and with the chaining variable initialized to 7v. The NMAC construction can then
be described as follows:

NMAC(k‘l,kg,m) :h(kig,h(k’l,m)). (1)

We call the key k; and the corresponding h the inner key and the inner hash. We
call ko the outer key and the corresponding h the outer hash. Note that an attacker
can act like having the secret key only if both the inner key and the outer key (or
equivalent information) has been obtained. Hence recovering both the inner and the
outer key constitutes a full key recovery.

Generally speaking, a differential key-recovery attack can work as follows.

off-line preparation phase: Define the characteristic(s).

on-line data collection phase: Obtain the MAC values for pairs of texts with
as difference(s) the input difference(s) of the characteristic(s).

off-line data processing phase: When a pair of texts results in a pair of MAC
values with as difference the output difference specified by the characteristic(s),
assume that this is a right pair. For a right pair, we have information on the
intermediate values of the algorithm. This information can be exploited to par-
tially recover the key.

If the characteristic(s) specified a non-zero difference in the key, then the attack is
a related-key attack.

4.1 Recovering the inner key

In [6] a related-inner key characteristic is used to recover the inner key of NMAC.
After a right pair has been found, their attack proceeds by applying small changes to
both messages of the right pair and checking whether the modified pair still results
in colliding tags. We will refer to this method as KRI. Together with the new
characteristics presented in Section 3, we subsequently illustrate that the security
margin of HMAC-SHA-1 is less than previously thought.

Example for reduced NMAC-SHA-1. As an example, consider NMAC-SHA-
1 where the inner hash is reduced to 61 of its 80 rounds. The best previously
published attack applies to NMAC based on SHA-1 reduced to 43 steps. For the
recovery of the inner key, we use KR! and the new type 6 characteristic given in



Table 10. We expect to query a related-key NMAC oracle with 2% message pairs
in M as specified by the characteristic to find a message pair that result in the
same MAC. Afterwards, both the effort to recover enough state bits with KR1 as
well as a brute force phase to determine the remaining bits of the inner key k; are
negligible compared to the online phase. Hence the total complexity is 2'°° which
is significantly less than a 2160 black box attack to recover the inner key.

4.2 Recovering the outer key

Once the inner key has been recovered, also the outer key can be attacked. Different
combinations of characteristics over the inner and outer hash function can be used.
We list here some possibilities.

1. Type 4 or type 5 over the outer hash combined with the trivial characteristic
(input and output differences equal to zero) over the inner hash. This is a
related-outer key attack.

2. Type 2, 3, 6 or type 7 over the outer hash combined with type 3, type 5 or type
7 over the inner hash. This is a possibly related-outer key attack with possibly
related-inner keys.

In the latter case, the difference in the message input of the characteristic over the
outer hash needs to match the (padded) output difference of the characteristic over
the inner hash. The right pairs for the inner hash characteristic can be produced
off-line; the right pairs for the outer hash characteristic need on-line queries.

Recovery of the outer key of NMAC-MD5 with KR1. We describe here
how the inner key recovery attack of [6] can be extended to a full key recovery
attack. The same characteristic [7] as for the inner key recovery is used, which
has probability 2746, Note that the conditions in the last 5 steps can be ignored
safely, because all resulting differentials can be efficiently enumerated and the output
differences can be directly observed. Hence, the sum of their probabilities can be
lower bounded by 274!, Next, KR1 is used to recover 25 bits of the internal state
using 25 x 242 ~ 247 queries. For each query the first word needs to be controlled,
hence requires 25 x 242732 ~ 27 computations. Using this information, the full key
can be guessed with 2128725 = 2103 trials. Recovering more bits of the state does not
make the attack more efficient since the offline cost to prepare more queries would
be higher than the final key guessing. Since the first word is fixed only 3 words (96
degrees of freedom) are left because of the input padding of the outer hash. This is
enough to generate the required 242 queries per bit without additional overhead.

