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Abstract

The characterization of the access structures of ideal secret sharing schemes is
one of the main open problems in secret sharing. Because of its difficulty, it has been
studied for several particular families of access structures. In this paper, we deal
with multipartite access structures, in which the set of participants is divided into
several parts and all participants in the same part play an equivalent role. Some
particular classes of multipartite structures have been studied in seminal works
on secret sharing by Shamir, Simmons, and Brickell, and also recently by several
authors. In this work, the characterization of ideal multipartite access structures
is studied with all generality. Actually, every access structure is multipartite and,
hence, the results in this paper can be seen as an attack under a different point of
view to the general open of the characterization of ideal access structures. Namely,
we present some necessary conditions and some sufficient conditions for an access
structure to be ideal in terms of the classification of its participants into equivalence
classes. These conditions can be specially useful if the number of classes is small
or these classes are distributed in some special way. More specifically, our results
are the following:

1. We present a characterization of matroid-related multipartite access struc-
tures in terms of discrete polymatroids. To do that, we study the relation
between multipartite matroids and discrete polymatroids. As a consequence
of this characterization, a necessary condition for a multipartite access struc-
ture to be ideal is obtained.

2. We use a special class of discrete polymatroids, the linearly representable
ones, to characterize the representable multipartite matroids. In this way we
obtain a sufficient condition for a multipartite access structure to be ideal.

3. We apply those general results to obtain a complete characterization of ideal
tripartite access structures, which was until now an open problem. In partic-
ular, we prove that the matroid-related tripartite access structures coincide
with the ideal ones.
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1 Introduction

Secret sharing schemes were introduced independently by Shamir [33] and Blakley [3]
in 1979. In a secret sharing scheme, every participant receives a share of a secret

value. Only the qualified sets of participants, which form the access structure of the
scheme, can recover the secret value from their shares. This paper deals exclusively
with unconditionally secure perfect secret sharing schemes, that is, the shares of the
participants in a non-qualified set do not provide any information about the secret
value.

The length of the shares is the main measure of the complexity of secret sharing
schemes. In all schemes, the length of every share is at least the length of the secret [17].
If all shares have the same length as the secret, the scheme is said to be ideal . There
exists a secret sharing scheme for every access structure [15], but, in general, the shares
must be much larger than the secret [12]. An access structure is said to be ideal if it
admits an ideal secret sharing scheme.

This paper deals with the characterization of ideal access structures, which is one of
the main open problems in secret sharing and has important connections with matroid
theory.

For a matroid M with ground set Q and a point p0 ∈ Q, we define the access
structure Γp0

(M) on the set of participants P = Q − {p0} by determining its minimal
qualified subsets:

min Γp0
(M) = {A ⊆ P : A ∪ {p0} is a circuit of M}.

The access structures of this form are called matroid-related . If the access struc-
ture Γp0

(M) is connected , that is, if every participant is in a minimal qualified subset,
then the matroid M is univocally determined by Γp0

(M).
A necessary condition for an access structure to be ideal was given by Brickell

and Davenport [8], who proved that every ideal access structure is matroid-related.
Specifically, they proved that every ideal secret sharing scheme on a set P of participants
determines a matroid M with ground set Q = P ∪ {p0} such that the access structure
of the scheme is Γp0

(M).
Matroids that are obtained from ideal secret sharing schemes are said to be se-

cret sharing representable (or ss-representable for short). Since there exist non-ss-
representable matroids [24, 32], that necessary condition is not sufficient. Neverthe-
less, as a consequence of the results in [7], all linearly representable matroids are ss-
representable. This implies a sufficient condition for an access structure to be ideal.
Namely, an access structure is ideal if it is related to a linearly representable matroid.

Due to the difficulty of finding general results on the characterization of ideal access
structures, a number of works, which we enumerate later, have appeared dealing with
the restriction of this open problem to several particular classes of access structures.

In this paper, we study the characterization of ideal multipartite access structures.
Informally, an access structure is multipartite if its set of participants can be divided
into several parts in such a way that all participants in the same part play an equivalent
role in the structure. Because of its practical interest, secret sharing for multipartite
access structures has been studied by several authors.
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Since we can always consider as many parts as participants, every access structure
is multipartite. More accurately, we can consider in any access structure the partition
that is derived from a suitable equivalence relation on the set of participants. There-
fore, we are not restricting ourselves to a family of access structures, but we study the
characterization of ideal access structures under a different point of view. Specifically,
we investigate the above conditions by taking into account that there can be partici-
pants playing equivalent roles in the structure. We obtain in this way a new necessary
condition and a new sufficient condition for an access structure to be ideal in terms of
the classification of its participants into equivalence classes.

Our results can be applied to any access structure and, hence, they can be viewed
as a new contribution to the open problem of the characterization of ideal access struc-
tures. Nevertheless, the most interesting consequences of our results are obtained when
applied to some particular families of access structures. In particular, we present a
complete characterization of the ideal tripartite access structures, which was an open
question until now.

2 Related Work

The relation between ideal secret sharing schemes and matroids discovered by Brickell
and Davenport [8] have led to a number of works dealing with the characterization of ss-
representable matroids. The Vamos matroid was the first matroid that was proved to be
non-ss-representable. This was done by Seymour [32] and a shorter proof was given later
by Simonis and Ashikhmin [35]. Many other examples have been given by Matúš [24].
The results by Brickell [7] imply that all representable matroids (that is, matroids
that can be represented by a matrix over some finite field) are ss-representable. The
first example of a ss-representable matroid that is not representable, the non-Pappus
matroid, was presented in [35]. This matroid can be represented by an ideal linear

secret sharing scheme. The matroids with this property are said to be multilinearly

representable, a class that includes the representable matroids. The existence of ss-
representable matroids that are not multilinearly representable is an open question.

The minimal qualified subsets of a matroid-related access structure form a matroid

port , a combinatorial object introduced by Lehman [18] in 1964, much before secret
sharing was invented. Seymour [31] presented in 1976 a forbidden minor character-
ization of matroid ports, which has been used recently to obtain new results on the
characterization of matroid-related access structures [22]. The main result in [22] is a
generalization of the result by Brickell and Davenport [8]. Namely, if the information

rate (that is, the ratio between the length of the secret and the maximum length of
the shares) of a secret sharing scheme is greater than 2/3, then its access structure is
matroid-related.