4.3 New key recovery method KR2

We propose here an attack strategy KR2 which can be used to recover first the inner
key and subsequently also the outer key of NMAC. In some settings, KR2 proves to
be advantageous, which is shown in an example with step-reduced NMAC-SHA-1,
where a speed up factor 23 compared to KR1 is achieved.

Suppose we have a suitable characteristic over the outer hash function. Let
the set of keys and the set of messages over which the characteristic has improved
probability g be denoted by IC, respectively M, i. e. these are the keys and messages
satisfying the easy relations. Furthermore, we assume the probability over the set
of messages in M and the set of keys not in I that a pair of messages produces
a collision for the inner hash function to be 27!. This is the probability for the
message pair to produce a collision without being a right pair.

The attack works if ¢ > 27!, If after collecting the MAC values for 2¢~! message
pairs in M with the input difference specified by the characteristic we have observed
at least one pair with equal tags, then we conclude that with high probability the
key is in K. Otherwise, we conclude that with high probability the key is not in /.



Up to here KR1 can be reformulated similarly, assuming relations between bits
in the state can be efficiently mapped to relations between bits of the key. KR1
continues to use the same characteristic and submits slightly modified messages in
order to deduce more bits of internal state.

The KR2 method instead uses a set of completely different characteristics and
recovers a few key bits with each of them. One key advantage of KR2 in the outer
hash setting is that a factor 2% for offline computation is saved by not having to
fix the first = bits in the input message. It depends on the compression function,
wether this outweighs the disadvantage of having less optimal characteristics in the
set of characteristics needed for the attack. Another advantage of KR2 over KR1 is
the increased number of degrees of freedom available: since no message word is fixed
it is possible to generate a higher number of distinct queries. This is important in
the outer hash setting since here at most [ degrees of freedom are given due to the
padding of its input.

A detailed description of KR2 as well as the non-random properties needed for
the compression function to make it more efficient than KR1 are given in Appen-
dix A.

Recovery of the outer key of reduced NMAC-SHA-1 using KR2. For
HMAC-SHA-1 where the outer hash is reduced to 34 steps, the type 5 characteristic
with probability 27148 from [10] can be used. Using KR2 as proposed in this paper,
key recovery is faster than brute force trials. Using 2'53 queries, we recover 4 bits
of key information. Hence the overall cost when using KR2 for key recovery is 21°6
which is more than 230 times faster in this setting than KR and hence slightly
faster than brute force search.

5 Applications and Implications

In the following, we outline how the new characteristics and the key recovery method
can be used to analyze popular authentication methods like HMAC or a new pro-
posal for making digital signatures using hash functions safer.

51 HMAC

Distinguishing or forgery attacks on NMAC can easily be translated to attacks
on HMAC. For key recovery attacks without requiring related keys, instead of the
actual key information, equivalent information is obtained. Related-key attacks on
NMAC as described in this article can not be translated into attacks on HMAC.
Details on attacks exploiting the new method and characteristics developed in this
article are given in Table 4 and Table 5. Table entries are either compared to previous
results, or are new results for variants with more steps, while success rates of attacks
are equalized.

On truncation. We also tackle the issue of truncation, which is (based on [16])
widely recommended and commonly done in practice. In both columns labeled ‘trun-
cation’, we give typical values (multiples of 32 bits) for the size of the truncated
output, which still allow to attack the MAC algorithm.

Note that this does not contradict the general statement of [16] that truncating
helps against certain attacks but is a specific property of the newly devised attacks.
In fact, if the output is further truncated than noted, the attack is stopped.

Forgeries. Forgeries for NMAC can be constructed using the same characteristics
as for a collision, because a collision for the underlying hash function can be con-
verted trivially into a forgery for NMAC. Naturally, one expects that constructing a
forgery for NMAC is more difficult than constructing a collision for the underlying



Table 4. Old and new results on attacks on NMAC/HMAC when used with SHA-1. Table
entries are either compared to previous results, or are new results for variants with more
steps.

steps forgery data |truncation| source
HMAC-SHA-1| 34 (0-33) forgery 252 64 [9]
HMAC-SHA-1| 34 (0-33) forgery 234 64 6]
HMAC-SHA-1| 34 (0-33) forgery 232 64 this paper
HMAC-SHA-1| 37 (20-56) forgery 265 96 this paper

steps distinguisher data |truncation| source
HMAC-SHA-1[43 (00 — 42) rectangle d. 2191160 9]
HMAC-SHA-1|50 (00 — 49) rectangle d. 2153.5 160 this paper
HMAC-SHA-1|53 (20 — 72) differential d. 2975 128 this paper
HMAC-SHA-1[61 (19 — 79)|related-key differential d.| 2°° 128  |this paper

hash function, because now there is a secret key involved. This is correct. However,
by sticking to the terminology of differential cryptanalysis when we discussed char-
acteristics, we in fact neglected to take into account the absence of a secret key in a
collision attack. Hence, the figures we have given are the ones that are relevant for
a forgery attack. For a collision attack (of an unkeyed hash function), they are too
pessimistic because if both the message and the chaining variables are known, then
state variables can be influenced for many steps (more than 30 in case of SHA-1).

Distinguishers. When we succeed in constructing a forgery faster than with the
black-box attack, we have distinguished NMAC from a pseudo-random function.
Hence, a forgery attack implies a distinguishing attack. However, if the goal is to
distinguish NMAC/HMAC instantiated with a PRF from NMAC/HMAC instanti-
ated with an actual hash function, the birthday bound does not apply [9]. Hence,
as listed in Table 4, the new distinguishing attacks can cover more steps than the
new forgery attacks.

Also, a distinguishing attack doesn’t need to be based on a collision. Also near-
collisions can be used to distinguish NMAC from a pseudo-random function as
shown by Kim et al. who build rectangle distinguishers. As shown in Table 4 we
also improve on this attack by simply extending the used characteristic for 7 more
steps and apply some of the improvements mentioned earlier in the article.

Key recovery. In Table 5 we summarize the new attacks that recover the full
key of NMAC when observing a number of text/MAC pairs. Both attacks require
related outer keys. We also add attacks that recover only the inner key, while noting
that this allows forgery attacks but does not give an attacker the same possibilities
as having the full key.

Table 5. Summary of key recovery attacks

type steps |dataloffline|truncation| source
NMAC-MD5 [inner rel. key all (0-63) [ 27 [ 277 [6]
HMAC-SHA-1| inner key |34 (0-33) | 2°* | 2%* [6]
NMAC-MDS5 | full rel. key all (0-63) [ 277 [ 2103 64 this paper
NMAC-SHA-1| full rel. key | 34 (0-33) [2%3] 2156 160  [this paper
HMAC-SHA-1| inner key |34 (0-33) | 232 | 232 64 this paper
NMAC-SHA-1|inner rel. key|61 (19-79)| 2190 | 2100 128 this paper
HMAC-SHA-1| inner key |53 (20-72)[299-%| 2995 128  |this paper




5.2 Randomized hashing

The RMX mode of operation is proposed as a means to provide a safety net in
applications relying on hash functions, by reducing the impact of collisions [8]. We
briefly discuss the applicability of our results to this mode. Put in a simple way,
a hash function used in RMX mode doesn’t need to be collision resistant. Second
preimage resistance, or e-SPR resistance, is sufficient. Hence we explain here how
our characteristics can be used in a preimage attack.

For a second preimage attack on 53-step HMAC-SHA-1, we can reuse the char-
acteristic presented in Appendix B. In a differential second preimage attack, only
one pair can be tried for each characteristic. Furthermore, there is no distinction
between easy relations and others. Hence the probability of the characteristic is
reduced to 271515 and this is also the probability of success of the attack. Note
that considering also less probable characteristics as described in Section 2.3 would
allow some improvements of this probability.