Due to the difficulty of finding general results, the characterization of ideal access
structures has been studied for several particular classes of access structures: the access
structures on sets of four [36] and five [16] participants, the access structures defined
by graphs [4, 5, 6, 8, 10], the bipartite access structures [30], the access structures
with three or four minimal qualified subsets [20], the access structures with intersection
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number equal to one [21], the access structures with rank three [19, 23], and the weighted
threshold access structures [2]. In all these families, all the matroids that are related to
access structures in the family are representable and, then, the matroid-related access
structures coincide with the ideal ones. This, combined with the results in [22], implies
that the optimal information rate of every non-ideal access structure in those families
is at most 2/3.

Multipartite access structures were first introduced by Shamir [33] in his seminal
work, in which weighted threshold access structures were considered. These struc-
tures have been studied also in [25, 30] and a characterization of the ideal weighted
access structures has been presented in [2]. Brickell [7] constructed ideal secret sharing
schemes for several different kinds of multipartite access structures, called multilevel

and compartmented , that had been previously considered by Simmons [34]. Other
constructions of ideal schemes for these and other multipartite structures have been
presented in [13, 27, 37, 38], where some complexity issues related to the construction
of those ideal schemes are studied. A complete characterization of ideal bipartite ac-
cess structures was given in [30] and, independently, in [26, 28]. Partial results on the
characterization of ideal tripartite access structures have been presented in [2, 11, 13].
The first attempt to provide general results on the characterization of ideal multipartite
access structures has been made recently by Herranz and Sáez [13]. They present some
necessary conditions for a multipartite access structure to be ideal, which generalize
the ones given in [11] for the tripartite case. In addition, they present a wide family of
ideal tripartite access structures.

3 Our Results

This paper deals with the characterization of ideal multipartite access structures. Since
every access structure is multipartite, the problem we consider in this paper is actually
the characterization of ideal access structures in general. Therefore, this work can be
seen as a new attack to this long-standing open problem under a different point of view.
Our main contributions can be divided into three parts.

First, a characterization of matroid-related multipartite access structures, which
implies a necessary condition for a multipartite access structure to be ideal. The parti-
tion in the set of participants of a matroid-related multipartite access structure extends
to the set of points of the corresponding matroid. This leads us to introduce the natural
concept of multipartite matroid . We point out that every multipartite matroid with m
parts defines a discrete polymatroid on a set of m points. Discrete polymatroids, which
are a particular class of polymatroids, were introduced by Herzog and Hibi [14]. By
using discrete polymatroids, we present in Theorem 6.2 a characterization of matroid-
related multipartite access structures.

Second, a necessary and sufficient condition for a multipartite matroid to be repre-
sentable, which implies a sufficient condition for a multipartite access structure to be
ideal. Linear representations of matroids are obtained by assigning a vector to every
point. If, instead of a vector, we assign a subspace to every point, we will obtain a
linear representation of a discrete polymatroid. We prove in Theorem 7.1 that a mul-
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tipartite matroid is representable if and only if the corresponding discrete polymatroid
is representable. We think that this theorem is interesting not only for its implications
in secret sharing, but also as a result about representability of matroids. This result
is specially useful if the number of parts is small. For instance, a tripartite matroid
can have many points, but, as a consequence of our result, we only have to find three
suitable subspaces of a vector space to prove that it is representable.

And third, the application of the general results to the tripartite case, by means of
which a complete characterization of tripartite access structures is obtained. By using
Theorem 6.2, we characterize the matroid-related tripartite access structures. Theo-
rem 7.1 is used to prove that all matroids related to these structures are representable
and, hence, that all matroid-related tripartite access structures are ideal. Moreover, as
a consequence of the results in [22], the information rate of every non-ideal tripartite
access structure is at most 2/3. We observe that these results cannot be extended to
quadripartite access structures, because the Vamos matroid is quadripartite and it is
not ss-representable. Hence, there exist matroid-related quadripartite access structures
that are not ideal.

After the results in this paper, the open problems about the characterization of ideal
multipartite access structures are as difficult as the open problems in the general case.
That is, closing the gap between the necessary and the sufficient conditions requires to
solve very difficult problems about representations of matroids and polymatroids. For
instance, which discrete polymatroids are representable?

The size of the field and the number of checks for linear independence are im-
portant efficiency issues when constructing actual ideal schemes for ideal multipartite
access structures. Such issues have been studied for several particular families of mul-
tipartite access structures [2, 27, 30, 37, 38]. The proof of our sufficient condition for a
multipartite access structure to be ideal is purely existential and it does not give many
hints about those complexity questions, whose analysis in the general case is deferred
to future work.

4 Matroids and Ideal Secret Sharing Schemes

The reader is referred to [36] for an introduction to secret sharing and to [29, 39] for
general references on Matroid Theory.

A matroid M = (Q, I) is formed by a finite set Q together with a family I of
subsets of Q such that

1. ∅ ∈ I, and

2. if I ∈ I and I ′ ⊆ I, then I ′ ∈ I, and

3. if I1 and I2 are in I and |I1| < |I2|, then there exists x ∈ I2 − I1 such that
I1 ∪ {x} ∈ I.

The set Q is the ground set of the matroid M and the elements of I are called the
independent sets of M. The bases of the matroid are the maximally independent sets.
The family B of the bases determines the matroid. Moreover, by [29, Theorem 1.2.5],
B ⊆ P(Q) is the family of bases of a matroid on Q if and only if
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1. B is nonempty, and

2. for every B1, B2 ∈ B and x ∈ B1 − B2, there exists y ∈ B2 − B1 such that
(B1 − {x}) ∪ {y} is in B.

All bases have the same number of elements, which is the rank of M and is denoted
r(M). The dependent sets are those that are not independent. A circuit is a minimally
dependent subset. A matroid is said to be connected if, for every two points x, y ∈ Q,
there exists a circuit C with x, y ∈ C. The rank of X ⊆ Q, which is denoted r(X), is
the maximum cardinality of the subsets of X that are independent. Observe that the
rank of Q is the rank of the matroid M that was defined before. The rank function

r : P(Q) → Z of a matroid satisfies

1. 0 ≤ r(X) ≤ |X| for every X ⊆ Q, and

2. r is monotone increasing : if X ⊆ Y ⊆ Q, then r(X) ≤ r(Y ), and

3. r is submodular : r(X ∪ Y ) + r(X ∩ Y ) ≤ r(X) + r(Y ) for every pair of subsets
X, Y of Q.

Moreover, every function r : P(Q) → Z satisfying these properties is the rank function
of a matroid [29, Theorem 1.3.2].

Let K be a field. A matroid M = (Q, I) is K-representable if there exists a
matrix M over K whose columns are indexed by the elements of Q such that a subset
I = {i1, . . . , ik} ⊆ Q is independent if and only if the corresponding columns of M are
independent. In this situation, we say that the matrix M is a K -representation of the
matroid M.

Let Q be a finite set of participants and p0 ∈ Q a special participant called dealer .
Let E be a finite set with a probability distribution on it and, for every i ∈ Q, consider
a finite set Ei and a surjective mapping πi : E → Ei. Those mappings induce random
variables on the sets Ei. We notate H(Ei) for the Shannon entropy of those random
variables. For a subset A = {i1, . . . , ir} ⊆ Q, we write H(A) for the joint entropy
H(Ei1 . . . Eir), and a similar convention is used for conditional entropies as, for instance,
in H(Ej |A) = H(Ej |Ei1 . . . Eir). The mappings πi define a secret sharing scheme Σ
with access structure Γ on the set P = Q − {p0} of participants if H(Ep0

) > 0 and
H(Ep0

|A) = 0 if A ∈ Γ while H(Ep0
|A) = H(Ep0

) if A /∈ Γ. In that situation, every
random choice of an element x ∈ E, according to the given probability distribution,
results in a distribution of shares ((si)i∈P , s), where si = πi(x) ∈ Ei is the share of the
participant i ∈ P and s = πp0

(x) ∈ Ep0
is the shared secret value.

The ratio ρ(Σ) = H(Ep0
)/(maxi∈P H(Ei)) is called the information rate of the

scheme Σ, and the optimal information rate ρ(Γ) of the access structure Γ is the
supremum of the information rates of all secret sharing schemes with access structure Γ.
It is not difficult to check that H(Ei) ≥ H(Ep0

) for every i ∈ P and, hence, ρ(Σ) ≤ 1.
Secret sharing schemes with ρ(Σ) = 1 are said to be ideal and their access structures
are called ideal as well. Of course, ρ(Γ) = 1 for every ideal access structure Γ.

If Σ is an ideal secret sharing scheme, then there exists r0 > 0 such that H(Ei) = r0

for every i ∈ Q. Brickell and Davenport [8] proved that the mapping r : P(Q) → R
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defined by r(A) = H(A)/r0 is the rank function of a matroid M = M(Σ). In particular,
r(A) is a positive integer for every A ⊆ Q. The access structure Γ of the scheme Σ is
formed by the subsets A ⊆ P with r(A ∪ {p0}) = r(A) and, hence, Γ = Γp0

(M). A
matroid M is said to be secret sharing representable (or ss-representable for short) if
M = M(Σ) for some ideal secret sharing scheme Σ.

Let K be a finite field and let M = (Q, I) be a K-representable matroid. For every
k × (n + 1) matrix M representing M over K, the linear mappings πi : E = K

k →
Ei = K defined by the columns of M define an ideal secret sharing scheme with access
structure Γp0

(M). Therefore, the access structures that are related to representable
matroids are ideal.

5 Multipartite Access Structures, Multipartite Matroids,

and Discrete Polymatroids

We write P(P ) for the power set of the set P . An m-partition Π = {P1, . . . , Pm} of
a set P is a disjoint family of m nonempty subsets of P with P = P1 ∪ · · · ∪ Pm.
Let Λ ⊆ P(P ) be a family of subsets of P . For a permutation σ on P , we define
σ(Λ) = {σ(A) : A ∈ Λ} ⊆ P(P ). A family of subsets Λ ⊆ P(P ) is said to be Π-partite

if σ(Λ) = Λ for every permutation σ such that σ(Pi) = Pi for every Pi ∈ Π. We say
that Λ is m-partite if it is Π-partite for some m-partition Π. These concepts can be
applied to access structures, which are actually families of subsets, and they can be
applied as well to the family of independent sets of a matroid. A matroid M = (Q, I)
is Π-partite if I ⊆ P(Q) is Π-partite.

Let M = (Q, I) be a connected matroid and, for a point p0 ∈ Q, let Π =
{P1, . . . , Pm} and Π0 = {{p0}, P1, . . . , Pm} be partitions of the sets P = Q− p0 and Q,
respectively. Then the access structure Γ = Γp0

(M) is Π-partite if and only if the
matroid M is Π0-partite.

The partition Π′ is a refinement of the partition Π if every set in Π′ is a subset of
some set in Π. Clearly, if Λ ⊆ P(P ) is Π-partite and Π′ is a refinement of Π, then Λ
is Π′-partite. Among all partitions Π for which a family of subsets Λ ⊆ P(P ) is Π-
partite, there exists a partition ΠΛ that is not a refinement of any other such partition.
Following [13], we consider the following equivalence relation: two elements p, q ∈ P
are said to be equivalent according to Λ if the transposition τpq satisfies τpq(Λ) = Λ.
The partition ΠΛ is the one defined by this equivalence relation. It is not difficult to
check that Λ is Π-partite if and only if Π is a refinement of ΠΛ.

For every integer m ≥ 1, we consider the set Jm = {1, . . . , m}. Let Z
m
+ denote the

set of vectors u = (u1, . . . , um) ∈ Z
m with ui ≥ 0 for every i ∈ Jm. For a partition

Π = {P1, . . . , Pm} of a set P and for every A ⊆ P and i ∈ Jm, we define Πi(A) =
|A ∩ Pi|. Then the partition Π defines a mapping Π: P(P ) → Z

m
+ by considering

Π(A) = (Π1(A), . . . , Πm(A)). If Λ ⊆ P(P ) is Π-partite, then A ∈ Λ if and only if
Π(A) ∈ Π(Λ). That is, Λ is completely determined by the partition Π and the set of
vectors Π(Λ) ⊂ Z

m
+ .

Discrete polymatroids, a combinatorial object introduced by Herzog and Hibi [14],
are closely related to multipartite matroids and, because of that, they play an important
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role in the characterization of ideal multipartite access structures. Before giving the
definition of discrete polymatroid, we need to introduce some notation. If u, v ∈ Z

m
+ ,

we write u ≤ v if ui ≤ vi for every i ∈ Jm, and we write u < v if u ≤ v and u 6= v. The
vector w = u ∨ v is defined by wi = max{ui, vi}. The modulus of a vector u ∈ Z

m
+ is

|u| = u1 + · · · + um. For every subset X ⊆ Jm, we write u(X) = (ui)i∈X ∈ Z
|X|
+ and

|u(X)| =
∑

i∈X ui.
A discrete polymatroid on the ground set Jm is a nonempty finite set of vectors

D ⊂ Z
m
+ satisfying:

1. if u ∈ D and v ∈ Z
m
+ is such that v ≤ u, then v ∈ D, and

2. for every pair of vectors u, v ∈ D with |u| < |v|, there exists w ∈ D with u < w ≤
u ∨ v.

The next proposition, which is easily proved from the axioms of the independent
sets of a matroid, shows the relation between multipartite matroids and discrete poly-
matroids.