Note that if the first preimage consists of ¢ message blocks, we can try our
characteristic once in each of the ¢t blocks, and hence multiply the probability of
success by t. Our results imply that SHA-1 reduced to 53 steps is not as e-SPR
resistant as an ideal compression function used in the proof of security of [8].

6 Conclusions and Future Work

We presented a thorough security evaluation of the heavily used authentication
method HMAC when used with MD5 and SHA-1. Even though recent results on
the collision resistance of the employed hash function triggered renewed interest
in the security offered by HMAC when used with the affected hash functions, our
results are more general. Using our newly developed key recovery method it turns
out that in addition to collision attacks, also other non-random properties of the
employed hash function can be used.

The results are the first full key recovery attack for NMAC-MD5 and a decreased
security margin offered by HMAC-SHA-1. Most of the attacks work even if the
output of the MAC is truncated, which is commonly done in practice. It is an
open problem if automated methods that efficiently include non-linear effects while
searching for useful characteristics as e. g. proposed in [4] can be used to improve
on the attacks presented in this article.

Despite the progress being made, message authentication algorithms like HMAC
are less susceptible to problems in the underlying hash function than the stand-
alone hash function. However, it seems prudent to evaluate other hash functions
like RIPEMD-160 or members of the SHA-2 family as well as new hash function
proposals against the framework of undesired properties as shown in this paper.
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A Details on the new key recovery method KR2

A.1 General description and difference to KR 1
The proposed key recovery attack consists of two phases:

1. Online phase: in a chosen-message scenario, the attacker asks for b pairs (m,NMAC(m))
under the same unknown key of length 2/. Analyzing the results, ¢ linear rela-
tions between bits of k£ are deduced.

2. Offline phase: The rest of the key is guessed in a brute force manner.

The attack is more efficient than brute force, if 2b + 2!=¢ is smaller than 2¢. Subse-
quently the online phase is described in more detail. Before that, some definitions
are needed. Note that the attack applies to HMAC in exactly the same way, expect
that instead of the key information, equivalent information is obtained.

Let K be a set of linear relations between bits in k, and let px be the probability
that a k picked from a uniform distribution satisfies these linear relations. Likewise,
let M be a set of linear relations in m.

Let g be the probability that there is a collision at the output of the first ap-
plication of A if m and m + « are input under the assumption that the unknown k&
satisfies K and m satisfies M. We write

q="Pr(h(k,m)+h(k,m+a)=0]k e ,me M). (2)
Note that the probability to observe a colliding MAC is higher, namely ¢+ (1—¢q)-27".

Likewise we define ¢’ as the probability for the case that k does not satisfy the
relations given by K.

¢ =Pr(h(k,m)+h(k,m+a)=0|k ¢ K,me M). (3)

1. Collect b MAC pairs under the unknown key with chosen messages m and m+«
where m € M.
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2. If we observe at least one colliding MAC pair, then & € I with probability
1 — €;. If we do not observe a colliding MAC pair, then k ¢ I with probability
1-— €2.

3. Note that e; is small if ¢/ is small and 27! is negligible. €5 can be derived
by the approach described in [9, Section 6]. €5 can be made sufficiently small
by choosing a high enough b. b = 2 - ¢! is enough for practical purposes.
For the attack it is important that ¢ > ¢’ to ensure a small €. Note that
given a sufficiently small €3, €; can be estimated to be ¢'/q. For simplicity
we subsequently assume both €; and e to be zero. Details can be found in
Appendix A.2.

4. If k € K, the possible key space is reduced by a factor p,El. If k ¢ IC, the possible
key space is reduced by a factor (1 —px)~!. For a given px the reduction of key
entropy is hence

i - loga(p) + (1 = px) - logz(1 — px) (4)
bits. Thus the expected reduction in key entropy in this step is at most one bit.

The above described key entropy reduction technique can be applied for any
number ¢ of triples («y, KC;, M;). To optimize the computational complexity of re-
covering the full key we choose ¢ such that 2!=¢ > 2. Zle q[l. Note that this
assumes the relations between bits in & (3. e. ) to be linearly independent.