Proposition 5.1. Let Π be a partition of a set Q and let I ⊆ P(Q) be a Π-partite

family of subsets. Then I is the family of the independent sets of a Π-partite matroid

M = (Q, I) if and only if Π(I) ⊂ Z
m
+ is a discrete polymatroid.

A basis of a discrete polymatroid D is a maximal element in D, that is, a vector
u ∈ D such that there does not exist any v ∈ D with u < v. Similarly to matroids,
a discrete polymatroid is determined by its bases. Specifically, the following result is
proved in [14, Theorem 2.3].

Proposition 5.2. A nonempty subset B ⊂ Z
m
+ is the family of bases of a discrete

polymatroid if and only if it satisfies:

1. all elements in B have the same modulus, and

2. for every u ∈ B and v ∈ B with ui > vi, there exists j ∈ Jm such that uj < vj and

u − ei + ej ∈ B, where ei denotes the i-th vector of the canonical basis of R
m.

The rank function of a discrete polymatroid D with ground set Jm is the function
h : P(Jm) → Z defined by h(X) = max{|u(X)| : u ∈ D}. The next proposition is a
consequence of [14, Theorem 3.4].

Proposition 5.3. A function h : P(Jm) → Z is the rank function of a discrete poly-

matroid with ground set Jm if and only if it satisfies

1. h(∅) = 0, and

2. h is monotone increasing: if X ⊆ Y ⊆ Jm, then h(X) ≤ h(Y ), and

3. h is submodular: if X, Y ⊆ Jm, then h(X ∪ Y ) + h(X ∩ Y ) ≤ h(X) + h(Y ).

Moreover, a polymatroid D is completely determined by its rank function. Specifi-
cally, D = {u ∈ Z

m
+ : |u(X)| ≤ h(X) for all X ⊆ Jm}.

For a discrete polymatroid D with ground set Jm and for every X ⊆ Jm, we define

the discrete polymatroid D(X) with ground set X by D(X) = {u(X) : u ∈ D} ⊂ Z
|X|
+ .
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6 A Characterization of Matroid-Related Multipartite Ac-

cess Structures

For every integer m ≥ 1, we consider the sets Jm = {1, . . . , m} and J ′
m = {0, 1, . . . , m}.

Let D ⊂ Z
m
+ be a discrete polymatroid with ground set Jm and rank function h : P(Jm) →

Z. We say that a discrete polymatroid D′ ⊂ Z
m+1
+ with ground set J ′

m completes D if
its rank function h′ : P(J ′

m) → Z is such that h′(X) = h(X) for every X ⊆ Jm while
h′({0}) = 1 and h′(J ′

m) = h′(Jm). In particular, D(J ′
m) = D. Since the rank function

of D′ is an extension of the one of D, both will be usually denoted by h. For a polyma-
troid D′ that completes D, consider the family ∆ = ∆(D′) = {X ⊆ Jm : h(X ∪{0}) =
h(X)} ⊆ P(Jm). Observe that ∆ is monotone increasing. Effectively, if X ∈ ∆ and
X ⊆ Y , then h(X) + h(Y ) = h(X ∪ {0}) + h(Y ) ≥ h(Y ∪ {0}) + h(X) and, hence,
Y ∈ ∆.

Given a discrete polymatroid D with ground set Jm, every completion D′ of D
is determined by ∆(D′). The next proposition characterizes the families of subsets
∆ ⊆ P(Jm) for which there exists D′ with ∆ = ∆(D′). This result will be very useful
in the characterization of ideal tripartite access structures.

Proposition 6.1. Let D be a discrete polymatroid with ground set Jm and rank function

h. Consider ∆ ⊆ P(Jm). Then there exists a completion D′ of D with ∆ = ∆(D′) if

and only if the following conditions are satisfied.

1. The family ∆ is monotone increasing, ∅ /∈ ∆, and Jm ∈ ∆.

2. If X ⊂ Y ⊆ Jm and X /∈ ∆ while Y ∈ ∆, then h(X) < h(Y ).

3. If X, Y ∈ ∆ and X ∩ Y /∈ ∆, then h(X ∪ Y ) + h(X ∩ Y ) < h(X) + h(Y ).

Proof. Let h′ : P(J ′
m) → Z be the only extension of h such that, if X ⊆ Jm, then

h′(X ∪{0}) = h(X) if X ∈ ∆ and h′(X ∪{0}) = h(X)+1 otherwise. Then ∆ = ∆(D′)
for some completion D′ of D if and only if h′ is monotone increasing and submodular,
h′({0}) = 1, and h′(J ′

m) = h(Jm). These conditions are equivalent to the ones in the
statement.

We say that ∆ ⊆ P(Jm) is D-compatible if it satisfies the conditions in Proposi-
tion 6.1. For every X ⊆ Jm we consider the set of vectors B(X) ⊂ Z

m
+ such that

u ∈ B(X) if and only if u(X) is a basis of D(X) and ui = 0 for every i ∈ Jm − X.
Finally, for a family ∆ ⊆ P(Jm), we define G(∆) =

⋃
X∈∆ B(X) ⊂ Z

m
+ .

Theorem 6.2. Let Π be an m-partition of P and let Γ be a connected Π-partite ac-

cess structure on P . Then Γ is matroid-related if and only if there exist a discrete

polymatroid D with ground set Jm and a D-compatible family ∆ ⊆ P(Jm) such that

Γ = {A ⊆ P : Π(A) ≥ u for some vector u ∈ G(∆)}.

Proof. Let Π = (P1, . . . , Pm) and Π0 = ({p0}, P1, . . . , Pm) be partitions of the sets P
and Q = P ∪ {p0}, respectively. Let M = (Q, I) be a connected Π0-partite matroid
and let D′ = Π0(I) ⊂ Z

m+1
+ be the discrete polymatroid with ground set J ′

m induced
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by M. Observe that, since M is connected, D′ completes the discrete polymatroid
D = D′(Jm). Consider the matroid-related Π-partite access structure Γp0

(M). We only
have to prove that Γp0

(M) = {A ⊆ P : Π(A) ≥ u for some vector u ∈ G(∆(D′))}.
Consider a vector u = (u1, . . . , um) ∈ G(∆(D′)) and A ⊆ P with Π(A) ≥ u. Then

there exists X ⊆ Jm such that X ∈ ∆(D′) and u(X) is a basis of D(X). We can
suppose that X = {1, . . . , r} and, hence, u = (u1, . . . , ur, 0, . . . , 0). Consider a subset
B ⊆ A with Π(B) = u. Since Π0(B) = ũ = (0, u1, . . . , ur, 0, . . . , 0) ∈ D′, we deduce
that B is an independent set of the matroid M. On the other hand, Π0(B ∪ {p0}) =
(1, u1, . . . , ur, 0, . . . , 0) /∈ D′ because ũ(X) is a basis of D′(X) and h(X ∪ {0}) = h(X).
Therefore, B ∪ {p0} is a dependent set of M. This, together with the independence of
B, implies that B ∈ Γp0

(M) and, hence, A ∈ Γp0
(M).

Let A ⊆ P be a minimal qualified subset of Γp0
(M) and let X = {i ∈ Jm : A∩Pi 6=

∅}. We can suppose that X = {1, . . . , r}. Consider u = Π0(A) = (0, u1, . . . , ur, 0, . . . , 0).
Observe that u ∈ D′ because A is an independent set of M. The proof is concluded
by checking that X ∈ ∆(D′) and that u(X) is a basis of D′(X). If, on the con-
trary, u(X) is not a basis of D′(X), we can suppose without loss of generality that
v = (0, u1 + 1, u2, . . . , ur, 0, . . . , 0) ∈ D′. Since A is a minimal qualified subset of
Γp0

(M), the set A ∪ {p0} is a circuit of M and, hence, B = (A ∪ {p0}) − {p1} is
an independent set of M for every p1 ∈ A ∩ P1. Therefore, w = Π0(B) = (1, u1 −
1, u2, . . . , ur, 0, . . . , 0) ∈ D′. Since |v| > |w|, there exists x ∈ D′ with w < x ≤ w ∨ v.
This implies that x = (1, u1, u2, . . . , ur, 0, . . . , 0) = Π0(A ∪ {p0}) ∈ D′, a contradiction.
Therefore, u(X) is a basis of D′(X), and this implies h(X ∪ {0}) = h(X) because
(1, u1, u2, . . . , ur, 0, . . . , 0) /∈ D′. Hence, X ∈ ∆(D′).

As a consequence, a necessary condition for an m-partite access structure to be
matroid-related is obtained. It is a generalization of a result conjectured, but not
proved, in [13]. The support of A ⊆ P is defined as supp(A) = {i ∈ Jm : A ∩ Pi 6= ∅}.

Proposition 6.3. Let Γ be a matroid-related m-partite access structure. For every

X ⊆ Jm, all minimal qualified subsets A ∈ min Γ with supp(A) = X have the same

cardinality.

7 Representable Multipartite Matroids

Let K be a field, E a K -vector space, and V1, . . . , Vm subspaces of E. It is not difficult
to check that the mapping h : P(Jm) → Z defined by h(X) = dim(

∑
i∈X Vi) is the

rank function of a discrete polymatroid D ⊂ Z
m
+ . In this situation, we say that D is

K -representable and the subspaces V1, . . . , Vm are a K-representation of D. The main
goal of this section is to prove the following result.

Theorem 7.1. Let M = (Q, I) be a Π-partite matroid and let D = Π(I) be its associ-

ated discrete polymatroid. If M is K-representable, then so is D. In addition, if D is

K -representable, then M is representable over some finite extension of K.

Let Π = (Q1, . . . , Qr) be a partition of Q and let M = (Q, I) be a Π-partite
matroid. Consider the discrete polymatroid D = Π(I) ⊂ Z

m
+ and its rank function

h : P(Jm) → Z.

10



We begin by proving the first claim in the statement of Theorem 7.1. Suppose that
M is represented over the field K by a matrix M . For every i ∈ Jm, consider the
subspace Vi spanned by the columns of M corresponding to the points in Qi. Then
h(X) = r(∪i∈XQi) = dim(

∑
i∈X Vi) for every X ⊆ Jm. Therefore, the subspaces

V1, . . . , Vm are a K-representation of the discrete polymatroid D.
The proof for the second claim in the theorem is much more involved and needs

several partial results. Assume now that the discrete polymatroid D = Π(I) is K -
representable. Then there exists a K -representation of D consisting of subspaces
V1, . . . , Vm of the K -vector space E = K

s, where s = h(Jm) = r(M). Consider the
subset D̃ ⊂ Z

m
+ defined in the following way: an integer vector u ∈ Z

m
+ is in D̃ if and

only if there exists a sequence (A1, . . . , Am) of subsets of E such that

1. Ai ⊂ Vi and |Ai| = ui for every i ∈ Jm,

2. Ai ∩ Aj = ∅ if i 6= j, and

3. A1 ∪ · · · ∪ Am ⊂ E is an independent set of vectors.

Lemma 7.2. In this situation, D̃ = D.

Proof. If (A1, . . . , Am) is a sequence of subsets of E corresponding to an integer vector
u ∈ D̃, then |u(X)| =

∑
j∈X |Aj | ≤ dim(

∑
j∈X Vj) = h(X) for every X ∈ Jm and,

hence, u ∈ D. Therefore, D̃ ⊆ D.
We prove now that the subset D̃ ⊂ Z

m
+ is a discrete polymatroid. Clearly, D̃ 6= ∅

and, since D̃ ⊆ D, it is finite. Moreover, it is obvious that v ∈ D̃ if v ≤ u and u ∈ D̃.
Consider u, v ∈ D̃ with |u| < |v|. Among all possible pairs of sequences (A1, . . . , Am)
and (B1 . . . , Bm) corresponding, respectively, to the integer vectors u and v, we choose
one maximizing

∑m
j=1 |Aj ∩Bj |. Let A = A1 ∪ · · · ∪Am and B = B1 ∪ · · · ∪Bm. Since

|B| > |A|, there exists a vector x ∈ B−A such that A∪{x} is an independent set. We
claim that, if x ∈ Bi, then |Bi| > |Ai|. If, on the contrary, |Bi| ≤ |Ai|, there must exist
y ∈ Ai − Bi. Then (A′

1, . . . , A
′
i, . . . , A

′
m), where A′

i = (Ai ∪ {x}) − {y} and A′
j = Aj if

j 6= i, is a sequence corresponding to u and such that
∑m

j=1 |A
′
j ∩Bj | >

∑m
j=1 |Aj ∩Bj |,

a contradiction. Therefore, by considering the sequence (A1, . . . , Ai ∪{x}, . . . , Am), we
see that there exists w ∈ D̃ such that u < w ≤ u ∨ v. This proves that D̃ is a discrete
polymatroid.

Consider the rank function h̃ : P(Jm) → Z of D̃. Given a subset X ⊆ Jm, it is clear
that h̃(X) = max{|u(X)| : u ∈ D̃} ≤ dim(

∑
j∈X Vj) = h(X). On the other hand, by

considering a basis of the subspace
∑

j∈X Vj formed by vectors in
⋃

j∈X Vj , we can

find a vector u ∈ D̃ with |u(X)| = dim(
∑

j∈X Vj) and, hence, h̃(X) ≥ h(X). Therefore,

D̃ = D.