It remains to be described how to find triples (o, K;, M;) for specific crypto-
graphic hash functions. One way to derive new characteristics for hash functions of
the MD4 family like MD5 or SHA-1 is to simply rotate each of the 32-bit words of
the inputs of a known characteristic over the same number of bit positions. This
follows from two facts. Firstly the linear code describing the message expansion is
invariant with respect to word rotation. Secondly, the used characteristic usually
requires that there is no carry propagation in the modular addition. This condition
has always a probability > 0, although rotation might increase or decrease it. Note
that there are special cases of characteristics where this technique does not work
for all rotation values.

A2 €1
€1 can be derived as follows:

Pr(collision |k € K)Pr(k € K)
Pr(collision)
(a+ (1 -2 )pc
(@+ (1 =q)2 e + (¢ + (L= ¢")27) (1 = px)
1

(¢'+(1—-¢")2"H(1—pk)
L+ S ra=a e

(¢ +(1—¢)27H(1 —pk)
(g4 (1 —q27Y)px

Pr(k € £ | collision) =

A.3 Extension of KR2 to the outer hash setting

Determine a characteristic (h,,m’, hl,,) over the outer hash with probability ps.
Probability ps for this char needs to be better than 27160+P1 We distinguish between

two cases:

m' # 0. Recover the inner key with complexity 2P!.
Determine a characteristic over the inner hash that produced the output dif-
ference that after padding will produce the m’ from above. Since the inner key
is known at this stage, we can take this into account when constructing the
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characteristic and during the search for right pairs. Say that the complexity to
find a right pair is 2P3.
We need 2P of these near-collisions. Here the offline cost is 2P27P3. The number
of chosen texts is 2P1 4 2P2. This allows to recover a certain number of relations
between bit of the outer key and potentially can be repeated for some more
bits.

m’ = 0. Note that this implies h/,, # 0: as above but p; = 0 because we don’t need
collisions but just single messages. Note that the example for 34-step NMAC-
SHA-1 in Section 4.2 is of that type.

B Characteristics

For the characteristics, we adopt the notation introduced in [4]. Here we briefly
restate the relevant parts. 'x > denotes XOR  difference of unknown sign, 'n > and "u’
denote differences of known sign, -’ refers to no difference and 1’ and ’o ’ refer to
a setting where not only there is no difference, but also the actual value for the bit
is fixed. Column A; shows the state variables and W; the expanded message words.
The values in the column P, (i) denote —logs(py (7)), where p, (%) is the uncontrolled

probability as defined in [4].

Table 6. Type 2 characteristic with probability 273! used for the 34-step (0-33) attack

% VA; VW; P (i)
-4
-3
-2
-1
0 n 1
1|u n---- 1
2|--1 3
3|n-0 --n u----| 1
4|--1 --n 4
5|u-0 1 n----{ 2
6|--1 0|-uu 3
7|-n0 un---| 1
8|---1 uun 1
9|---0 u--n 1
10fu --un n----| 1
11{--1 u-un: 2
12|--0 --n 0
13 --n 0
14 n-n 1
15|n u----| 1
16|--1 n 2
17|--0 --u 0
18 --u 0
19 --u 0
20 no 1
21|n u----| 0
22 -0 1
23|n: --u u---—-| 1
24 n-u 1
25 1
26 -in 1
27 -1lu 0
28 0
29 0
30 0
31 0
32 0
33 0
34
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Table 7. Type 2 characteristic with probability 27¢ used for the 37-step (19-56) attack