The next lemma is a direct consequence Lemma 7.2.

Lemma 7.3. For every basis u of D, there exists a basis B = B1 ∪ · · · ∪ Bm of the

vector space E such that Bi ⊂ Vi and |Bi| = ui for every i ∈ Jm, and Bi ∩ Bj = ∅
if i 6= j.

11



Let K be the algebraic closure of K. From now on, Vi will denote both the subspace
of E = K

s and its extension to K
s
. Clearly, those subspaces provide a K -representation

of D. For every i ∈ Jm, let ri = dim Vi and ni = |Qi|, and take n = n1 + · · · + nm.
Consider the space M of all s×n matrices over K of the form (M1|M2| · · · |Mm), where
Mi is a s × ni matrix whose columns are vectors in Vi. Observe that the columns of
every matrix M ∈ M can be indexed by the elements in Q, corresponding the columns
of Mi to the points in Qi. The proof of Theorem 7.1 is concluded by proving that there
exists a matrix M ∈ M representing the matroid M over K because, in this case, M
is representable over some finite extension of K (the one containing all entries of the
matrix M).

Lemma 7.4. If A ⊆ Q is a dependent subset of the matroid M, then, for every M ∈ M,

the columns of M corresponding to the elements in A are linearly dependent.

Proof. Since u = Π(A) /∈ D, there exists X ⊆ Jm such that |u(X)| > h(X) =
dim(

∑
j∈X Vj). Then the columns of M corresponding to the elements in A∩(∪j∈XQj)

must be linearly dependent.

Therefore, the following lemma concludes the proof of Theorem 7.1.

Lemma 7.5. There exists a matrix M ∈ M such that, for every basis B ⊆ Q of the

matroid M, the corresponding columns of M are linearly independent.

Proof. By fixing a basis of Vi for every i ∈ Jm, we get one-to-one mappings

φi : K
ri → Vi ⊆ K

s
.

Let N =
∑m

i=1 rini. By using the mappings φi, we can construct a one-to-one mapping

Ψ: K
N

= (K
r1)n1 × · · · × (K

rm

)nm → M.

That is, by choosing an element in K
N

, we obtain n1 vectors in V1, n2 vectors in V2,
and so on. For every basis B ⊆ Q of the matroid M, we consider the mapping

fB : K
N

→ K defined by fB(X) = det(Ψ(X)B), where Ψ(X)B is the square submatrix
of Ψ(X) formed by the s columns corresponding to the elements in B. Clearly, fB is
a polynomial. Let B be a basis of M and u = Π(B) ∈ Z

m
+ . From Lemma 7.3, there

exists a basis of K
s

of the form B̃ = B1 ∪ · · · ∪Bm such that Bi ⊂ Vi and |Bi| = ui for
every i ∈ Jm. By placing the vectors in B̃ in the suitable positions in a matrix M ∈ M,

we can find a vector XB ∈ K
N

such that fB(XB) 6= 0. Therefore, the polynomial fB is
non-zero for every basis B of M. Since the field K is algebraically closed, there exists

a point X0 ∈ K
N

such that fB(X0) 6= 0 for every basis B of M. Clearly, the matrix
Ψ(X0) is the one we need.

Theorem 7.1 provides a sufficient condition for a multipartite access structure to
be ideal. Namely, a multipartite access structure is ideal if it is of the form Γp0

(M),
where M = (Q, I) is a Π0-partite matroid such that the discrete polymatroid Π0(I)
is representable. In addition, the interest of Theorem 7.1 goes beyond its implications
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to secret sharing. As far as we now, the representability of multipartite matroids has
not been studied before. Therefore, the connection between multipartite matroids and
discrete polymatroids we presented here and Theorem 7.1 are interesting new results
about representability of matroids.

The remaining open problems about the characterization of multipartite access
structures are now as difficult as the open problems for the general case. The gap
between the necessary and the sufficient conditions is due to very difficult problems
about matroid and polymatroid representations as, for instance, the following one.

Open Problem 7.6. Characterize the representable discrete polymatroids.

Analogously to the matroid case, in which there exist ss-representable matroids that
are not representable, we have to consider a different kind of polymatroid representa-
tion. A discrete polymatroid D with ground set Jm and rank function h : P(Jm) → Z is
probabilistically representable if there exist a finite set E with a probability distribution
on it and, for every i ∈ Jm, a surjective mapping πi : E → Ei such that h(X) = H(X)
for every X ⊆ J , where, as in Section 4, H(X) denotes the Shannon entropy on the
corresponding random variable. The next proposition is not difficult to prove. Never-
theless, to prove or disprove its converse, which would be in any case a very interesting
result about the characterization of ideal multipartite access structures, seems to be a
very difficult open problem.

Proposition 7.7. Let M = (Q, I) be a Π-partite matroid and let D = Π(I) be its

associated discrete polymatroid. If M is ss-representable, then D is probabilistically

representable.

Open Problem 7.8. Is the converse of Proposition 7.7 true?

Open Problem 7.9. Characterize the probabilistically representable polymatroids.

8 Bipartite and Tripartite Access Structures

In this section, we apply our general results on ideal multipartite access structures
to completely characterize the ideal bipartite and tripartite access structures. The
characterization of ideal bipartite access structures was done previously in [30], but
only partial results were known about the tripartite case [2, 11, 13].

We begin by characterizing the matroid-related bipartite and tripartite access struc-
tures. Afterwards, we prove that all matroids related to those access structures are
representable and, hence, all matroid-related bipartite and tripartite access structures
are ideal. We obtain in this way a characterization of the ideal bipartite and tripartite
access structures. In addition, as a consequence of the results in [22], the optimal in-
formation rate of every non-ideal bipartite or tripartite access structure is at most 2/3.

We observe that we cannot obtain in this way a characterization of ideal multipartite
access structures with more than three parts. This is due to the fact that the Vamos
matroid is quadripartite and it is not ss-representable. Therefore, there exist matroid-
related quadripartite access structures that are not ideal.
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8.1 Characterizing Matroid-Related Bipartite and Tripartite Access

Structures

By applying Theorem 6.2 to the particular cases m = 2 and m = 3, we characterize
the matroid-related bipartite and tripartite access structures.