% VA; VW; P.(7)
-4
-3
-2
-1
0 un| 1
1 u nu----- 0
2 n 3
3 1 |uu; unn----| 1
4 -u n| 3
5 n-|--n u 2
6 -nu n-| 4
7 -nn u--u-| 1
8 u- n ul 1
9 u|nlu n----u| 4
10 nu(u-u un----u| 2
11 nuu ul 4
12 n-(-0 u----n-| 1
13 n-|n u----n-| 2
14 -n 0----n| 2
15 u nu----- 0
16 -1 2
17 n|-n un----- 1
18 un 3
19 u nu---n-| 2
20 n-|un u----n-| 3
21 n u--—--- 3
22 n-|-n u 4
23 n u---u-| 3
24 -n ul 3
25 n 2
26 nu u-| 2
27 u-|-u n 0
28 1---n-| 1
29 n 1
30 n n-| 2
31 n-|u0 u 0
32 u-| 1
33 n 0 1
34 u 1 1
35 u 0
36 0
37
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Table 8. Type 3 characteristic with probability 277 used for the 50-step (0-49) attack

] VA; VW; P.(4)

-1 1-—-

0--- u-

0-u- n

1___
n-ju u

On- u

1--|n n

O Or oK
B

-1 0---|n un
-0 1---|-n n-

13 1---|n
14 0---|u n-
15 n- u

—
[
B

21 n- u 0

37 u--u
38 u--- n u-n
39 u-- n---n--u
40 n-nu-
41 n---- u n-nn
42 n--- u---uu-nn
43 u--- n--n-uu-n
44 n u uunu-
45 u---- n---u--u--
46 n-u----
47 n--u--- u--n--u-unu-
48 u n---uu-nu--
49 u-n--- n-uu-nu-nn-

[~}

[=2)

=]

o
BOWURRWWWWFRFNNFROFRFOOOOOOOOOHONOFHFOOORRRERERRERFENNWNWERNNN
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Table 9. Type 2 characteristic with probability 27°% used for the 53-step (20-73) attack

3 VA; VW; P (i)
-4
-3
-2
-1
0 -0 0
1 -0 0
2 1 0
3 1n0 1
4|-n 0-0 u-——-| 0
5 in1 n-| 2
6 n-|u--u u 2
Tla OnOu n---n| 4
8|-n u|1-0u nu-u---| 0
9 nnn u-| 4
10 u|nnun n---u-| 5
11|u u-|1innn n-n---n| 4
12|u 101u n----| 3
13 n-|Onu u ul 3
14 u|nn n-—-u-| 1
15 no nu| 4
16{u n- (nun u-n--n-| 2
17 n-|nn u 4
18|n: u-|unn -u--nl| 2
19 1in nu| 4
20|n; ulul nu---0| 1
21 00u n| 3
22|u uu n--ul| 3
23 u-|lun n ul 5
24|n u|-no nu--nl| 2
25 10n: nn| 3
26 n-un u----ul| 4
27 u-|uun n----u-| 3
28 unu nl| 2
29 010 1--ul 1
30 u-|11 n---1-0| 1
31 u01 n| 2
32 u|n00 nu--1--| 1
33 nil ul 3
34 u-(1ul n----n0| 2
35 n-|nul u----00| 3
36 u-|1n0 n ul| 2
37 10 00| 2
38 u-|u0 n 0-| O
39 11 Onn| 3
40 n|0-1 u----- 0
41 n iul 1
42 nn 01n0| 2
43 n-|-n u----11 1
44 -u ul| 1
45 u uo| 1
46 u-|u in 0-| 0
47 ul in-| 1
48 n 10 O
49 n 1 0
50 n 01-1| O
51 0o1-| O
52 0
53
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Table 10. Type 6 characteristic with probability 271°* used for the 61-step (19-79) attack

3 VA; VW; P.(i)
-4
-3 u-
-2
-1|0
0 u-1 0
1 ni 0
2 -1 0
3 10 0
4 1 0
5 1u0 1
6|-u 0-0 n---| 0
7 On1 n-| 2
8 n-|u--n u 2
9|n OnOu u---u| 4
10(-n: n(1-1in un-u--0| O
11 nuu no| 4
12 n|uunu u---u-| 5
13|n u-|Onuu n-u---u| 4
14|u 101u n----| 3
15 n-|1lnu u n| 3
16 n|uu u---n-| 1
17 u0 un| 4
18(u u-|unn n-n--u-| 2
19 u-un n 1| 4
20|n: n-(uun: u-u--ul| 2
21 10n: un| 4
22|u u|nl nn---1| 1
23 10u n| 3
24 |n; un u--n0| 3
25 n-|Onn u----0u| 5
26|u u|-no nn--u0| 2
27 10u nn| 3
28 n-|nu u----ul| 4
29 u- [nnn n----u-| 3
30 nnn ni| 2
31 101 1--ul 1
32 u-|11 n---0-1| 1
33 n01 in| 2
34 njull un--0--| 1
35 u01 On| 3
36 n-|1n0 u----ul| 2
37 u-|unl n----11| 3
38 n-|1inl u----n0| 2
39 00 11| 2
40 n-(ud u----0-| 0
41 01 lun| 2
42 n|0-1 u--—--- 0
43 n 11u| 1
44 nn Olul| 2
45 u-|-u n----10| 1
46 -u uo| 1
47 n-1 Oul| 1
48 u-|u On--1-1-| O
49 nl Oin-| 1
50 ul 00| O
51 u 1-1] 0
52 u-0 10-0| O
53 0 110-| O
54 0
55 nl| 1
56 n- u--1-10| 0
57 1-| 2
58 n-|u u 0
59 u O-n-| 1
60 1-—-| 0
61
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Table 11. Detailed probabilities of local collisions, assuming no easy relations to be set.

i 31 |30 ] 29 |28...27] 26 |25...3| 2 1 0
01...16(7.00(8.81(8.92| 8.92 [8.00| 8.86 [8.92(6.00(8.75
17 ]6.00|7.87|7.95| 7.95 |7.00| 7.90 |7.95|5.00(7.75
18 ]5.00(6.91|6.97| 6.97 |6.00| 6.93 |6.97|4.00(6.75
19...36(4.00(5.91|5.98| 5.98 [5.00| 5.96 |5.98|3.00|5.83
37 [5.00(6.876.96| 6.97 [6.00| 6.93 |6.97|4.00|6.83
38 |6.00|7.81|7.95| 7.95 |7.00| 7.90 |7.95/5.00|7.83
39...56|7.00|8.81(8.92| 8.92 |[8.00| 8.86 |8.92(6.00(8.75
57 16.00|7.87|7.95| 7.95 |7.00| 7.90 |7.95/5.00|7.75
58 |5.00(6.91|6.97| 6.97 |6.00| 6.93 [6.97(4.00(6.75
59...75|4.0015.91|5.98| 5.98 [5.00| 5.96 |5.98|3.00|5.83

Table 12. Detailed probabilities of local collisions, assuming easy relations can be set.

i 3130 ]29 |28...27[ 26 [25...3] 2 1 0
01 [4.00{2.96{2.96| 2.96 [3.00( 2.97 [2.96(3.00(2.97
02 [4.00(3.91{3.93| 3.93 [4.00 3.93 [3.93|4.00|3.93
03...16|4.00(4.83|4.86| 4.86 |5.00| 4.87 |4.86(5.00(4.87
17 ]4.00|4.83|4.86| 4.86 |5.00| 4.87 |4.86|4.00|4.75
18 ]4.00|4.83|4.86| 4.86 |5.00| 4.87 |4.86|3.00|4.54
19...36(3.00(3.83|3.90| 3.91 |4.00| 3.91 |3.91|2.00|3.68
37 |3.00(3.83|3.90| 3.91 |4.00f 3.91 |3.91{3.00(3.83

38 |3.00(3.83|3.90| 3.91 [4.00 3.91|4.00|3.91
39...56(4.00(3.91(3.91] 3.91 |4.00 3.91{4.00(3.91
57 14.00(3.91|3.91] 3.91 |4.00 3.91(3.00(3.83
58 14.00(3.91|3.91] 3.91 |4.00 3.91{2.00(3.68
59...75|3.00|3.83|3.90| 3.91 [4.00 3.91|2.00|3.68
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