Let Γ be a bipartite access structure, that is, Γ is Π-partite for some partition
Π = (P1, P2) of the set P of participants. From Theorem 6.2, Γ is matroid-related if and
only if there exists a discrete polymatroid D with ground set J2 and a D-compatible
family ∆ ⊆ P(J2) such that Γ = {A ⊆ P : Π(A) ≥ u for some vector u ∈ G(∆)},
where G(∆) =

⋃
X∈∆ B(X) and

• B({1, 2}) = {v ∈ Z
2
+ : (s − r2, s − r1) ≤ v ≤ (r1, r2) and |v| = s},

• B({1}) = {(r1, 0)}, and B({2}) = {(0, r2)}.

Given integers r1, r2, s and a family of subsets ∆ ⊆ P(J2), there exists a discrete
polymatroid D with ground set J2 and ri = h({i}), for i = 1, 2, and s = h({1, 2}) such
that ∆ is D-compatible if and only if the following conditions are satisfied.

1. s > 0 and 0 ≤ ri ≤ s ≤ r1 + r2.

2. ∆ is monotone increasing, ∅ /∈ ∆, and J2 ∈ ∆.

3. ri > 0 if {i} ∈ ∆, and s > ri if {i} /∈ ∆.

4. r1 + r2 > s if {{1}, {2}} ⊂ ∆.

Summarizing, a bipartite access structure is matroid-related if and only if it is de-
termined in that way by some ∆ ⊆ P(J2) and some integers r1, r2, s in the above
conditions.

The characterization of the matroid-related tripartite access structure is more in-
volved. We begin by introducing some notation. The values of a rank function
h : P(J3) → Z of a discrete polymatroid D with ground set J3 will be denoted by
ri = h({i}), where i ∈ J3, and si = h({j, k}) if {i, j, k} = J3, and s = h(J3). The
integer values ri, si, and s univocally determine a discrete polymatroid with ground set
J3 if and only if for every i, j, k with {i, j, k} = J3,

1. s > 0, and 0 ≤ ri ≤ sj ≤ s, and

2. si ≤ rj + rk, and s ≤ si + ri, and s + ri ≤ sj + sk.

Let D be a discrete polymatroid with ground set J3. From Proposition 6.1, a family
∆ ⊆ P(J3) is D-compatible if and only if the following conditions are satisfied for every
i, j, k with {i, j, k} = J3.

1. ∆ is monotone increasing, ∅ /∈ ∆, and J3 ∈ ∆.

2. ri > 0 if {i} ∈ ∆, and ri < sj if {i} /∈ ∆ and {i, k} ∈ ∆, and si < s if {j, k} /∈ ∆.

3. si < rj + rk if {{j}, {k}} ⊂ ∆.
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4. s + ri < sj + sk if {i} /∈ ∆ and {{i, j}, {i, k}} ⊂ ∆

5. s < si + ri if {{i}, {j, k}} ⊂ ∆.

From Theorem 6.2, a tripartite access structure Γ is matroid-related if and only if there
exist integers ri, si, s and a family ∆ ⊆ J3 in the above conditions such that a subset
A ⊆ P is in Γ if and only if Π(A) ≥ u for some u ∈

⋃
X∈∆ B(X), where

• B(J3) = {v ∈ Z
m
+ : (s − s1, s − s2, s − s3) ≤ v ≤ (r1, r2, r3) and |v| = s},

• B({1, 2}) = {v ∈ Z
m
+ : (s3 − r2, s3 − r1, 0) ≤ v ≤ (r1, r2, 0) and |v| = s3}, and

• B({1}) = {(r1, 0, 0)},

and the other sets B(X) are defined symmetrically.

8.2 All Matroid-Related Bipartite and Tripartite Access Structures

Are Ideal

Let D be a discrete polymatroid with ground set J3 that is represented over the field K

by three subspaces V1, V2, V3 of a vector space E. If ri, si and s are the integer values
of the rank function of D, then ri = dim Vi for every i ∈ J3, and si = dim(Vj + Vk)
if {i, j, k} = J3, and s = dim(V1 + V2 + V3). If {i, j, k} = J3, consider ti = rj + rk −
si = dim(Vj ∩ Vk). Observe that t = dim(V1 ∩ V2 ∩ V3) is not determined in general
by D. That is, there can exist different representations of D with different values
of t. Nevertheless, there exist some restrictions on this value. Of course, t ≤ ti for
every i ∈ J3. In addition, since (V1 ∩ V3) + (V2 ∩ V3) ⊆ (V1 + V2) ∩ V3, we have that
dim((V1 +V2)∩V3)−dim((V1 ∩V3)+ (V2 ∩V3)) =

∑
si −

∑
ri − (s− t) ≥ 0. Therefore,

max{0, s −
∑

si +
∑

ri} ≤ t ≤ min{t1, t2, t3}.

Proposition 8.1. Let D be a discrete polymatroid with ground set J3. Consider an

integer t with max{0, s−
∑

si+
∑

ri} ≤ t ≤ min{t1, t2, t3} and ` =
∑

si−
∑

ri−(s−t).
Let K be a field with |K| ≥ s3 + `. Then there exists a K-representation of D given by

subspaces V1, V2, V3 ⊆ E = K
s with dim(V1 ∩ V2 ∩ V3) = t.

Proof. Consider two subspaces V, W ⊆ E such that dim V = s3 and E = V ⊕ W .
Given a basis {v1, . . . , vs3

} of V , consider the mapping v : K → V defined by v(x) =∑s3

i=1 xi−1vi. Observe that the vectors v(x) have Vandermonde coordinates with respect
to the given basis of V . This implies that every set of at most s3 vectors of the form
v(x) is independent. Consider three disjoint sets T3, R1, R2 ⊆ {v(x) : x ∈ K} ⊂ V
with |T3| = t3, |R1| = r1 − t3, and |R2| = r2 − t3. The subspaces V1 ⊆ V and V2 ⊆ V ,
spanned, respectively, by T3 ∪ R1 and T3 ∪ R2, are such that V1 + V2 = V and have
dimensions dim V1 = r1 and dim V2 = r2.

At this point, we have to find a suitable subspace V3 ⊂ E to complete the rep-
resentation of D. Consider sets T ⊆ T3 with |T | = t, and A1 ⊆ R1 and A2 ⊆ R2

with |A1| = t2 − t and |A2| = t1 − t, and B ⊆ {v(x) : x ∈ K} with |B| = ` and
B ∩ (T3 ∪ R1 ∪ R2) = ∅. Finally, take V3 = U ⊕ W , where U ⊆ V is the subspace
spanned by T ∪ A1 ∪ A2 ∪ B.
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Since |T ∪ A1 ∪ A2 ∪ B| = s3 + r3 − s ≤ s3, this is an independent set of vectors
and, hence, it is a basis of U . Therefore, dim V3 = r3. We assert that dim(V3 ∩ V1) =
t2. Effectively, it is clear that dim(V3 ∩ V1) = dim(U ∩ V1). The sets T3 ∪ R1 and
T ∪A1 ∪A2 ∪B are bases of V1 and U , respectively. The intersection of these two sets
is T ∪ A1, which has cardinality t2, and their union is T3 ∪ R1 ∪ A2 ∪ B, which is an
independent set because its cardinality is s3 − (s− s2) ≤ s3. This proves our assertion.
Analogously, dim(V3 ∩ V1) = t1. Therefore, dim(V1 + V3) = s2 and dim(V2 + V3) = s1.
A similar argument as before proves that dim(V1 ∩ V2 ∩ V3) = t.

As a consequence of this result, we obtain Corollary 8.2. This and Theorem 7.1
prove Corollary 8.3.

Corollary 8.2. Every discrete polymatroid with ground set Jm with m ≤ 3 is repre-

sentable over fields of all characteristics.

Corollary 8.3. Every m-partite matroid with m ≤ 3 is representable over fields of all

characteristics.

Corollary 8.4. Every matroid-related bipartite access structure is ideal.

Proof. If Γp0
(M) is a matroid-related bipartite access structure, then the matroid M

is tripartite and, from Corollary 8.3, it is representable.

The next lemma is a well known result of linear algebra. It will be used in the proof
of Theorem 8.6.

Lemma 8.5. Let K be a field with |K| > n and let V and W1, . . . , Wn be subspaces of

a K-vector space E such that V 6⊂ Wi for every i = 1, . . . , n. Then V 6⊂
⋃n

i=1 Wi.

Theorem 8.6. Every matroid-related tripartite access structure is ideal. More specifi-

cally, every matroid-related tripartite access structure admits ideal linear secret sharing

schemes over fields of all characteristics.

Proof. Let Γ = Γp0
(M) be a matroid-related tripartite access structure. Then there

exist partitions Π = {P1, P2, P3} of the set P of participants and Π0 = {{p0}, P1, P2, P3}
of the set Q = P ∪ {p0} such that Γ is Π-partite and the matroid M = (Q, I) is Π0-
partite. From Theorem 7.1, we only have to prove that the discrete polymatroid D ′ =
Π0(M) is representable over finite fields of every characteristic. Remember that D′ is a
completion of the discrete polymatroid D = D′(J3). Therefore, D′ is determined by the
integers ri, si, s that define the rank function of D and the family ∆ = ∆(D′). For every
i, j, k with {i, j, k} = J3, consider ti = rj + rk − si. From the proof of Proposition 8.1,
for every integer t such that max{0, s −

∑
si +

∑
ri} ≤ t ≤ min{t1, t2, t3} and for

every large enough field K, there exists a K-representation of D formed by subspaces
V1, V2, V3 ⊆ E = K

s with dim(V1 ∩ V2 ∩ V3) = t.
The proof is concluded by finding a vector x0 ∈ E such that the subspace V0 = 〈x0〉

together with the subspaces V1, V2, V3 form a K-representation of D′. We distinguish
several cases, depending on the family ∆. Clearly, the cases that are not considered
here are solved by symmetry. Remember that the values ri, si, and s and the family ∆
must satisfy the conditions in Section 8.1.
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Case 1 min ∆ = {{1}}. In this case, we have to choose a vector x0 ∈ V1 such that
x0 /∈ V2 + V3. Such a vector exists because {2, 3} /∈ ∆ and, hence, s1 < s.

Case 2 min ∆ = {{1}, {2}}. Then s3 < r1 + r2 and s + r3 < s1 + s2. In particular,
t3 = r1 + r2 − s3 > max{0, s−

∑
si +

∑
ri}. Therefore, we can take t < t3 and, hence,

there exists a representation of D such that V1 ∩ V2 6⊂ V3. Now, we only have to take a
vector x0 ∈ V1 ∩ V2 such that x0 /∈ V3.

Case 3 min ∆ = {{1}, {2}, {3}}. In this situation, si < rj + rk whenever {i, j, k} =
J3. Therefore, min{t1, t2, t3} > 0 and, hence, there exists a representation of D with
V1 ∩ V2 ∩ V3 6= {0}.

Case 4 min ∆ = {{1}, {2, 3}}. Then s < r1 + s1. In addition, s + r2 < s1 + s3 and
s + r3 < s1 + s2. Observe that dim(V1 ∩ (V2 + V3)) = r1 + s1 − s > 0. Moreover, we
assert that V1 ∩ (V2 +V3) 6⊂ Vi if i 6= 1. Suppose that, for instance, V1 ∩ (V2 +V3) ⊆ V2.
This implies that V1 ∩ (V2 + V3) = V1 ∩ V2 and, by considering the dimensions of these
subspaces, r1 + s1 − s = r1 + r2 − s3. Since s + r2 < s1 + s3, we have obtained a
contradiction that proves our assertion. Finally, we take a vector x0 ∈ V1 ∩ (V2 + V3)
such that x0 /∈ V2 and x0 /∈ V3.

Case 5 min ∆ = {{1, 2}}. For i ∈ {1, 2}, we have si < s and, hence, V1+V2 6⊂ Vi+V3.
Then there exists a vector x0 ∈ V1 + V2 such that x0 /∈ V2 + V3 and x0 /∈ V1 + V3.

Case 6 min ∆ = {{1, 2}, {2, 3}}. Consider V = (V1 + V2) ∩ (V2 + V3). Observe
that dim V = s3 + s1 − s > r2 = dim V2. Therefore, V 6⊂ V2. In addition, since
V ′ = V2 + (V1 ∩ V3) ⊆ V ,

E = (V1 + V3) + V ′ ⊆ (V1 + V3) + V ⊆ E, (1)

and V1 + V3 6= E because s2 < s. Therefore, there exists a vector x0 ∈ V such that
x0 /∈ V1 + V3 and x0 /∈ V2.

Case 7 min ∆ = {{1, 2}, {2, 3}, {3, 1}}. Consider W = (V1+V2)∩(V2+V3)∩(V3+V1).
Because of Equation (1), dim W =

∑
si − 2s. Clearly, if {i, j, k} = J3, then W ∩ Vi =

Vi ∩ (Vj + Vk) and, hence, dim(W ∩ Vi) = ri + si − s. Since dim W − dim(W ∩ Vi) =
sj + sk − s − ri > 0, we have proved that W 6⊂ Vi for every i ∈ J3. Therefore, there
exists a vector x0 ∈ W such that x0 /∈ Vi for every i ∈ J3.

Case 8 min ∆ = {{1, 2, 3}}. In this case si < s for every i ∈ J3 and, hence, there
exists a vector x0 ∈ E such that x0 /∈ Vj + Vk for every {j, k} ⊂ J3.
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